
Managing Security of Virtual Machine Images in a Cloud
Environment

Jinpeng Wei
∗

Florida International University
weijp@cs.fiu.edu

Xiaolan Zhang
IBM T. J. Watson Research

Center
cxzhang@us.ibm.com

Glenn Ammons
IBM T. J. Watson Research

Center
ammons@us.ibm.com

Vasanth Bala
IBM T. J. Watson Research

Center
vbala@us.ibm.com

Peng Ning
North Carolina State

University
pning@ncsu.edu

ABSTRACT
Cloud computing is revolutionizing how information tech-
nology resources and services are used and managed but the
revolution comes with new security problems. Among these
is the problem of securely managing the virtual-machine im-
ages that encapsulate each application of the cloud. These
images must have high integrity because the initial state of
every virtual machine in the cloud is determined by some
image. However, as some of the benefits of the cloud de-
pend on users employing images built by third parties, users
must also be able to share images safely.

This paper explains the new risks that face administrators
and users (both image publishers and image retrievers) of a
cloud’s image repository. To address those risks, we propose
an image management system that controls access to images,
tracks the provenance of images, and provides users and ad-
ministrators with efficient image filters and scanners that
detect and repair security violations. Filters and scanners
achieve efficiency by exploiting redundancy among images;
an early implementation of the system shows that this ap-
proach scales better than a naive approach that treats each
image independently.

Categories and Subject Descriptors
K.6.5 [MANAGEMENT OF COMPUTING AND IN-
FORMATION SYSTEMS]: Security and Protection; H.3.5
[INFORMATION STORAGE AND RETRIEVAL]:
Online Information Services

General Terms
Management, Security

∗Part of this research was performed while being a summer
intern at IBM Watson.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’09, November 13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-784-4/09/11 ...$10.00.

Bob Alice

Portal
Server

Cloud
Manager

Compute
Servers

Storage
Servers

(optional)

Image
Repository

SAN
Switch

Figure 1: High Level Architecture of a Typical
Cloud.

Keywords
Cloud Computing, Virtual Machine Image, Image Reposi-
tory

1. INTRODUCTION
Cloud computing has emerged as one of the most influ-

ential technologies in the IT industry and is rapidly revolu-
tionizing the way IT resources are managed and utilized [9].
Through clever use of virtualization technologies, the cloud
offers customers the ability to start businesses without hav-
ing to pay huge upfront capital expenses and the flexibility
to scale the IT infrastructure up and down as a business
evolves without worrying about over or under provisioning.
Major services in this field include Amazon’s EC2 [7], IBM’s
Smart Business cloud offerings [16], Microsoft’s Azure [18],
and Google’s AppEngine [12].

Figure 1 shows the architecture of a typical cloud at a high
level. An end user Bob connects to the cloud via a portal
from his browser. Alternatively, a user Alice can choose to
directly connect to the cloud manager via a command line
interface similar to that used in EC2. A cloud provides three
types of resources: a collection of virtual machine (VM)

images, a set of computer servers on which the VM images
can be run, and optionally a storage pool to store persistent
user data.

Despite the cloud’s huge potential in reduced costs and
improved productivity, and overwhelming enthusiasm from
customers, security experts repeatedly warn that security
problems could inhibit wide adoption of the cloud model [9,
4, 14, 5]. For example, John Chambers, CEO of Cisco,
stated in his keynote speech at the 2009 RSA conference,
“[cloud computing] is a security nightmare, and it can’t be
handled in traditional ways”. And many open questions have
been raised in security for cloud computing [13, 9].

In this paper, we discuss the question of securely man-
aging VM images in a cloud environment. VM images are
unique entities in the cloud with special traits. First, VM
images need high integrity, because they determine the ini-
tial states of running virtual machines, including their se-
curity states. In other words, the security and integrity of
such images are the foundation for the overall security of
the cloud. Second, many of the VM images are designed to
be shared by different and often unrelated users. For ex-
ample, one of the major efficiency improvements promised
by the cloud is realized through employing VM images built
by a third party [15, 19]. As we will discuss in detail later,
sharing of VM images poses privacy and safety issues.

Unfortunately, existing approaches to cloud security built
by cloud practitioners fall short when dealing with VM im-
ages. Such techniques mainly focus on two aspects of secu-
rity: 1) security of running instances, and 2) integrity and
privacy of customer data. For example, EC2 supports the
concept of a security group, which is roughly a set of IP ad-
dresses that are either allowed or denied access to a target
VM as defined by a corresponding firewall rule [6]. Ama-
zon also provides the S3 storage service, which stores their
customers’ non-volatile data in an encrypted manner [8].
However, techniques that protect running instances are not
applicable to VM images because by definition such images
are dormant (e.g., not running). Additionally, techniques
that protect customer data are also inadequate for VM im-
ages because a VM image is not simply a piece of static
customer data but also includes the entire software stack
that boots a VM into its initial state (or, in the case of a
snapshot, the previous checkpoint state). For these reasons,
VM images call for non-traditional measures to secure them,
which motivates this paper.

In the remainder of this paper, we elaborate security risks
and challenges in a cloud environment from the image per-
spective (Section 2), and propose an image management sys-
tem that attempts to mitigate, if not eliminate, these secu-
rity risks (Section 3). To our best knowledge, this is the
first image management system that is designed with built-
in image security functionality. We discuss advantages of
our approach over alternative designs as well as its limita-
tions (Section 4). We then describe related work (Section 5)
and conclude with an outlook of the future (Section 6).

2. SECURITY RISKS IN AN IMAGE REPOS-
ITORY

One of the value propositions of cloud computing is reduc-
tion of management cost, in both hardware and software.
This cost reduction is achieved by sharing the knowledge of
how to manage a piece of IT asset, be it a simple Red Hat

Linux installation, or an enterprise-wide Websphere deploy-
ment, via VM images. Thus VM image sharing is one of the
fundamental underpinnings of cloud computing.

VM image sharing unavoidably introduces security risks.
We elaborate these security risks from the perspectives of
various roles that are involved in the sharing activity. The
publisher, or owner, of an image is the one who contributes
the original image to the repository. She is mostly con-
cerned about confidentiality (e.g., inadvertent leaking of sen-
sitive information and unauthorized accesses to the image).
The retriever, or consumer, of an image is the one who re-
trieves the image from the repository and runs it on the
compute servers. She is mostly concerned about safety (e.g.,
a malicious image that is capable of corrupting or stealing
the retriever’s own private data). Common to both the re-
triever and the administrator is the risk of non-compliance
(e.g., running unlicensed software or software with expired
licenses). The administrator is concerned with the security
and compliance of the cloud system as a whole and the in-
tegrity of individual images. The administrator assumes the
liability of potential damages caused by malware contained
in any image stored in the repository.

We next look at each security risk in more detail. Note
that, although the context of our discussion is a public cloud,
similar risks appear in private clouds that operate within an
enterprise, which must secure all of its assets, including its
images.

2.1 Publisher’s Risk
By publishing an image, the publisher risks releasing sen-

sitive information inadvertently. Although traditional soft-
ware publishers run similar risks, the problem is larger for
image publishers because images contain installed and fully
configured applications: the configuration might require dan-
gerous operations like creating password-protected user ac-
counts and, if the publisher sets up the application by run-
ning an instance of the image, she may unwittingly create
files that should not be made public. For example, suppose
that Alice, while configuring an application in a running in-
stance, starts a web browser. If Alice is careless, she will
publish the history of her browsing session along with her
image!

Alice’s carelessness is egregious but note that similar care-
lessness goes unpunished when applications are installed and
configured on unshared physical machines. Alice is surprised
because installation and configuration, which used to be pri-
vate, now result in a public image that can be searched and
executed by others.

In addition to wanting protection from releasing informa-
tion inadvertently, the publisher may want to share her im-
age with only a limited set of users. Therefore, the store
should support some form of access control for images.

2.2 Retriever’s Risk
The retriever risks running vulnerable or malicious images

introduced into the repository by a publisher. While running
a vulnerable virtual machine lowers the overall security level
of a virtual network of machines in the cloud, running a
malicious virtual machine is similar to moving the attacker’s
machine directly into the network, bypassing any firewall or
intrusion detection system around the network.

Virtual machine image sharing provides an easier way of
developing and propagating Trojan horses. Traditionally, a

Trojan horse program can only be developed and tested on
the hacker’s machine, and will only run on a victim’s ma-
chine if the victim’s software stack satisfies its dependencies.
Therefore, to target a wide range of victims, the hacker must
develop and test variances of his Trojan horse on different
software stacks and make sure that the right version is deliv-
ered to the right victim. Using a virtual machine image as
a carrier for the Trojan horse makes the hacker’s job easier,
because the virtual machine image encapsulates all software
dependencies of the the Trojan horse. In other words, the
dependency on the victim’s software stack is eliminated.

The retriever also risks running illegal software (unlicensed
or with expired licenses) contained in an image.

2.3 Repository administrator’s risk
The repository administrator risks hosting and distribut-

ing images that contain malicious or illegal content 1. It
is as much in his interest as in the consumer’s to keep the
images free of such content.

Security attributes of dormant images are not constant.
Typically, the security level of a dormant VM image de-
grades over time, because a vulnerability may be unknown
when the VM image is initially published but become known
and exploitable later. Anecdotal evidence shows that, if dor-
mant VM images are not managed (e.g., scanned for worms),
a virtual environment may never converge to a steady state,
because worm-carrying VM images can sporadically run, in-
fect other machines, and disappear before they can be de-
tected [11]. The same property holds for software licenses.
Administrators thus carry a latent security risk that stems
from long-lived but inactive images. This risk is often over-
looked by administrators due to the high maintenance cost
of keeping those images up to date with regard to security
patches and software licenses. As the number of VM im-
ages grows, so does the risk and along with it the cost of
maintenance.

3. APPROACH

3.1 Approach overview
We propose an image management system called Mirage

that addresses the security concerns outlined in Section 2
in an efficient manner. It provides the following security
management features:

• An access control framework that regulates the sharing
of VM images. This reduces the publisher’s risk of
unauthorized accesses to her images.

• Image filters that are applied to an image at publish
and retrieve time to remove unwanted information in
the image. Unwanted information could be informa-
tion that is private to the user, such as passwords,
or malicious, such as malware, or illegal, such as pi-
rated software. Filters address the security risks of
all three parties. Filters reduce the publisher’s risk
of inadvertently releasing private information, the re-
triever’s risk of consuming illegal or harmful content,
and the administrator’s risk of assuming liability for
hosting such content.

1For simplicity, we assume that the repository administrator
is also the cloud administrator. This is the case for the
majority of existing cloud offerings.

VM

Alice
Bob

VM VM

VM VM

VM VM

1 2

3 4

5 6

VM

Image Owner Checkout
Permission

Checkin
Permission

...

VM

1

Alice Bob

Access Control

Filters Filters
Maintenance

Service

Publish Retrieve

Image Repository

Figure 2: Security Features of the Mirage Image
Management System

• A provenance tracking mechanism that tracks the deriva-
tion history of an image and the associated operations
that have been performed on the image (through the
image repository API). Security functionality like au-
diting can be built on top of this provenance track-
ing layer. Provenance tracking provides accountability
and discourages the intentional introduction of mali-
cious or illegal content, which in turn reduces the ad-
ministrator’s risk of hosting images that contain such
content. We also use the provenance to track modifi-
cations to the image that result from applying filters.

• A set of repository maintenance services, such as pe-
riodic virus scanning of the entire repository, that de-
tect and fix vulnerabilities discovered after images are
published. These reduce the retriever’s risk of running
malicious or illegal software and the administrator’s
risk of hosting them.

Figure 2 shows the overall architecture of our image man-
agement system, with an emphasis on its security capabili-
ties. It consists of four major components that implement
the four features outlined above: (1) an access control frame-
work that regulates the sharing of VM images, (2) filters that
remove unwanted information from images at publish and
retrieval time, (3) a provenance tracking mechanism that
tracks the derivation history of an image, and (4) reposi-
tory maintenance services, such as periodic virus scanning,
that detect and fix vulnerabilities discovered after images
are published. We next discuss each of them in more detail.

3.2 Access Control
Each image in the repository has a unique owner, who can

share images with trusted parties by granting access permis-
sions. We currently support two types of access permissions,
checkout and checkin. A checkin permission implies a check-
out permission. Retrieving and running an image requires
checkout permission. Revising an image and storing the re-
vised image in the repository requires checkin permission.
Note that, even without checkin permission for an image, a
user can retrieve the image, modify it, and publish it as a
new image; however, the provenance-tracking system would
not consider the new image to be a revision of the original.

All other operations on an image, such as granting and
revoking access to the image, require the operator to be
the owner (or the repository administrator). By default an
image is private, meaning that no one but the owner and
the administrator can access the image.

3.3 Image Transformation by Running Filters
Filters at publish time can remove or hide sensitive infor-

mation from the publisher’s original image. For example, a
“remove” filter excludes a file from the original image, and
a “hide” filter keeps the file but replaces its content with
some safer version (e.g., replacing credit card numbers with
invalid numbers). Examples include a filter that removes a
web browser’s temporary files and a filter that removes the
shell’s input history.

Two types of filters can be applied at publish time: repository-
specific filters and user-specific filters. Repository-specific
filters are system-wide filters that reflect security best prac-
tices. Some of them are mandatory, and others are op-
tional. The publisher can specify composition of optional
filters. User-specific filters are intended to remove or hide
user-specific sensitive content from the images. Since differ-
ent users may have different notions about what content is
sensitive, these filters can only be supplied by the user.

For the safety of the repository, user-supplied filters are
never executable code. Instead, they are high-level specifi-
cations of transformation rules that are interpreted by the
repository. An example rule is “replace patternA with pat-
ternB”, where patternA and patternB are both regular ex-
pressions. For binary files, simple regular expression based
pattern matching might not be sufficient. How to design ef-
fective and efficient filters for binary files remains to be our
future work.

The order in which filters are applied matters. E.g., if
user-specific filters were allowed to run after critical repository-
specific filters, they could invalidate the latter’s guarantees.

Filters can also be applied at retrieve time. Such filters
may be specified by the publisher, who may want to restrict
the information that is exposed to a particular retrieve, or
by the retriever, who may want to protect herself from a
malicious or illegal image.

3.4 Provenance Tracking
The image management system tracks the derivation his-

tory of an image by recording the parent image informa-
tion when a new image is deposited into the repository,
along with the information about the operation that re-
sulted in the creation of the new image. For example, if
Bob checks out an image A owned by Alice, modifies the
image, and later checks it back in as a new image B, the
system will record that image B derives from image A via
method checkin. As another example, if the system discov-
ers a vulnerability in image C and applies the latest security
patch for it that results in a new image D, the system records
the fact that image D derives from image C using method
maintenance, as well as the specific patch that was applied.

The provenance information is used in two ways. It can
be consumed by an audit system to trace the introduction of
illegal or malicious content. It can also be used to alert the
owners of derived images when the parent image is patched
(e.g., a vulnerability is discovered and fixed), so that the
derived images can be patched as well.

Although not a security feature, the provenance informa-
tion can also be displayed to the end user for her to visually
inspect the derivation history of her images.

3.5 Image Maintenance
As we mentioned in Section 2, dormant images are more

than just static data. They are IT assets and should be
managed like physical IT assets: they should be regularly
checked for compliance, scanned for malware, and patched
with the latest security fixes.

Unfortunately, administrators often fail to manage dor-
mant images properly, mainly for two reasons. First, be-
cause a dormant image’s lack of security or integrity is not
obvious until it is run, it is tempting to defer its mainte-
nance. Second, maintenance operations are time consuming.
The time it takes to start a running instance of an image,
scan and patch the instance, and then capture it back to
a new image, is on the order of hours. Imagine a reposi-
tory with thousands or millions of images. It could easily
take months to perform just one round of maintenance for
a repository of a typical size cloud.

Our repository provides a set of maintenance services that
can be efficiently run over the entire repository (See Sec-
tion 3.6. Example maintenance services include malware
detectors (e.g., virus scanners), license compliance managers
(e.g., IBM Tivoli LCM [17]), and security patchers.

3.6 Feasibility of Our Approach
An acute reader might have noticed that our approach to

managing image security could introduce huge performance
overheads, both in space and in time.

As a side effect of running the filters and maintenance
services, new revisions of a published image are generated
constantly. One can choose to discard the original image,
but there are valid reasons to keep the original image. One
reason is to ensure that the transformation never renders
an image unusable, because the user can always go back to
the original revision if she desires. Therefore, our system
retains all revisions. A naive approach to storing these re-
visions is clearly inadequate. Similarly, a naive approach to
running the maintenance services over the entire repository
is insufficient.

Our approach leverages the content addressable nature of
the Mirage store [22] to exploit similarities among images. If
two files have the same content, Mirage stores that content
only once, even if the files belong to two different images.
Because images along a derivation chain tend to be similar,
storing the many revisions produced by filters and mainte-
nance operations does not require an unreasonable amount
of storage. Also, when the same content occurs in many
images, maintenance operations and filters operate on that
content only once, which reduces their running time.

Our preliminary experiments show encouraging results. In
the experiments, we compare the running time of ClamAV
[1], a free virus scanning tool, on a group of nine images
using conventional methods versus our approach. Figure 3
shows that the scanning time in the traditional approach
grows linearly with the number of images; whereas for Mi-
rage, the total scanning time grows much more slowly. This
is expected because the images derive from the daily build
of the same application, so the differences between images
are minimal. Once the first image is processed, the addi-
tional work to process the next image is proportional to the

]

[Under construction. Measure the degree of redundancy: Let b1, b2, … bm be the size of unique

files in a repository, and rc1, rc2, …, rcm be their reference counters. Then the size of content

scanned over the repository is ∑bi, and the size of content scanned over the raw images is ∑ bi*rci.

Therefore the ratio is ∑ bi / ∑ bi*rci. Since rci >= 1 in general, the ratio is no larger than 1 in

general. This means that scanning over the repository can save time.

� reference counters in the reverse-index

� number of files: total number in repository, common files, total number at image level

(without considering redundant files)

� size of content scanned

]

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9

Number of images

T
o

ta
l
s
c
a

n
n

in
g

 t
im

e
 (

s
)

traditional mirage

Figure 6: ClamAV scanning time

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9

Number of images

S
iz

e
 o

f
c
o
n
te

n
t
s
c
a
n
n
e
d
 (

G
B

)

traditional mirage

Figure 7: Size of content scanned by ClamAV

5.2. The Cost of Running Filters

In this section, we measure the cost of running filters. We use two simple filters: the remove

filter which removes a user’s home directory from the original image, and the sanitize filter which

replaces the content of /etc/shadow with some safer version. These filters are applied to an image

(~6GB in size with ~60,000 files) in the repository. From Table 2 we can see that running the

remove filter takes 39 seconds, and running the remove filter followed by the sanitize filter takes

95 seconds.

The time to filter an image includes the time to retrieve the manifest of the original VM image,

the time to retrieve, modify and publish back the files that need to be changed (if any), the time to

generate and publish the manifest for the resultant image, the time to update the manifest database,

and the time to update the reverse index. Among these, the update to the reverse index turns out

to be the most expensive operations. So we run more experiments on the performance of reverse

index updates.

Table 2: Running time of applying filters to a VM image

Filters Time (s)

Remove 39

remove + sanitize 95

Figure 3: ClamAV Scanning Time.
The images are derived from daily builds of a large, commer-
cial, Eclipse-based development environment. The size of
each image is around 6GB, and each image contains around
60,000 files. This experiment is run on a laptop with In-
tel Pentium M processor at 2G Hz, 2GB main memory and
80GB hard disk. The operating system is Ubuntu Linux
7.10, and the kernel version is 2.6.22-14.

difference between the two images. In contrast, with the
traditional approach, all files in the new image need to be
scanned regardless of whether they have changed or not. As
a result, our approach achieves a speedup of 4.9 even for
a relative small repository with 9 images. We expect the
savings to increase as the size of repository increases.

Once a vulnerability is identified, the next step is to elim-
inate the vulnerability by applying a security patch. As
with virus scanning, we expect similar performance savings
in this step. However, batch VM patching does introduce
additional ”safety” concerns because it involves changes to
a VM image. How to make sure that state changes on one
VM can be safely applied to another is our future work.

4. DISCUSSION

4.1 Advantages over other design alternatives

4.1.1 Client-side security management
Arguably the security and management functionalities can

be performed at the client’s side instead of at the reposi-
tory. For instance, users can employ software tools such as
SecureClean [3] or Privacy Protector [2] to remove traces of
personal information from the user’s hard drive. Users can
also schedule a periodic task to scan the dormant images for
viruses and expired licenses. However, doing it only at the
client side is potentially less effective and less efficient. It is
less effective because relying on the users solely to protect
their sensitive information or to cleanse a downloaded VM
image before running is not practical. For instance, not all
users are aware of privacy protection tools or have access to
them. Implementing security at the client side may also miss
out many performance optimization opportunities that are
only present in a centralized image repository system, as we

demonstrated in Section 2. Additionally, having a large set
of images provides the opportunity to explore data mining
techniques to automatically discover sensitive or malicious
data that might have been missed by off-the-shelf tools.

Note however, that our approach does not preclude fil-
ters applied at other places such as the publisher’s machine,
which are complementary to those in the repository.

4.1.2 Applying filters lazily
An alternative design to our continuous maintenance ser-

vice is to defer the application of filters til the moment the
image is retrieved. This way, images that are not retrieved
never needs to be scanned or patched. While it is true that
not every image is consumed eventually, our approach of
continuous maintenance offers an attractive feature: instant
deployability. In contrast, lazy filter application places these
maintenance filters (e.g., virus scanning which are typically
time-consuming) in the critical path of the retrieval of an
image.

4.2 Limitations
Admittedly filters cannot always be 100% accurate, since

what constitutes illegal or private content is highly appli-
cation dependent. We note that this is a problem intrinsic
to information sharing – that when a user releases informa-
tion, she would have to assume some degree of risk that she
might inadvertently release some private data; conversely,
when she receives information, she assumes the risk of re-
ceiving illegal content. Our system does not eliminate that
risk entirely, but it does mitigate the risk, in a systematic
and efficient way. In our future work, we will explore tech-
niques to automatically identify sensitive data in an image
and generate filters for them.

By the same token, our virus scanning does not guarantee
to find all malware in an image. Nonetheless it is still a useful
service because it reduces the likelihood of having malware
embedded in images.

Our current approach of using simple pattern matching
to support user-specific filters may render the resulting VM
image unusable in some cases. One future direction is to
provide some automated testing environment for the pub-
lisher to verify that the transformed image still functions
correctly.

It may seem counter intuitive, but ”the ability to monitor
or control customer content” might increase the liability of
the repository provider [24]. Cloud providers thus need to
weigh the benefits of security services (or the risks of not
running those services) against the additional liability asso-
ciated with those services. Nonetheless, we believe that in
general privacy and security management for VM images is
useful for the Cloud.

5. RELATED WORK
As mentioned in section 1, virtual machine image reposi-

tories such as VMware’s Virtual Appliance Market Place [23]
and Amazon’s EC2 [7] have emerged. However, these repos-
itories provide only basic services such as image store and
retrieval. They do not provide security management of VM
images within the repository. Maintenance of images are
performed outside of the repository by starting the image
in a VM and running the maintenance operation. This ap-
proach does not scale as well as ours, which can exploit
similarities among images in the repository.

A number of approaches exploit redundancies of contents
that belong to different data sets to achieve storage effi-
ciency. The Jumbo Store [10] exploits similarity between
successive directory snapshots by encoding the file system
directory tree as graphs of small chunks of variable-length
data and hashing the data chunks to detect redundancy. As
a result, it provides very efficient incremental update and
storage of directory snapshots. Similarly, Venti [21] uses
hash of content blocks as the identifier for the blocks. These
systems differ from Mirage in that they exploit redundancy
at the block (chunk) level, whereas Mirage is a file level store.
Additionally, these systems have very different design goals
than Mirage: they serve as generic storage system, while
Mirage is designed specifically for storing VM images.

Ventana [20] is a virtualization-aware file system that stores
VM images and enables fine-grained sharing of VM images.
However, it does not support filtering and maintenance of
VM images as done by the Mirage repository. Both Ventana
and Mirage offer version control.

6. CONCLUSION
Cloud computing offers great potential to improve pro-

ductivity and reduce costs. It also poses many new security
risks. In this paper we explored these risks in depth from
an image repository perspective. In particular, we analyzed
the risks faced by administrators and users (both image pub-
lishers and image retrievers) of a cloud’s image repository.
We presented a design that addresses those risks and argued
that the design is implementable and efficient. Filters detect
malicious images and remove sensitive information like pass-
words. Provenance tracking and access control enable pub-
lishers to control which images are available to which users
and enables users to find images that meet their needs. And
repository maintenance services reduce the risk to users of
running vulnerable or illegal software.

Our preliminary results showed that filters run most ef-
ficiently at the repository, where they can exploit similari-
ties among images. One can imagine other services that are
best provided at the repository or at least with support from
the repository. For example, an update notification service
could inform a consumer when a bug fix is applied to an
image used by the consumer. We expect that many more
such services can be implemented efficiently in our image
management system.

7. ACKNOWLEDGMENTS
We thank Arun Iyengar at IBM T. J. Watson Research

Center for his useful feedback. We also thank our anony-
mous reviewers for their insightful comments that have greatly
improved this paper.

8. REFERENCES
[1] Clam AntiVirus. http://www.clamav.net/.

[2] Privacy protector.
http://www.NetDuster.com/Privacy/.

[3] Secureclean. http://www.secureclean.com/.

[4] Cloud security stokes concerns at RSA, April 2009.
Available at http://www.networkworld.com/news/

2009/042309-rsa-cloud-security.html.

[5] Security Guidance for Critical Areas of Focus in
Cloud Computing, April 2009. Available at

http://www.cloudsecurityalliance.org/guidance/

csaguide.pdf.

[6] Amazon. Amazon EC2, Developer Guide.
http://docs.amazonwebservices.com/AWSEC2/

latest/DeveloperGuide/.

[7] Amazon. Amazon Elastic Compute Cloud (Amazon
EC2). http://aws.amazon.com/ec2.

[8] Amazon. Amazon Simple Storage Service (Amazon
S3). http://aws.amazon.com/s3.

[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, and
et al. Above the clouds: A berkeley view of cloud
computing. Technical Report UCB/EECS-2009-28,
2009. Available at http://www.eecs.berkeley.edu/

Pubs/TechRpts/2009/EECS-2009-28.html.

[10] K. Eshghi, M. Lillibridge, and et al. Jumbo store:
providing efficient incremental upload and versioning
for a utility rendering service. In FAST’07, 2007.

[11] T. Garfinkel and M. Rosenblum. When virtual is
harder than real: Security challenges in virtual
machine based computing environments. In Tenth
Workshop on Hot Topics in Operating Systems
(HotOS’05).

[12] Google. Google App Engine.
http://code.google.com/appengine/.

[13] B. Hayes. Cloud Computing. Commun. ACM,
51(7):9–11, 2008. Available at
http://doi.acm.org/10.1145/1364782.1364786.

[14] J. Heiser and M. Nicolett. Assessing the Security
Risks of Cloud Computing, June 2008.

[15] IBM. IBM AMIs on Amazon’s EC2.
http://developer.amazonwebservices.com/

connect/kbcategory.jspa?categoryID=229.

[16] IBM. IBM Cloud Computing.
http://www.ibm.com/ibm/cloud.

[17] IBM. IBM Tivoli License Compliance Manager.
http://www.ibm.com/software/tivoli/products/

license-mgr/.

[18] Microsoft. Azure Services Platform.
http://www.microsoft.com/azure/default.mspx.

[19] Oracle. Oracle AMIs on Amazon’s EC2.
http://developer.amazonwebservices.com/

connect/kbcategory.jspa?categoryID=205.

[20] B. Pfaff, T. Garfinkel, and M. Rosenblum.
Virtualization aware file systems: getting beyond the
limitations of virtual disks. In Proceedings of the Third
Symposium on Networked Systems Design and
Implementation (NSDI ’06), May 2006.

[21] S. Quinlan and S. Dorward. Venti: a new approach to
archival storage. In Proceedings of the 1th Usenix
Conference on File and Storage Technologies, 2002.

[22] D. Reimer, A. Thomas, G. Ammons, T. Mummert,
B. Alpern, and V. Bala. Opening black boxes: Using
semantic information to combat virtual machine image
sprawl. In The 2008 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution
Environments, March 5-7, 2008.

[23] VMware. Virtual Applicance Marketplace.
http://www.vmware.com/appliances/.

[24] Eric Goldman. A Fresh Look at Web Development
and Hosting Agreements. http://www.ericgoldman.
org/Articles/freshlookarticle.htm.

