

A Secure Information Flow Architecture for Web Services

Lenin Singaravelu, Jinpeng Wei, Calton Pu
College of Computing, Georgia Institute of Technology

lenin@acm.org, {weijp, calton}@cc.gatech.edu

Abstract

Current web service platforms (WSPs) often perform
all web services-related processing, including security-
sensitive information handling, in the same protection
domain. Consequently, the entire WSP may have ac-
cess to security-sensitive information such as credit
card numbers, forcing us to trust a large and complex
piece of software. To address this problem, we propose
ISO-WSP, a new information flow architecture that
decomposes current WSPs into two parts executing in
separate protection domains: (1) a small trusted T-
WSP to handle security-sensitive data, and (2) a large,
legacy untrusted U-WSP that provides the normal WSP
functionality, but uses the T-WSP for security-sensitive
data handling. By restricting security-sensitive data
access to T-WSP, ISO-WSP reduces the software com-
plexity of trusted code, thereby improving the testabil-
ity of ISO-WSP. Using a prototype implementation
based on the Apache Axis2 WSP, we show that ISO-
WSP reduces software complexity of trusted compo-
nents by a factor of five, while incurring a modest per-
formance overhead of few milliseconds per request.

1. Introduction
Service-Oriented Computing (more recently also re-

ferred to as “service computing”) is designed to sup-
port rapid creation of new, value-added applications
and business processes that can span diverse organiza-
tions and computing platforms. Concretely, Paypal’s
Web Services, eBay Developer Program and Amazon
Web Services are illustrative examples of web services
being used in mission-critical, security-sensitive, and
truly large scale applications. Despite the widespread
deployment of web services, however, significant re-
search challenges remain. This paper is concerned
with the protection of security-sensitive information in
service computing.

Web Service Platforms (WSPs) such as Apache
Axis2, Microsoft .NET and IBM WebSphere provide
essential functionality such as SOAP messaging and
support for publishing and discovering web services.
Additionally, WSPs provide desirable functionality
such as support for web service composition, atomicity

and message reliability. Support for such large and
varied functionality has increased the size and com-
plexity of current WSPs; for example, the open source
Axis2 WSP and its extensions account for over
110,000 lines of code (LOC).

Current WSPs often perform all types of processing,
including security-sensitive information handling, in
the same protection domain (e.g., a single process).
Therefore, all components of the WSP may have direct
or indirect access to sensitive data, violating the Prin-
ciple of Least Privilege [24]. Additionally, the large
size and complexity of WSPs hinders their testability,
resulting in systems with multiple security vulnerabili-
ties [6], [7]. Therefore, attackers can compromise the
flow of sensitive information by exploiting vulnerabili-
ties in the large WSPs despite the use of security pro-
tocols such as WS-Security or SSL.

We propose ISO-WSP, an information flow archi-
tecture for web services to address the problem of pro-
tecting security-sensitive information flow against po-
tential vulnerabilities inherent in large and complex
software packages such as WSPs. Applying the App-
Core approach [25], ISO-WSP decomposes current
WSPs into two parts: (1) a small, functionally-limited,
trusted T-WSP and (2) a large, functionally-rich, un-
trusted U-WSP. The T-WSP consists of components of
a WSP that require access to security-sensitive infor-
mation and the U-WSP contains the rest of the legacy
WSP. The T-WSP and U-WSP are executed in separate
protection domains, with the U-WSP invoking the T-
WSP when it has to operate on security-sensitive data.
By restricting security-sensitive data access to the
small T-WSP, ISO-WSP eliminates the need to trust
the U-WSP. Since the T-WSP is expected to be con-
siderably smaller than the U-WSP, we improve the
testability of the ISO-WSP.

We demonstrate the feasibility of our approach by
implementing and evaluating an ISO-WSP based on
the Axis2 WSP. We show that ISO-WSP results in a
five-fold reduction in the size and complexity of the
software that has access to sensitive data, while impos-
ing a moderate overhead of few milliseconds per re-
quest.

The organization of the rest of the paper is as fol-
lows: Section 2 motivates the paper by first presenting
the design of WSPs in detail and then discussing the
security problems in current WSPs. Section 3 discusses
the design of ISO-WSP. Section 4 presents a prototype
implementation of ISO-WSP based on the Axis2 WSP
and evaluates the resulting system. Section 5 discusses
some of the open issues. Section 6 discusses the related
work and Section 7 concludes the paper.

2. Motivation
Before we discuss the design of web service plat-

forms (WSPs) and security problems associated with
them, we define security-sensitive (or) sensitive data
item as any data item that the end-user or the business
logic imposes confidentiality or integrity requirements,
e.g., payment information, patient health information.
Sensitive data items also include data items that may
not be transmitted over the network, e.g., private keys
used by the WSP.

2.1 Design of Web Service Platforms
W3C’s web services architecture specification [9]

specifies the basic framework for WSPs. WSPs such as
Apache Axis2 and Microsoft .NET implement this
framework. According to specification, WSPs must
implement a transport protocol, typically HTTP, and
provide support for a message packaging mechanism,
typically SOAP. The WSPs might also choose to sup-
port additional message packaging and transport me-
chanisms such as MIME over SMTP. In addition to the
basic features, the WSP must also support functionality
such as routing, transaction support, message reliabil-
ity, security and quality of service. W3C has also stan-
dardized many types of additional functionality in the
form of WS-* extensions such as support for uniform
naming WS-Addressing, WS-Security, WS-
ReliableMessaging, and WS-Eventing (over 35 exten-
sions are listed in [4]). WSPs may also possess an ex-
tension architecture to seamlessly integrate new and
upcoming WS-* specifications or to provide support
for custom extensions for logging or load-balancing.

The Apache Axis2 WSP [21] is one implementation
of the web services framework. We use the Axis2 WSP
in our analysis as not only is it widely used; it is also
available under an open source license, enabling us to
gain a clearer understanding of its workings. Figure 1
briefly illustrates the SOAP processing chain in the
Axis2 WSP. Axis2 provides support for developing,
deploying, managing and invoking web services. In
addition to implementing the basic W3C standards
such as SOAP over HTTP and a framework for execut-
ing business logic, Axis2 also supports an extension
architecture. This extension architecture allows web

service developers to plug in added functionality using
well-known pre-existing libraries (e.g., WSS4J for
WS-Security) or customized code for logging or load
balancing. Furthermore, Axis2 allows web service de-
velopers to change the sequence of processing by add-
ing, removing or reordering the handlers.

2.2 Security Problems in WSPs
WS-Security specification [5] can be used to protect

the confidentiality and integrity of information flow in
web services. However, WS-Security-based protection
can be bypassed by exploiting vulnerabilities in end-
point software. On the server side, attackers can com-
promise information flow by exploiting vulnerabilities
in server software: operating system, web server,
WSPs [6], [7], or the business logic and support soft-
ware (e.g., databases). Similarly, on the client side,
attackers can leverage vulnerabilities in client-side
WSPs or client applications like the browser. We focus
on securing WSPs in this paper. Securing operating
systems and applications such as the browser is outside
the scope of this paper.

From a security perspective, WSP implementations
have two significant issues. First, at the component
level, WSPs violate the principle of least privilege
(PoLP). PoLP states that components should execute
with the least set of privileges necessary to finish the
job. WSPs contain many components that do not need
access to sensitive data, e.g., transport protocol imple-
mentation and WS-* extensions such as WS-
Addressing. However, all these components execute in
the same address space and same protection domain.
Hence they can either directly access security-sensitive
data or modify WS-Security processing by modifying
security processing parameters and compromise secu-
rity-sensitive data.

Concretely, in the Axis2 WSP, we might be forced
to carry out WS-Security processing before WS-
Addressing processing so as to verify the signatures in
the WS-Addressing headers. This allows the WS-
Addressing handler access to sensitive message con-

Figure 1. SOAP Processing Model in Apache Axis2 [2].

tents even though it does not need access. Even if we
assume that WS-Security processing is carried out as
late as possible, malicious or buggy handlers can still
compromise security-sensitive data or WS-Security
processing because they execute in the same protection
domain. Figure 2 illustrates one such scenario, where a
malicious handler uses shared data structures to sub-
vert WS-Security processing.

Secondly, a WSP is a complex piece of software.
As seen earlier (§ 2.1), WSPs are expected to perform
a large number of tasks. Unsurprisingly, they contain
large code bases. Additionally, since WSPs have to be
configurable and extensible, they also typically possess
configuration files, an extension-architecture and mul-
tiple extensions. Concretely, the Axis2 WSP alone
contains about 23.5 KLOC. Together with the imple-
mentations of the multiple WS-* specifications, the
WSP contains over 110 KLOC. Additionally, pro-
grammers can write custom handlers to carry out other
types of processing like load balancing or admission
control. These components add to the complexity of
the system. Given the large code base and the multi-
tude of ways in which these components can interact
with each other, it is not feasible to exhaustively test
the components of the WSP, especially as a complete
system, and eliminate all vulnerabilities. Moreover, the
configurable nature of WSPs means that extensions
can be added, enabled and disabled at runtime, further
complicating the analysis and testing of WSPs.

3. ISO-WSP
Based on the security problems discussed in Section

2.2, we see that an effective solution should
R1. Prevent WSP components that do not need access
to sensitive data from accessing them.

R2. Reduce the size and complexity of WSP compo-
nents that have access to sensitive data.
R3. Preserve functional compatibility with existing
WSPs, and support existing business logic code with
few or no modifications. Due to space constraints, we
will not be discussing this requirement in detail in this
paper.

Our solution, called ISO-WSP, attempts to address
the security problems while meeting the requirements
listed above. First, we split the functionality (or code
base) of existing WSPs into a small trusted T-WSP and
a legacy, untrusted U-WSP. Next, we introduce a new
trusted component called a Message Splicer, which
limits the flow of plain-text sensitive information to the
T-WSP. Taken together, these steps address require-
ments R1 and R2 (see Section 4.2 for details). Addi-
tionally, by reusing the U-WSP to operate on non-
sensitive or protected data, ISO-WSP partially satisfies
requirement R3.

3.1 Splitting Legacy WSPs
Certain components of a legacy WSP require access

to plain-text security-sensitive data. Since these com-
ponents have to be allowed to read or modify sensitive
data, they have to be trusted by both the end-user and
the business logic. We call such components Trusted
Components and these components taken together are
referred to as the T-WSP. The rest of the components
do not have to be trusted and are henceforth referred to
as untrusted components (and collectively referred to
as the U-WSP).

Identifying the components of the T-WSP requires
understanding of the various components of the WSP
and their corresponding functions. We relied on W3C’s
architecture specification [9], specifications for the
WS-* extensions such as WS-ReliableMessaging, WS-
Addressing [4], and the Axis2 web services
architecture guide [2]. Based on our analysis, we found
that a component has to be trusted for one of two rea-
sons:

• The component requires access to sensitive con-
tents of a message (Direct Access). WS-Security im-
plementations fall under this category as they need
access to sensitive contents either to protect them or to
verify the protection on them.
• The component controls the behavior of other
components with direct access (Indirect Access).
This includes other security specifications such as WS-
SecureConversation. These components have to be
trusted because they control the behavior of the first
type of components, e.g., WS-SecureConversation is
used to determine the keys used by WS-Security to
encrypt or sign sensitive data items.

//Handlers can access Service/Msg Context
param=ctx0.getAxisConfiguration()
 .getParameter("OutflowSecurity");
ome = param.getParameterElement();
iter = ome.getGirstElement().
 getChildElements();

while (iter.hasNext()){
 attr = (OMElement) itor.next();
 //Look for Encryption Key
 if ("encryptionUser".equals
 (attr.getLocalName())){
 //replace with weak key
 attr.setText("weak_key_identifier");
 }
}

Figure 2. Indirect Access in the Axis2 WSP. All handlers have
access to service context, which contains, amongst others, pa-
rameters for the encryption key. A malicious handler can replace
the encryption key as shown in the highlighted line.

The rest of the components of the WSP, including
the WS-* extensions, are treated as untrusted compo-
nents, either because they are agnostic to message con-
tents, or because they only indirectly depend on sensi-
tive data. An example of the first case is the transport
layer protocol implementation or SOAP implementa-
tion. Examples of the second case are WS-* exten-
sions such as WS-Addressing which relies on the en-
cryption keys employed by WS-Security to protect the
integrity and in some cases, the confidentiality of
SOAP message headers.

3.2 Message Splicer
In addition to limiting security-relevant processing

to trusted components, we have to limit the flow of
sensitive information to trusted components. To
achieve this, we introduce a trusted component called
the Message Splicer. The function of the Message Spli-
cer is to intercept plain-text messages and replace sen-
sitive data with non-sensitive data or vice versa de-
pending on the direction of the message. For an incom-
ing message with sensitive data, the Message Splicer
replaces sensitive data items with dummy data items
and a token that uniquely identifies an instance of a
sensitive data item. The resulting message is passed on
to the untrusted portion for further processing. The
actual security-sensitive data along with the original
message is passed on to the trusted portion for further
processing. For an outgoing message, the steps occur
in the reverse order.

We replace security-sensitive data items with dum-
my data items to minimize modifications to the mes-
sage format, and therefore to application level code.
An astute reader will point out that by adding the
unique token, we are in fact modifying the message
format and hence will have to modify application level
code. We note that this modification is very structured
and in the case of application-level code written in Java
for Axis2, we have been able to incorporate most of
these modifications with automated code generation.
Due to space limitations, we are unable to discuss this
in detail.

3.3 Architecture of ISO-WSP
Figure 3 provides an overview of the architecture of

ISO-WSP. As explained previously (§ 3.1), implemen-
tation of security specifications form the T-WSP, and
the rest of the components form the U-WSP. In each
case, the components are grouped together and exe-
cuted as independent applications. In addition to the
separation of components of the WSP, the configura-
tion files and the application-level code too have to be
classified and separated into two categories. Since the
behavior of the security specifications can be con-

trolled by configuration files, the corresponding con-
figuration files also have to be trusted and secured
from access by untrusted components.

We enforce separation between the T-WSP and the
U-WSP by executing them in separate protection do-
mains, with the U-WSP running with lower privileges.
This prevents U-WSP from modifying the binaries or
configuration files of the T-WSP. This separation also
prevents U-WSP from accessing the secret keys used
for encryption or decryption. The Message Splicer,
discussed in Section 3.2, addresses how we secure the
flow of sensitive information in the ISO-WSP.

Since application-level code also has access to sen-
sitive data, we also have to split application-level code
into trusted and untrusted portions. As briefly men-
tioned in Section 3.2, we have developed code-
generators to automate this process as much as possi-
ble. More detail is presented in a technical report [26].

A legacy WSP can be converted to an ISO-WSP
with a small number of modifications. After construct-
ing a T-WSP, we have to modify the legacy WSP to
invoke the T-WSP via remote invocation mechanisms
instead of using local calls. This involves identifying
parameters that are exchanged between the T-WSP and
U-WSP, message and results of security processing,
and adding the necessary serializing and deserializing
code.

One of the main features of the ISO-WSP architec-
ture is that external entities do not perceive any
changes to the functional interface of the WSP. ISO-
WSP exports the same external interface as legacy
WSPs. The U-WSP provides support for the interface
by implementing transport-layer protocols such as
HTTP over TCP/IP.

Figure 3. Architecture of ISO-WSP. Shaded boxes represent
Trusted Components. Trusted Components execute in a sepa-
rate protection domain.

4. Implementation and Evaluation
4.1 Implementation

We implemented an ISO-WSP prototype based on
the Apache Axis2 platform. The T-WSP consisted of a
WS-Security implementation (WSS4J [1]) and a Mes-
sage Splicer. Accordingly, the configuration files for
WS-Security also formed a part of the T-WSP. The rest
of the Axis2 WSP, along with the other WS-* exten-
sions formed the U-WSP. We modified Axis2 to make
remote calls to perform WS-Security related process-
ing. Since we used Java, all remote calls were Java
RMI calls. We also had to modify the WS-Security
implementation to support RMI invocation. Since the
WS-Security configuration files were now a part of the
T-WSP, we had to add code to read the configuration
files. In all, by adding or modifying around 800 LOC,
we were able to convert the existing Axis2 WSP into
an ISO-WSP prototype.

We execute the T-WSP as a superuser process and
the U-WSP as an unprivileged process. The file system
permissions of the configuration files of the T-WSP are
set such that the U-WSP is unable to read or modify
them. Since we use the RMI protocol to communicate
between the T-WSP and U-WSP, each of them can
reside on separate virtual or even physical machines,
thereby providing stronger isolation properties.

Our implementation of the Message Splicer accepts
information about sensitive data items in two ways.
First, it allows developers to specify XML files that
contain serialized versions of an instance of a sensitive
data item with dummy values, e.g., a credit card data
item with an invalid card number. The Message Splicer
uses these “dummy” values when replacing sensitive
objects in incoming messages. It also inserts unique
tokens when replacing sensitive objects. Secondly, the
Message Splicer accepts sensitive data items in the
form of Document Object Model (DOM) fragments
from the trusted part of the application. Each fragment
possesses unique tokens that are used by the Message
Splicer when replacing dummy data items with actual
content in outgoing messages.

Payment Processing Service: We implemented a
simple payment processing service that accepts order
information and payment information in the form of a
credit card object and returns a confirmation string
containing a transaction identifier and the amount
charged to the card. We denoted the credit card infor-
mation as security-sensitive information. To protect
this information, the client specifies that the whole
request message be encrypted using WS-Security with
the public key of the service provider as the encryption
key. In our legacy service implementation, the business
logic gets the complete message with both security-

sensitive and security-insensitive data. It then performs
book-keeping operations such as logging, calls the
charge card function to generate a confirmation num-
ber, performs some more book-keeping operations
before returning the data to the WSP.

In the implementation on top of ISO-WSP, the busi-
ness logic is split into two parts: one that handles credit
card information (trusted) and another that handles
order information (untrusted). The Message Splicer of
the ISO-WSP replaces security-sensitive information
in an incoming message with dummy data items and a
unique token before passing it on to the U-WSP and
the untrusted business logic. Security-sensitive con-
tents are passed on to the trusted business logic. The
untrusted business logic performs the necessary book-
keeping operation before invoking T-WSP – with the
unique token embedded by the Message Splicer as an
argument – to operate on the card. The return value is
passed on to the U-WSP.

4.2 Security Properties of ISO-WSP
4.2.1 Information Flow Security in ISO-WSP. Be-
fore we discuss information flow security in ISO-WSP,
we list the basic assumptions and features of ISO-
WSP. First, we assume that all sensitive information is
protected using WS-Security. Furthermore, we assume
that sensitive information protected using WS-Security
cannot be compromised without first compromising the
security extensions. Secondly, in ISO-WSP, WS-
Security processing is carried out in a separate protec-
tion domain, with the U-WSP being executed as a low-
er privilege process. Therefore, untrusted components
cannot indirectly access sensitive data, e.g., they can-
not change the parameters of security processing. We
only have to prevent direct access of sensitive informa-
tion by the U-WSP.

The Message Splicer is the key component that pre-
vents direct access of sensitive information by the U-
WSP by splitting and merging flow of information as
needed. To analyze how this process of splitting and
merging secures flow of sensitive information in con-
trast to legacy WSPs, we divide the untrusted WSP
into two categories:
• Components that operate below WS-Security
(Transport Protocols, SOAP and SOAP Extensions (L)
in Figure 3): Since these components worked on en-
crypted or signed data, they did not have direct access
to sensitive data in legacy WSPs. However, they could
indirectly compromise flows by modifying security
processing parameters, e.g., overwrite configuration
files or security processing parameters. In ISO-WSP,
they execute with lower privilege and in a separate
protection domain and hence, cannot manipulate secu-
rity processing parameters.

• Components that operate above WS-Security
(SOAP Extensions (U) and untrusted business logic in
Figure 3): These components had both direct and indi-
rect access to sensitive data in legacy WSPs. In ISO-
WSP, we replace sensitive data with dummy data
items before transferring the message back to these
components. Hence, these components are deprived of
direct access to sensitive data. Previously discussed
arguments against indirect access by untrusted compo-
nents are equally applicable to these components.
4.2.1 Software Complexity Reductions in ISO-WSP.
Our second motivating factor for constructing an ISO-
WSP was the increased complexity of WSPs. Since
access to sensitive information is limited to the T-
WSP, we only have to trust the T-WSP to protect the
flow of sensitive information. Table 1 compares the
software complexity of various WSP components and
compares them against the T-WSP. We measured two
properties: Source Lines of Code and McCabe’s Cyc-
lomatic complexity [18]. Empirical studies have shown
that both measures of software complexity correlate
with number of bugs in code [20]. We see that the T-
WSP is a factor of 5 smaller and simpler than the cur-
rent implementation of the Axis2 WSP, making the T-
WSP more amenable to exhaustive testing. The small
size of the T-WSP also makes it easier to apply static
analysis techniques for monitoring the flow of infor-
mation, as described in [22].

Extensibility of WSPs is a crucial factor in testing
and analysis. Since extensions can change the behavior
of WSPs and since they can be added or configured at
run time, they complicate the testing process. How-
ever, extensions provide useful functionality such as
support for addressing, transactions and reliability. By
extracting a T-WSP and retaining the functionality of
the legacy U-WSP, including an extension architecture,
ISO-WSP attempts to gain the best of both worlds.

4.3 Performance of ISO-WSP
Our experimental setup consisted of two machines,

each with Pentium-4 3.0 GHz processors with 1 GB
RAM, running Linux kernel 2.6.15. The machines
were connected via a 100 MBps switch. We used
Axis2 version 1.1 and WSS4J version 1.5.1 running on
top of Apache Tomcat 4.1.31.

There are three sources of overhead in the ISO-
WSP. First, since the security-sensitive parts of the
WSP and application are separated from the rest of the
application, there is the added cost of remote calls.
Related to this is the cost of serializing and deserializ-
ing data items for remote calls. Finally, there is the cost
of performing message splicing operations.

To estimate the RMI overhead, we use a simple
echo application with the client and server running on

the same machine. We found that round trip times in-
crease linearly with message sizes, at the rate of about
0.5 ms per kilobyte. For message sizes less than 8 KB,
round trip time was less than 1 millisecond.

In the ISO-WSP architecture, we have to transfer
SOAP messages between the U-WSP and the T-WSP.
This involves converting SOAP messages in DOM
format to byte array format and vice versa. To estimate
these costs, we used an XML data set from the
XMLBench Document Model Benchmark [10]. We
found that combined serializing and deserializing costs
are of the order of few milliseconds. For small to me-
dium sized XML files (~10 kilobytes), the combined
cost is less than 4 ms. For the largest XML file in the
dataset (36 KB), the combined cost was about 14 ms.

We do not perform similar microbenchmarks for es-
timating message splicing costs and application-level
serializing and deserializing costs because they are
closely dependent on the application-level data struc-
tures. Rather, we measure these costs as a part of a
concrete web service implementation.

We use the payment processing web service de-
scribed earlier (§ 4.1) to evaluate the end-to-end over-
head imposed by the ISO-WSP architecture. We found
that using ISO-WSP increased the average response
time from 40.3 ms to 47.9 ms. Of this 7.6 ms overhead,
5.2 ms can be attributed to the additional processing
steps in the ISO-WSP architecture: serializing and de-
serializing SOAP messages and RMI costs. The rest of
the overhead (~2.4 ms) was incurred in the application-
level code. These include the cost for two RMI calls
from the untrusted part to the trusted part (~0.8 ms):
one for charging the credit card and another for clean-
ing up the state in the trusted part. The second major
cost arises because the SOAP message now has to be
additionally deserialized on the trusted side (~1.5 ms).

Based on the microbenchmarks and the results for
the payment processing web service, we can see that
ISO-WSP introduces overheads of the order of a few
milliseconds. While this might seem excessive, typical
web service invocation time ranges from 0.5 seconds
to a few seconds [16]. More importantly, one should

Table 1. Comparison of Source Lines of Code (SLOC) and
McCabe's Cyclomatic Complexity (MCC) of the T-WSP
and the Axis2 WSP along with its extensions. Extensions
include implementations of WS-Coordination, WS-
ResourceFramework, WS-Addressing, amongst others. All
numbers were generated using the JavaNCSS tool [3].

Module SLOC MCC
Axis2 23,580 7,930
Extensions 70,350 24,100
WS-Security 16,900 5,180
WSP-Total 110,830 39,210
T-WSP 19,360 6,050

note that ISO-WSP is invoked only during the ex-
change of sensitive information. When exchanging
non-sensitive information, ISO-WSP still uses the leg-
acy WSP, thereby maintaining the performance of the
legacy WSP.

5. Open Issues
While the ISO-WSP architecture improves security

properties of the web service, there are a few remain-
ing key challenges that need to be addressed.

5.1 Modifications to Application Level Code
We saw in Sections 3.2 and 3.3 that ISO-WSP

changes the format of the message and the interaction
patterns between the WSP and the application-level
code. This required modifications to application level
code and can impose an undue burden on the web ser-
vice developer and hinder the adoption of ISO-WSP.
We argue that these modifications are very structured:
e.g., security sensitive data items now contain a single
additional data object. We have been able to use code-
generation techniques and leverage object inheritance
facilities present in the Java programming language to
limit the number of modifications to application level
code to the order of few tens of lines of code [26].

We rely on programmer annotations to split applica-
tion-level code. For applications with complex data
flows, we can also leverage considerable research on
splitting application level code based on a few simple
programmer annotations using information flow analy-
sis tools such as JIF/JFlow [19].

5.2 Denial of Service Attacks
The current ISO-WSP design does not address De-

nial of Service (DoS) attacks. For example, the U-WSP
can carry out DoS attacks by either corrupt messages
or choosing not to invoke the T-WSP for security
processing. One should note that existing WSPs are
also susceptible to similar types of attacks. Moreover,
these attacks do not compromise the confidentiality or
integrity of security-sensitive information.

ISO-WSP can be enhanced with Trusted Computing
hardware [8] and application level support for Trusted
Computing, e.g, Integrity Measurement Architecture
[23], to provide additional, desirable security proper-
ties such as integrity of software stack at load time and
remote attestation.

6. Related Work
Previous efforts have addressed refactoring existing

systems software [11],[15] and application-level soft-
ware [25] to reduce the size and complexity of soft-
ware that has access to sensitive data. Our work can be
considered as an application of such techniques to web

services middleware. In contrast to previous ap-
proaches, by replacing sensitive data items with dum-
my data items in the middleware, we also enable exist-
ing application-level software to run with minimal
modifications.

There is also considerable research into refactoring
and customizing middleware to modularize and sim-
plify them. Zhang et al. [32], [1] and Eichberg et al.
[13] use Aspect Oriented Programming techniques to
modularize middleware and then, customize it accord-
ing to the needs of applications. OpenCOM [12] and
CompOSE/Q [28], amongst others, are examples of
reflective middleware that allow for customization of
middleware to suit the needs of application. ISO-WSP
is an attempt at refactoring middleware with security as
the driving factor. Techniques described in [32], [1] are
applicable to the construction of ISO-WSP.

Trusted Computing initiatives [8] attempt to reas-
sure remote entities about the integrity of the software
stack handling sensitive data. The Integrity Measure-
ment architecture [23] aims to extend integrity meas-
urement to include configuration files. WS-Attestation
[31] and Trusted Web Services [27] attempt to incor-
porate Trusted Computing principles into the web ser-
vices stack. However, an attacker can still compromise
the integrity of the software stack by exploiting run
time vulnerabilities or by loading malicious extensions
at runtime. By reducing the size and complexity of the
trusted part of the system, ISO-WSP enables the use of
exhaustive testing or static analysis techniques, thereby
reducing the number of run-time vulnerabilities.

The use of static analysis techniques [14], [29] to
identify bugs in code is gaining popularity. For strong-
ly-typed languages such as Java, one can go even fur-
ther and apply language-based information flow pro-
tection techniques [22]. However, the applicability of
such techniques to a large code-base is a subject of
open research and we expect such techniques to be
more amenable to smaller code bases, such as that of
the T-WSP.

Lastly, tokens used in ISO-WSP by untrusted appli-
cations to operate on security-sensitive data can be
viewed as capabilities [30]. The ISO-WSP architecture
can be considered as retrofitting a capability-based
architecture in to WSPs. Protected Data Paths (PDP)
[17] uses a similar approach to hide sensitive informa-
tion from untrusted application level programs. PDP
consists of kernel-level modules that traps I/O calls
retrieving sensitive data and replaces sensitive data
with tokens, thereby preventing application level pro-
grams from directly accessing them. ISO-WSP not
only adds tokens, but it also sends back dummy data
items with similar structure to the sensitive data item,
thereby minimizing the changes to existing applica-
tions.

7. Conclusion
In this paper, we presented ISO-WSP, a secure in-

formation flow architecture to counter the problem of
large and complex WSPs. ISO-WSP consisted of two
parts: a small, trusted T-WSP that required access to
security-sensitive information and a U-WSP that re-
tained the features of legacy WSPs. By limiting the
flow of sensitive information to the T-WSP, we en-
sured that the U-WSP does not have to be trusted, the-
reby improving the testability of the ISO-WSP.

We demonstrated the feasibility of our approach by
building an ISO-WSP based on the Apache Axis2
WSP. By splitting and limiting the flow of sensitive
information, we showed that ISO-WSP architecture
reduces the complexity of the trusted portion of a WSP
by a factor of 5, while imposing manageable overhead
of a few milliseconds per request. We also briefly dis-
cussed techniques to minimize the cost of porting leg-
acy applications to run on the ISO-WSP.

8. References
[1] Apache WSS4J. http://ws.apache.org/wss4j/
[2] Axis2 Architecture Guide.
http://ws.apache.org/axis2/1_0/
Axis2ArchitectureGuide.html
[3] JavaNCSS. http://www.kclee.de/clemens/java/javancss/
[4] Microsoft. Web Services Specifications. http://msdn2.
microsoft.com/en-us/webservices/aa740689.aspx
[5] OASIS Web Services Security (WSS) TC.
http://www.oasis-open.org/committees/wss/
[6] Secunia. IBM WebSphere Application Server 5.x – Vul-
nerability Report. http://secunia.com/product/2614/
[7] Secunia. Microsoft .NET Framework 1.x – Vulnerability
Report. http://secunia.com/product/667/?task=advisories
[8] Trusted Computing Group.
https://www.trustedcomputinggroup.org/home
[9] W3C. Web Services Architecture.
http://www.w3.org/TR/ws-arch
[10] XMLBench Document Model Benchmark.
http://www.sosnoski.com/opensrc/xmlbench/
[11] D. Brumley, D. X. Song. Privtrans: Automatically Parti-
tioning Programs for Privilege Separation. In Proc. USENIX
Security Symposium, San Diego, USA. Aug 9-13, 2004.
[12] M. Clarke, G.S. Blair, G. Coulson and N. Parlavantzas,
An Efficient Component Model for the Construction of
Adaptive Middleware, In Proc. Middleware 2001.
[13] M. Eichberg and M. Mezini, Alice: Modularization of
Middleware Using Aspect-Oriented Programming, In Proc.
Software Engineering and Middleware, pp. 47-63. 2004.
[14] D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. In 18th ACM SOSP, Oct. 2001.
[15] Hohmuth, M., M. Peter, H. Härtig, and J. Shapiro. Re-
ducing TCB size by using untrusted components – small
kernels versus virtual machine monitors, in Proc. of the 11th
ACM SIGOPS European Workshop, Leuven, Belgium, 2004.

[16] Kim, S. M. and Rosu, M. C., A survey of public web
services. In Proc. of 13th WWW Conf. on Alternate Track
Papers & Posters, pp. 312-313, May 2004.
[17] J. Kong, K. Schwan and P. Widener, Protected Data
Paths: Delivering Sensitive Data via Untrusted Proxies, In
Proc. 2006 Intl. Conf. on Privacy, Security and Trust, On-
tario, Oct. 2006.
[18] T.J. McCabe, A Complexity Measure, IEEE Transac-
tions on Software Engineering, SE-2 No. 4, 1976.
[19] A. Myers. Jflow: Practical mostly-static information
flow control. In 26th POPL, San Antonio, Jan 1999.
[20] N. Nagappan, T. Ball and A. Zeller, Mining Metrics to
Predict Component Failures, In ICSE 2006.
[21] S. Perera et al. Axis2, Middleware for Next Generation
Web Services, In Proc. ICWS 2006, pp. 833-840, Sept. 2006.
[22] A. Sabelfeld and Andrew C. Myers. Language-Based
Information-Flow Security. In IEEE Journal on Selected
Areas in Communications, 21(1):5-19, January 2003.
[23] R. Sailer, X. Zhang, T. Jaeger, and L. V. Doorn. Design
and Implementation of a TCG-based Integrity Measurement
Architecture. In Proc. of 13th USENIX Security, 2004.
[24] J.H. Saltzer and M.D. Schroeder, The Protection of
Information in Computer Systems, In Proc. of the IEEE,
Vol.63, No.9, Sept. 1975, pp.1278-1308.
[25] L. Singaravelu, C. Pu, H. Haertig, C. Helmuth, Reduc-
ing TCB Complexity for Security-Sensitive Applications:
Three Case Studies, In First Eurosys, Leuven, Belgium,
April 2006.
[26] L. Singaravelu, J. Wei and C. Pu, A Secure Middleware
Architecture for Web Services, CERCS Technical Report,
Georgia Tech. GIT-CERCS-07-14, 2007.
[27] Z. Song, et al., Trusted Web Service, In 2nd Workshop
on Advances in Trusted Computing, Tokyo, Japan, 2006.
[28] N. Venkatasubramanian, et al., Design and Implementa-
tion of a Composable Reflective Middleware Framework. In
ICDCS 2001. April, 2001.
[29] D. Wagner et al., A first step towards automated detec-
tion of buffer overrun vulnerabilities. In Proc. of ISOC
NDSS, 2000.
[30] Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R.,
Pierson, C., and Pollack, F., HYDRA: the kernel of a multi-
processor operating system. CACM 17(6), Jun. 1974, pp.
337-345.
[31] S. Yoshihama et al., WS-Attestation: Efficient and Fine-
Grained Remote Attestation on Web Services, In Proc.
ICWS’05, pp. 743-750, 2005.
[32] C. Zhang, H.-A. Jacobsen. Refactoring Middleware with
Aspects. In IEEE TPDS. 14(11), p. 1058-1073, 2003.
[33] C. Zhang, H.-A. Jacobsen. Resolving Feature Convolu-
tion with Horizontal Decomposition in Middleware. In Proc.
OOPSLA 2004. p. 188-205. Vancouver, BC, 2004.

