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Abstract 

Current web service platforms (WSPs) often perform 
all web services-related processing, including security-
sensitive information handling, in the same protection 
domain. Consequently, the entire WSP may have ac-
cess to security-sensitive information such as credit 
card numbers, forcing us to trust a large and complex 
piece of software. To address this problem, we propose 
ISO-WSP, a new information flow architecture that 
decomposes current WSPs into two parts executing in 
separate protection domains: (1) a small trusted T-
WSP to handle security-sensitive data, and (2) a large, 
legacy untrusted U-WSP that provides the normal WSP 
functionality, but uses the T-WSP for security-sensitive 
data handling. By restricting security-sensitive data 
access to T-WSP, ISO-WSP reduces the software com-
plexity of trusted code, thereby improving the testabil-
ity of ISO-WSP. Using a prototype implementation 
based on the Apache Axis2 WSP, we show that ISO-
WSP reduces software complexity of trusted compo-
nents by a factor of five, while incurring a modest per-
formance overhead of few milliseconds per request.  

1. Introduction 
Service-Oriented Computing (more recently also re-

ferred to as “service computing”) is designed to sup-
port rapid creation of new, value-added applications 
and business processes that can span diverse organiza-
tions and computing platforms. Concretely, Paypal’s 
Web Services, eBay Developer Program and Amazon 
Web Services are illustrative examples of web services 
being used in mission-critical, security-sensitive, and 
truly large scale applications.  Despite the widespread 
deployment of web services, however, significant re-
search challenges remain.  This paper is concerned 
with the protection of security-sensitive information in 
service computing. 

Web Service Platforms (WSPs) such as Apache 
Axis2, Microsoft .NET and IBM WebSphere provide 
essential functionality such as SOAP messaging and 
support for publishing and discovering web services. 
Additionally, WSPs provide desirable functionality 
such as support for web service composition, atomicity 

and message reliability. Support for such large and 
varied functionality has increased the size and com-
plexity of current WSPs; for example, the open source 
Axis2 WSP and its extensions account for over 
110,000 lines of code (LOC).  

Current WSPs often perform all types of processing, 
including security-sensitive information handling, in 
the same protection domain (e.g., a single process). 
Therefore, all components of the WSP may have direct 
or indirect access to sensitive data, violating the Prin-
ciple of Least Privilege [24]. Additionally, the large 
size and complexity of WSPs hinders their testability, 
resulting in systems with multiple security vulnerabili-
ties [6], [7]. Therefore, attackers can compromise the 
flow of sensitive information by exploiting vulnerabili-
ties in the large WSPs despite the use of security pro-
tocols such as WS-Security or SSL. 

We propose ISO-WSP, an information flow archi-
tecture for web services to address the problem of pro-
tecting security-sensitive information flow against po-
tential vulnerabilities inherent in large and complex 
software packages such as WSPs. Applying the App-
Core approach [25], ISO-WSP decomposes current 
WSPs into two parts: (1) a small, functionally-limited, 
trusted T-WSP and (2) a large, functionally-rich, un-
trusted U-WSP. The T-WSP consists of components of 
a WSP that require access to security-sensitive infor-
mation and the U-WSP contains the rest of the legacy 
WSP. The T-WSP and U-WSP are executed in separate 
protection domains, with the U-WSP invoking the T-
WSP when it has to operate on security-sensitive data. 
By restricting security-sensitive data access to the 
small T-WSP, ISO-WSP eliminates the need to trust 
the U-WSP. Since the T-WSP is expected to be con-
siderably smaller than the U-WSP, we improve the 
testability of the ISO-WSP.  

We demonstrate the feasibility of our approach by 
implementing and evaluating an ISO-WSP based on 
the Axis2 WSP. We show that ISO-WSP results in a 
five-fold reduction in the size and complexity of the 
software that has access to sensitive data, while impos-
ing a moderate overhead of few milliseconds per re-
quest.  



 

The organization of the rest of the paper is as fol-
lows: Section 2 motivates the paper by first presenting 
the design of WSPs in detail and then discussing the 
security problems in current WSPs. Section 3 discusses 
the design of ISO-WSP. Section 4 presents a prototype 
implementation of ISO-WSP based on the Axis2 WSP 
and evaluates the resulting system. Section 5 discusses 
some of the open issues. Section 6 discusses the related 
work and Section 7 concludes the paper. 

2. Motivation 
Before we discuss the design of web service plat-

forms (WSPs) and security problems associated with 
them, we define security-sensitive (or) sensitive data 
item as any data item that the end-user or the business 
logic imposes confidentiality or integrity requirements, 
e.g., payment information, patient health information. 
Sensitive data items also include data items that may 
not be transmitted over the network, e.g., private keys 
used by the WSP.  

2.1 Design of Web Service Platforms 
W3C’s web services architecture specification [9] 

specifies the basic framework for WSPs. WSPs such as 
Apache Axis2 and Microsoft .NET implement this 
framework. According to specification, WSPs must 
implement a transport protocol, typically HTTP, and 
provide support for a message packaging mechanism, 
typically SOAP. The WSPs might also choose to sup-
port additional message packaging and transport me-
chanisms such as MIME over SMTP. In addition to the 
basic features, the WSP must also support functionality 
such as routing, transaction support, message reliabil-
ity, security and quality of service. W3C has also stan-
dardized many types of additional functionality in the 
form of WS-* extensions such as support for uniform 
naming WS-Addressing, WS-Security, WS-
ReliableMessaging, and WS-Eventing (over 35 exten-
sions are listed in [4]). WSPs may also possess an ex-
tension architecture to seamlessly integrate new and 
upcoming WS-* specifications or to provide support 
for custom extensions for logging or load-balancing. 

The Apache Axis2 WSP [21] is one implementation 
of the web services framework. We use the Axis2 WSP 
in our analysis as not only is it widely used; it is also 
available under an open source license, enabling us to 
gain a clearer understanding of its workings. Figure 1 
briefly illustrates the SOAP processing chain in the 
Axis2 WSP. Axis2 provides support for developing, 
deploying, managing and invoking web services. In 
addition to implementing the basic W3C standards 
such as SOAP over HTTP and a framework for execut-
ing business logic, Axis2 also supports an extension 
architecture. This extension architecture allows web 

service developers to plug in added functionality using 
well-known pre-existing libraries (e.g., WSS4J for 
WS-Security) or customized code for logging or load 
balancing. Furthermore, Axis2 allows web service de-
velopers to change the sequence of processing by add-
ing, removing or reordering the handlers. 

2.2 Security Problems in WSPs  
WS-Security specification [5] can be used to protect 

the confidentiality and integrity of information flow in 
web services. However, WS-Security-based protection 
can be bypassed by exploiting vulnerabilities in end-
point software. On the server side, attackers can com-
promise information flow by exploiting vulnerabilities 
in server software: operating system, web server, 
WSPs [6], [7], or the business logic and support soft-
ware (e.g., databases). Similarly, on the client side, 
attackers can leverage vulnerabilities in client-side 
WSPs or client applications like the browser. We focus 
on securing WSPs in this paper. Securing operating 
systems and applications such as the browser is outside 
the scope of this paper. 

From a security perspective, WSP implementations 
have two significant issues. First, at the component 
level, WSPs violate the principle of least privilege 
(PoLP). PoLP states that components should execute 
with the least set of privileges necessary to finish the 
job. WSPs contain many components that do not need 
access to sensitive data, e.g., transport protocol imple-
mentation and WS-* extensions such as WS-
Addressing. However, all these components execute in 
the same address space and same protection domain. 
Hence they can either directly access security-sensitive 
data or modify WS-Security processing by modifying 
security processing parameters and compromise secu-
rity-sensitive data. 

Concretely, in the Axis2 WSP, we might be forced 
to carry out WS-Security processing before WS-
Addressing processing so as to verify the signatures in 
the WS-Addressing headers. This allows the WS-
Addressing handler access to sensitive message con-

 

Figure 1. SOAP Processing Model in Apache Axis2 [2]. 



 

tents even though it does not need access. Even if we 
assume that WS-Security processing is carried out as 
late as possible, malicious or buggy handlers can still 
compromise security-sensitive data or WS-Security 
processing because they execute in the same protection 
domain. Figure 2 illustrates one such scenario, where a 
malicious handler uses shared data structures to sub-
vert WS-Security processing.  

Secondly, a WSP is a complex piece of software. 
As seen earlier (§ 2.1), WSPs are expected to perform 
a large number of tasks. Unsurprisingly, they contain 
large code bases. Additionally, since WSPs have to be 
configurable and extensible, they also typically possess 
configuration files, an extension-architecture and mul-
tiple extensions. Concretely, the Axis2 WSP alone 
contains about 23.5 KLOC. Together with the imple-
mentations of the multiple WS-* specifications, the 
WSP contains over 110 KLOC. Additionally, pro-
grammers can write custom handlers to carry out other 
types of processing like load balancing or admission 
control. These components add to the complexity of 
the system. Given the large code base and the multi-
tude of ways in which these components can interact 
with each other, it is not feasible to exhaustively test 
the components of the WSP, especially as a complete 
system, and eliminate all vulnerabilities. Moreover, the 
configurable nature of WSPs means that extensions 
can be added, enabled and disabled at runtime, further 
complicating the analysis and testing of WSPs. 

3. ISO-WSP 
Based on the security problems discussed in Section 

2.2, we see that an effective solution should 
R1. Prevent WSP components that do not need access 
to sensitive data from accessing them. 

R2. Reduce the size and complexity of WSP compo-
nents that have access to sensitive data. 
R3. Preserve functional compatibility with existing 
WSPs, and support existing business logic code with 
few or no modifications. Due to space constraints, we 
will not be discussing this requirement in detail in this 
paper. 

Our solution, called ISO-WSP, attempts to address 
the security problems while meeting the requirements 
listed above. First, we split the functionality (or code 
base) of existing WSPs into a small trusted T-WSP and 
a legacy, untrusted U-WSP. Next, we introduce a new 
trusted component called a Message Splicer, which 
limits the flow of plain-text sensitive information to the 
T-WSP. Taken together, these steps address require-
ments R1 and R2 (see Section 4.2 for details). Addi-
tionally, by reusing the U-WSP to operate on non-
sensitive or protected data, ISO-WSP partially satisfies 
requirement R3. 

3.1 Splitting Legacy WSPs 
Certain components of a legacy WSP require access 

to plain-text security-sensitive data. Since these com-
ponents have to be allowed to read or modify sensitive 
data, they have to be trusted by both the end-user and 
the business logic. We call such components Trusted 
Components and these components taken together are 
referred to as the T-WSP. The rest of the components 
do not have to be trusted and are henceforth referred to 
as untrusted components (and collectively referred to 
as the U-WSP).  

Identifying the components of the T-WSP requires 
understanding of the various components of the WSP 
and their corresponding functions. We relied on W3C’s 
architecture specification [9], specifications for the 
WS-* extensions such as WS-ReliableMessaging, WS-
Addressing [4], and the Axis2 web services 
architecture guide [2]. Based on our analysis, we found 
that a component has to be trusted for one of two rea-
sons:  

 
• The component requires access to sensitive con-
tents of a message (Direct Access). WS-Security im-
plementations fall under this category as they need 
access to sensitive contents either to protect them or to 
verify the protection on them. 
• The component controls the behavior of other 
components with direct access (Indirect Access). 
This includes other security specifications such as WS-
SecureConversation. These components have to be 
trusted because they control the behavior of the first 
type of components, e.g., WS-SecureConversation is 
used to determine the keys used by WS-Security to 
encrypt or sign sensitive data items.  

//Handlers can access Service/Msg Context 
param=ctx0.getAxisConfiguration() 
       .getParameter("OutflowSecurity"); 
ome = param.getParameterElement(); 
iter = ome.getGirstElement(). 
                      getChildElements(); 
 
while (iter.hasNext()){ 
  attr = (OMElement) itor.next(); 
  //Look for Encryption Key 
  if ("encryptionUser".equals 
                (attr.getLocalName())){ 
    //replace with weak key 
    attr.setText("weak_key_identifier"); 
  } 
} 

Figure 2. Indirect Access in the Axis2 WSP. All handlers have 
access to service context, which contains, amongst others, pa-
rameters for the encryption key. A malicious handler can replace 
the encryption key as shown in the highlighted line. 



 

The rest of the components of the WSP, including 
the WS-* extensions, are treated as untrusted compo-
nents, either because they are agnostic to message con-
tents, or because they only indirectly depend on sensi-
tive data.  An example of the first case is the transport 
layer protocol implementation or SOAP implementa-
tion.  Examples of the second case are WS-* exten-
sions such as WS-Addressing which relies on the en-
cryption keys employed by WS-Security to protect the 
integrity and in some cases, the confidentiality of 
SOAP message headers. 

3.2 Message Splicer 
In addition to limiting security-relevant processing 

to trusted components, we have to limit the flow of 
sensitive information to trusted components. To 
achieve this, we introduce a trusted component called 
the Message Splicer. The function of the Message Spli-
cer is to intercept plain-text messages and replace sen-
sitive data with non-sensitive data or vice versa de-
pending on the direction of the message. For an incom-
ing message with sensitive data, the Message Splicer 
replaces sensitive data items with dummy data items 
and a token that uniquely identifies an instance of a 
sensitive data item. The resulting message is passed on 
to the untrusted portion for further processing. The 
actual security-sensitive data along with the original 
message is passed on to the trusted portion for further 
processing. For an outgoing message, the steps occur 
in the reverse order. 

We replace security-sensitive data items with dum-
my data items to minimize modifications to the mes-
sage format, and therefore to application level code. 
An astute reader will point out that by adding the 
unique token, we are in fact modifying the message 
format and hence will have to modify application level 
code. We note that this modification is very structured 
and in the case of application-level code written in Java 
for Axis2, we have been able to incorporate most of 
these modifications with automated code generation. 
Due to space limitations, we are unable to discuss this 
in detail. 

3.3 Architecture of ISO-WSP 
Figure 3 provides an overview of the architecture of 

ISO-WSP. As explained previously (§ 3.1), implemen-
tation of security specifications form the T-WSP, and 
the rest of the components form the U-WSP. In each 
case, the components are grouped together and exe-
cuted as independent applications. In addition to the 
separation of components of the WSP, the configura-
tion files and the application-level code too have to be 
classified and separated into two categories. Since the 
behavior of the security specifications can be con-

trolled by configuration files, the corresponding con-
figuration files also have to be trusted and secured 
from access by untrusted components. 

We enforce separation between the T-WSP and the 
U-WSP by executing them in separate protection do-
mains, with the U-WSP running with lower privileges. 
This prevents U-WSP from modifying the binaries or 
configuration files of the T-WSP. This separation also 
prevents U-WSP from accessing the secret keys used 
for encryption or decryption. The Message Splicer, 
discussed in Section 3.2, addresses how we secure the 
flow of sensitive information in the ISO-WSP.  

Since application-level code also has access to sen-
sitive data, we also have to split application-level code 
into trusted and untrusted portions. As briefly men-
tioned in Section 3.2, we have developed code-
generators to automate this process as much as possi-
ble. More detail is presented in a technical report [26]. 

A legacy WSP can be converted to an ISO-WSP 
with a small number of modifications. After construct-
ing a T-WSP, we have to modify the legacy WSP to 
invoke the T-WSP via remote invocation mechanisms 
instead of using local calls. This involves identifying 
parameters that are exchanged between the T-WSP and 
U-WSP, message and results of security processing, 
and adding the necessary serializing and deserializing 
code. 

One of the main features of the ISO-WSP architec-
ture is that external entities do not perceive any 
changes to the functional interface of the WSP. ISO-
WSP exports the same external interface as legacy 
WSPs. The U-WSP provides support for the interface 
by implementing transport-layer protocols such as 
HTTP over TCP/IP. 

 

Figure 3. Architecture of ISO-WSP. Shaded boxes represent 
Trusted Components. Trusted Components execute in a sepa-
rate protection domain. 



 

4. Implementation and Evaluation 
4.1 Implementation 

We implemented an ISO-WSP prototype based on 
the Apache Axis2 platform. The T-WSP consisted of a 
WS-Security implementation (WSS4J [1]) and a Mes-
sage Splicer. Accordingly, the configuration files for 
WS-Security also formed a part of the T-WSP. The rest 
of the Axis2 WSP, along with the other WS-* exten-
sions formed the U-WSP. We modified Axis2 to make 
remote calls to perform WS-Security related process-
ing. Since we used Java, all remote calls were Java 
RMI calls. We also had to modify the WS-Security 
implementation to support RMI invocation. Since the 
WS-Security configuration files were now a part of the 
T-WSP, we had to add code to read the configuration 
files. In all, by adding or modifying around 800 LOC, 
we were able to convert the existing Axis2 WSP into 
an ISO-WSP prototype. 

We execute the T-WSP as a superuser process and 
the U-WSP as an unprivileged process. The file system 
permissions of the configuration files of the T-WSP are 
set such that the U-WSP is unable to read or modify 
them. Since we use the RMI protocol to communicate 
between the T-WSP and U-WSP, each of them can 
reside on separate virtual or even physical machines, 
thereby providing stronger isolation properties. 

Our implementation of the Message Splicer accepts 
information about sensitive data items in two ways. 
First, it allows developers to specify XML files that 
contain serialized versions of an instance of a sensitive 
data item with dummy values, e.g., a credit card data 
item with an invalid card number. The Message Splicer 
uses these “dummy” values when replacing sensitive 
objects in incoming messages. It also inserts unique 
tokens when replacing sensitive objects. Secondly, the 
Message Splicer accepts sensitive data items in the 
form of Document Object Model (DOM) fragments 
from the trusted part of the application. Each fragment 
possesses unique tokens that are used by the Message 
Splicer when replacing dummy data items with actual 
content in outgoing messages. 

Payment Processing Service: We implemented a 
simple payment processing service that accepts order 
information and payment information in the form of a 
credit card object and returns a confirmation string 
containing a transaction identifier and the amount 
charged to the card. We denoted the credit card infor-
mation as security-sensitive information. To protect 
this information, the client specifies that the whole 
request message be encrypted using WS-Security with 
the public key of the service provider as the encryption 
key. In our legacy service implementation, the business 
logic gets the complete message with both security-

sensitive and security-insensitive data. It then performs 
book-keeping operations such as logging, calls the 
charge card function to generate a confirmation num-
ber, performs some more book-keeping operations 
before returning the data to the WSP.  

In the implementation on top of ISO-WSP, the busi-
ness logic is split into two parts: one that handles credit 
card information (trusted) and another that handles 
order information (untrusted). The Message Splicer of 
the ISO-WSP replaces security-sensitive information 
in an incoming message with dummy data items and a 
unique token before passing it on to the U-WSP and 
the untrusted business logic. Security-sensitive con-
tents are passed on to the trusted business logic. The 
untrusted business logic performs the necessary book-
keeping operation before invoking T-WSP – with the 
unique token embedded by the Message Splicer as an 
argument – to operate on the card. The return value is 
passed on to the U-WSP. 

4.2 Security Properties of ISO-WSP 
4.2.1 Information Flow Security in ISO-WSP. Be-
fore we discuss information flow security in ISO-WSP, 
we list the basic assumptions and features of ISO-
WSP. First, we assume that all sensitive information is 
protected using WS-Security. Furthermore, we assume 
that sensitive information protected using WS-Security 
cannot be compromised without first compromising the 
security extensions. Secondly, in ISO-WSP, WS-
Security processing is carried out in a separate protec-
tion domain, with the U-WSP being executed as a low-
er privilege process. Therefore, untrusted components 
cannot indirectly access sensitive data, e.g., they can-
not change the parameters of security processing. We 
only have to prevent direct access of sensitive informa-
tion by the U-WSP. 

The Message Splicer is the key component that pre-
vents direct access of sensitive information by the U-
WSP by splitting and merging flow of information as 
needed. To analyze how this process of splitting and 
merging secures flow of sensitive information in con-
trast to legacy WSPs, we divide the untrusted WSP 
into two categories: 
• Components that operate below WS-Security 
(Transport Protocols, SOAP and SOAP Extensions (L) 
in Figure 3): Since these components worked on en-
crypted or signed data, they did not have direct access 
to sensitive data in legacy WSPs. However, they could 
indirectly compromise flows by modifying security 
processing parameters, e.g., overwrite configuration 
files or security processing parameters. In ISO-WSP, 
they execute with lower privilege and in a separate 
protection domain and hence, cannot manipulate secu-
rity processing parameters. 



 

• Components that operate above WS-Security 
(SOAP Extensions (U) and untrusted business logic in 
Figure 3): These components had both direct and indi-
rect access to sensitive data in legacy WSPs. In ISO-
WSP, we replace sensitive data with dummy data 
items before transferring the message back to these 
components. Hence, these components are deprived of 
direct access to sensitive data. Previously discussed 
arguments against indirect access by untrusted compo-
nents are equally applicable to these components. 
4.2.1 Software Complexity Reductions in ISO-WSP. 
Our second motivating factor for constructing an ISO-
WSP was the increased complexity of WSPs. Since 
access to sensitive information is limited to the T-
WSP, we only have to trust the T-WSP to protect the 
flow of sensitive information.  Table 1 compares the 
software complexity of various WSP components and 
compares them against the T-WSP. We measured two 
properties: Source Lines of Code and McCabe’s Cyc-
lomatic complexity [18]. Empirical studies have shown 
that both measures of software complexity correlate 
with number of bugs in code [20]. We see that the T-
WSP is a factor of 5 smaller and simpler than the cur-
rent implementation of the Axis2 WSP, making the T-
WSP more amenable to exhaustive testing. The small 
size of the T-WSP also makes it easier to apply static 
analysis techniques for monitoring the flow of infor-
mation, as described in [22].  

Extensibility of WSPs is a crucial factor in testing 
and analysis. Since extensions can change the behavior 
of WSPs and since they can be added or configured at 
run time, they complicate the testing process. How-
ever, extensions provide useful functionality such as 
support for addressing, transactions and reliability. By 
extracting a T-WSP and retaining the functionality of 
the legacy U-WSP, including an extension architecture, 
ISO-WSP attempts to gain the best of both worlds. 

4.3 Performance of ISO-WSP 
Our experimental setup consisted of two machines, 

each with Pentium-4 3.0 GHz processors with 1 GB 
RAM, running Linux kernel 2.6.15. The machines 
were connected via a 100 MBps switch. We used 
Axis2 version 1.1 and WSS4J version 1.5.1 running on 
top of Apache Tomcat 4.1.31.  

There are three sources of overhead in the ISO-
WSP. First, since the security-sensitive parts of the 
WSP and application are separated from the rest of the 
application, there is the added cost of remote calls. 
Related to this is the cost of serializing and deserializ-
ing data items for remote calls. Finally, there is the cost 
of performing message splicing operations. 

To estimate the RMI overhead, we use a simple 
echo application with the client and server running on 

the same machine. We found that round trip times in-
crease linearly with message sizes, at the rate of about 
0.5 ms per kilobyte. For message sizes less than 8 KB, 
round trip time was less than 1 millisecond.  

In the ISO-WSP architecture, we have to transfer 
SOAP messages between the U-WSP and the T-WSP. 
This involves converting SOAP messages in DOM 
format to byte array format and vice versa. To estimate 
these costs, we used an XML data set from the 
XMLBench Document Model Benchmark [10]. We 
found that combined serializing and deserializing costs 
are of the order of few milliseconds. For small to me-
dium sized XML files (~10 kilobytes), the combined 
cost is less than 4 ms. For the largest XML file in the 
dataset (36 KB), the combined cost was about 14 ms. 

We do not perform similar microbenchmarks for es-
timating message splicing costs and application-level 
serializing and deserializing costs because they are 
closely dependent on the application-level data struc-
tures. Rather, we measure these costs as a part of a 
concrete web service implementation. 

We use the payment processing web service de-
scribed earlier (§ 4.1) to evaluate the end-to-end over-
head imposed by the ISO-WSP architecture. We found 
that using ISO-WSP increased the average response 
time from 40.3 ms to 47.9 ms. Of this 7.6 ms overhead, 
5.2 ms can be attributed to the additional processing 
steps in the ISO-WSP architecture: serializing and de-
serializing SOAP messages and RMI costs. The rest of 
the overhead (~2.4 ms) was incurred in the application-
level code. These include the cost for two RMI calls 
from the untrusted part to the trusted part (~0.8 ms): 
one for charging the credit card and another for clean-
ing up the state in the trusted part. The second major 
cost arises because the SOAP message now has to be 
additionally deserialized on the trusted side (~1.5 ms). 

Based on the microbenchmarks and the results for 
the payment processing web service, we can see that 
ISO-WSP introduces overheads of the order of a few 
milliseconds. While this might seem excessive, typical 
web service invocation time ranges from 0.5 seconds 
to a few seconds [16]. More importantly, one should 

Table 1. Comparison of Source Lines of Code (SLOC) and 
McCabe's Cyclomatic Complexity (MCC) of the T-WSP 
and the Axis2 WSP along with its extensions. Extensions 
include implementations of WS-Coordination, WS-
ResourceFramework, WS-Addressing, amongst others. All 
numbers were generated using the JavaNCSS tool [3].  

Module SLOC MCC 
Axis2 23,580 7,930 
Extensions 70,350 24,100 
WS-Security 16,900 5,180 
WSP-Total 110,830 39,210 
T-WSP 19,360 6,050 



 

note that ISO-WSP is invoked only during the ex-
change of sensitive information. When exchanging 
non-sensitive information, ISO-WSP still uses the leg-
acy WSP, thereby maintaining the performance of the 
legacy WSP.  

5. Open Issues 
While the ISO-WSP architecture improves security 

properties of the web service, there are a few remain-
ing key challenges that need to be addressed.  

5.1 Modifications to Application Level Code 
We saw in Sections 3.2 and 3.3 that ISO-WSP 

changes the format of the message and the interaction 
patterns between the WSP and the application-level 
code. This required modifications to application level 
code and can impose an undue burden on the web ser-
vice developer and hinder the adoption of ISO-WSP. 
We argue that these modifications are very structured: 
e.g., security sensitive data items now contain a single 
additional data object. We have been able to use code-
generation techniques and leverage object inheritance 
facilities present in the Java programming language to 
limit the number of modifications to application level 
code to the order of few tens of lines of code [26].  

We rely on programmer annotations to split applica-
tion-level code. For applications with complex data 
flows, we can also leverage considerable research on 
splitting application level code based on a few simple 
programmer annotations using information flow analy-
sis tools such as JIF/JFlow [19]. 

5.2  Denial of Service Attacks 
The current ISO-WSP design does not address De-

nial of Service (DoS) attacks. For example, the U-WSP 
can carry out DoS attacks by either corrupt messages 
or choosing not to invoke the T-WSP for security 
processing. One should note that existing WSPs are 
also susceptible to similar types of attacks. Moreover, 
these attacks do not compromise the confidentiality or 
integrity of security-sensitive information.  

ISO-WSP can be enhanced with Trusted Computing 
hardware [8] and application level support for Trusted 
Computing, e.g, Integrity Measurement Architecture 
[23], to provide additional, desirable security proper-
ties such as integrity of software stack at load time and 
remote attestation. 

6. Related Work 
Previous efforts have addressed refactoring existing 

systems software [11],[15] and application-level soft-
ware [25] to reduce the size and complexity of soft-
ware that has access to sensitive data. Our work can be 
considered as an application of such techniques to web 

services middleware. In contrast to previous ap-
proaches, by replacing sensitive data items with dum-
my data items in the middleware, we also enable exist-
ing application-level software to run with minimal 
modifications. 

There is also considerable research into refactoring 
and customizing middleware to modularize and sim-
plify them. Zhang et al. [32], [1] and  Eichberg et al. 
[13] use Aspect Oriented Programming techniques to 
modularize middleware and then, customize it accord-
ing to the needs of applications. OpenCOM [12] and 
CompOSE/Q [28], amongst others, are examples of 
reflective middleware that allow for customization of 
middleware to suit the needs of application. ISO-WSP 
is an attempt at refactoring middleware with security as 
the driving factor. Techniques described in [32], [1] are 
applicable to the construction of ISO-WSP.  

Trusted Computing initiatives [8] attempt to reas-
sure remote entities about the integrity of the software 
stack handling sensitive data. The Integrity Measure-
ment architecture [23] aims to extend integrity meas-
urement to include configuration files. WS-Attestation 
[31] and Trusted Web Services [27] attempt to incor-
porate Trusted Computing principles into the web ser-
vices stack. However, an attacker can still compromise 
the integrity of the software stack by exploiting run 
time vulnerabilities or by loading malicious extensions 
at runtime. By reducing the size and complexity of the 
trusted part of the system, ISO-WSP enables the use of 
exhaustive testing or static analysis techniques, thereby 
reducing the number of run-time vulnerabilities.  

The use of static analysis techniques [14], [29] to 
identify bugs in code is gaining popularity. For strong-
ly-typed languages such as Java, one can go even fur-
ther and apply language-based information flow pro-
tection techniques [22]. However, the applicability of 
such techniques to a large code-base is a subject of 
open research and we expect such techniques to be 
more amenable to smaller code bases, such as that of 
the T-WSP. 

Lastly, tokens used in ISO-WSP by untrusted appli-
cations to operate on security-sensitive data can be 
viewed as capabilities [30]. The ISO-WSP architecture 
can be considered as retrofitting a capability-based 
architecture in to WSPs. Protected Data Paths (PDP) 
[17] uses a similar approach to hide sensitive informa-
tion from untrusted application level programs. PDP 
consists of kernel-level modules that traps I/O calls 
retrieving sensitive data and replaces sensitive data 
with tokens, thereby preventing application level pro-
grams from directly accessing them. ISO-WSP not 
only adds tokens, but it also sends back dummy data 
items with similar structure to the sensitive data item, 
thereby minimizing the changes to existing applica-
tions. 



 

7. Conclusion 
In this paper, we presented ISO-WSP, a secure in-

formation flow architecture to counter the problem of 
large and complex WSPs. ISO-WSP consisted of two 
parts: a small, trusted T-WSP that required access to 
security-sensitive information and a U-WSP that re-
tained the features of legacy WSPs. By limiting the 
flow of sensitive information to the T-WSP, we en-
sured that the U-WSP does not have to be trusted, the-
reby improving the testability of the ISO-WSP. 

We demonstrated the feasibility of our approach by 
building an ISO-WSP based on the Apache Axis2 
WSP. By splitting and limiting the flow of sensitive 
information, we showed that ISO-WSP architecture 
reduces the complexity of the trusted portion of a WSP 
by a factor of 5, while imposing manageable overhead 
of a few milliseconds per request. We also briefly dis-
cussed techniques to minimize the cost of porting leg-
acy applications to run on the ISO-WSP. 
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