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Abstract 
Kernel callback queues (KQs) are the mechanism of choice for handling 

events in modern kernels. KQs have been misused by real-world malware to run 
malicious logic. Current defense mechanisms for kernel code and data integrity 
have difficulties with kernel queue injection (KQI) attacks, since they work 
without necessarily changing legitimate kernel code or data. In this paper, we 
describe the design, implementation, and evaluation of KQguard, an efficient 
and effective protection mechanism of KQs. KQguard uses static and dynamic 
analysis of kernel and device drivers to learn the legitimate event handlers. At 
runtime, KQguard rejects all the unknown KQ requests that cannot be validated. 
We implement KQguard on the Windows Research Kernel (WRK) and Linux 
and extensive experimental evaluation shows that KQguard is efficient (up to 
~5% overhead) and effective (capable of achieving zero false positives against 
representative benign workloads after appropriate training and very low false 
negatives against 125 real-world malware and nine synthetic attacks). KQguard 
protects 20 KQs in WRK, can accommodate new device drivers, and through 
dynamic analysis of binary code can support closed source device drivers. 

1 Introduction 
One of the most time-critical functions of an operating system (OS) kernel is inter-

rupt/event handling, e.g., timer interrupts. In support of asynchronous event handling, 
multi-threads kernels store the information necessary for handling an event as an ele-
ment in a kernel callback queue (called KQ for short), specialized for that event type. 
To avoid interpretation overhead, each element of a KQ contains a callback function 
pointer to an event handler specialized for that specific event, plus its associated ex-
ecution context (as input parameters of the event handler function). When an event 
happens, a kernel thread invokes the specified callback function to handle the event. 

KQs are the mechanism of choice for handling events in modern kernels. As con-
crete examples, we found 20 KQs in the Windows Research Kernel (WRK) and 22 in 
Linux. In addition to being popular with kernel programmers, KQs also have become 
a very useful tool for kernel-level malware such as rootkits (Section 5.1 and [5, 24]). 
For example, the Pushdo spam bot has misused the Registry Operation Notification 
Queue of the Windows kernel to monitor, block, or modify legitimate registry opera-
tions [10]. This paper includes 125 examples of real-world malware misusing KQs 



demonstrating these serious current exploits, and nine additional synthetic potential 
misuses for illustration of future dangers. 

The above-mentioned kernel-level malware misuses the KQs to execute malicious 
logic, by inserting their own requests into the KQs. This kind of manipulation is 
called KQ Injection or simply KQI. Although KQI appears similar to Direct Kernel 
Object Manipulation (DKOM) [6] or Kernel Object Hooking (KOH) [13], it is more 
expressive thus powerful than the other two. While DKOM attacks only tamper with 
non-control data and KOH attacks only tamper with control data, KQI attacks are 
capable of doing both because the attacker can supply both control data (i.e., the call-
back function) and/or non-control data (i.e., the parameters). Moreover, KQI is steal-
thier than DKOM or KOH in terms of invasiveness: DKOM or KOH attacks modify 
legitimate kernel objects so they are invasive, while KQI attacks just insert new ele-
ments into KQs and do not have to modify any legitimate kernel objects. 

Several seminal defenses have been proposed for DKOM and KOH attacks [1, 3, 
26, 36]. Unfortunately, they are not directly applicable to KQI attacks either because 
of their own limitations or the uniqueness of KQIs. For example, CFI [1] is a classic 
defense against control data attacks, but it cannot address non-control data attacks 
launched via KQ injection (Section 2.2 provides a concrete example in WRK). Gi-
braltar [3] infers and enforces invariant properties of kernel data structures, so it 
seems able to cover KQs as one type of kernel data structure. Unfortunately, Gibraltar 
relies on periodic snapshots of the kernel memory, which makes it possible for a tran-
sient malicious KQ request to evade detection. Petroni [26] advocates detecting 
DKOM by checking the integrity of kernel data structures against specifications, 
however, the specifications are elaborate and need to be manually written by domain 
experts. Finally, KQI attacks inject malicious kernel data, which makes HookSafe 
[36] an inadequate solution because the latter can only protect the integrity of legiti-
mate kernel data. Therefore, new solutions are needed to defend against KQI attacks. 

Inspired by the above research, our KQ defense endorses the general idea of using 
data structure invariants. However, we address the limitation of existing approaches 
so that our KQ integrity checking covers both persistent and transient attacks. More 
specifically, our defense intercepts and checks the validity of every KQ request to 
ensure the execution of legitimate event handlers only, by filtering out all untrusted 
callback requests. In [37], we develop a KQ defense for Linux (called PLCP) that 
employs static source code analysis to automatically derive specifications of legiti-
mate KQ requests. However, the reliance on source code limits the practical applica-
bility of PLCP in systems such as Windows in which there are a large number of 
third-party, closed source device drivers that need KQs for their normal operation. 

Therefore, in this paper, we build KQguard, an effective defense against KQI at-
tacks that can support closed source device drivers. Specifically, we make the follow-
ing contributions: (1) we introduce the KQguad mechanism that can distinguish attack 
KQ requests from legitimate KQ event handlers, (2) we employ dynamic analysis of 
the binary code to automatically generate specifications of legitimate KQ requests 
(called EH-Signatures) in closed source device drivers, (3) we build a static analysis 
tool that can automatically identify KQs from the source code of a given kernel, (4) 
we implement the KQguard in WRK [39] and the Linux kernel, (5) our extensive 



evaluation of KQguard on WRK shows its effectiveness against KQ exploits (125 
real-world malware samples and nine synthetic rootkits), detecting all except two of 
the attacks (very low false negative rate). With appropriate training, we eliminated all 
false alarms from KQguard for representative workloads. For resource intensive 
benchmarks, KQguard carries a small performance overhead of up to about 5%. 

The rest of the paper is organized as follows. Section 2 summarizes the problem 
caused by rootkits misusing KQs. Section 3 describes the high level design of KQ-
guard defense by abstracting the KQ facility. Section 4 outlines some implementation 
details of KQguard for WRK, validating the design. Section 5 presents the results of 
an experimental evaluation, demonstrating the effectiveness and efficiency of KQ-
guard. Section 6 outlines related work and Section 7 concludes the paper. 

2 Problem Analysis: KQ Injection 
2.1 Importance of KQ Injection Attacks 

Functionally, KQs are kernel queues that support the callback of a programmer-
defined event handler, specialized for efficient handling of that particular event. For 
example, the soft timer queue of the Linux kernel supports scheduling of timed event-
handling functions. The requester (e.g., a device driver) specifies an event time and a 
callback function to be executed at the specified time. When the system timer reaches 
the specified time, the kernel timer interrupt handler invokes the callback function 
stored in the soft timer request queue (Fig. 1). More generally and regardless of the 
specific event semantics among the KQs, their control flow conforms to the same 
abstract type: For each request in the queue, a kernel thread invokes the callback func-
tion specified in the KQ request to handle the event. 

Kernel-level rootkits exploit the KQ callback mechanism to execute malicious log-
ic by inserting their own request into a KQ (e.g., by supplying malicious callback 
function or data in step 1 of Fig. 1). This kind of manipulation, called a KQ injection 
attack, only uses legitimate kernel interface and it does not change legitimate kernel 
code or statically allocated data structures such as global variables. Therefore, syntac-
tically a KQ injection request is indistinguishable from normal event handlers. Con-
sider the Registry Operation Notification Queue as illustration. Using it in defense, 
anti-virus software event handlers can detect potential intruder malicious activity on 
the Windows registry. Using it in KQ injection attack, Pushdo [10] can monitor, 
block, or modify legitimate registry operations. 

 
Fig. 1. Life cycle of a timer request in Linux Fig. 2. Overall Architecture of KQguard 



Several KQ injection attacks by real world malware have been documented (Table 
1 in Section 5.1). Specifically, malware has misused KQs to hide better against dis-
covery [2,18],  to carry out covert operations [9,10,27], and to attack security products 
directly [4]. Further details can be found in our technical report [38]. Undoubtedly, 
KQ injection attacks represent a clear and present danger to current OS kernels. 
2.2 KQ Injection Attack Model 

The KQ injection malware listed in Table 1 (Section 5.1) misuse KQs in a 
straightforward way. They prepare a malicious function in kernel space and use its 
address as the callback function pointer in a KQ request. We call these callback-into-
malware attacks. Since their malicious functions must be injected somewhere in the 
kernel space, callback-into-malware attacks can be detected by runtime kernel code 
integrity checkers such as SecVisor [29]. Therefore, they are considered the basic 
level of attack. 

Unfortunately, a more sophisticated level of KQ injection attacks, called callback-
into-libc (in analogy to return-into-libc [32, 35]), create a malicious callback request 
containing a legitimate callback function but malicious input parameters. When acti-
vated, the legitimate callback function may carry out unintended actions that are bene-
ficial to the attacker. For example, one legitimate callback function in the asynchron-
ous procedure call (APC) queue of the WRK is PsExitSpecialApc, which can 
cause the currently executing thread to terminate with an exit status code that is speci-
fied in the “NormalContext” parameter field of the APC request structure. Therefore, 
hypothetically an attacker can inject an APC request with PsExitSpecialApc as the 
callback function to force a thread to terminate with a chosen exit status code (set in 
the “NormalContext” field). This kind of Callback-into-libc attack can be used to 
shutdown an anti-virus program but make the termination appear normal to an Intru-
sion Detection System, by setting a misleading exit status code. 

Callback-into-libc KQ injection attacks represent an interesting challenge, since 
they allow an attacker to execute malicious logic without injecting his own code, and 
the above example shows that such attacks can target non-control data (e.g., the exit 
status code of a thread). Therefore, they cannot be defeated by approaches that focus 
on control data (e.g., CFI [1]). 

The design of KQguard in Section 3 shows how we can detect both callback-into-
malware and callback-into-libc KQ injection attacks. 
2.3 Design Requirements of KQ Defense 

An effective KQ defense should satisfy four requirements: efficiency, effective-
ness, extensibility, and inclusiveness. In this section, we outline the reasons KQguard 
satisfies these requirements. Some previous techniques may solve specific problems 
but have difficulties with satisfying all four requirements. We defer a discussion of 
related work to Section 6. 

Efficiency: It is important for KQ defenses to minimize their overhead; KQguard is 
designed to protect KQs with low overhead, including the time-sensitive ones. Effec-
tiveness: KQ defenses should detect all the KQ injection attacks (zero false negatives) 
and make no mistakes regarding the legitimate event handlers (zero false positives); 
KQguard is designed to achieve this level of precision and recall by focusing on the 



recognition of all legitimate event handlers. Extensibility: Due to the rapid prolifera-
tion of new devices, it is important for KQ defenses to extend their coverage to new 
device drivers; the KQguard design isolates the knowledge on legitimate event han-
dlers into a table (EH-Signature collection) that is easily extensible. Inclusiveness: A 
practical concern of commercial kernels is the protection of third-party, closed source 
device drivers; KQguard uses static analysis when source code is available and dy-
namic analysis to protect the closed source legitimate drivers. 

3 Design of KQguard 
In this section, we describe the design of KQguard as a general protection mechan-

ism for the KQ abstract type. The concrete implementation is described in Section 4. 
3.1 Architecture Overview and Assumptions 

The main idea of KQguard is to differentiate legitimate KQ event handlers from 
malicious KQ injection attacks based on characteristics of known-good event han-
dlers. For simplicity of discussion, we call such characteristics Callback-Signatures. 
A Callback-Signature is an effective representation of a KQ event handler (or a KQ 
request) for checking. One special type of Callback-Signatures is those of the legiti-
mate KQ event handlers, and we call them EH-Signatures. 

How to specify or discover the EH-Signatures is a practical challenge in the design 
of KQguard. Since legitimate KQ requests are originated from legitimate kernel or 
device drivers, in order to specify EH-Signatures we need to study the behavior of the 
core kernel and legitimate drivers. In an ideal kernel development environment, one 
could imagine annotating the entire kernel and all device driver code to make KQ 
requests explicit, e.g., by defining a KQ abstract type. Processing the KQ annotations 
in the complete source code will give us the exact EH-Signature collection. Unfortu-
nately, this is not practical because many third-party closed source device drivers are 
unlikely to share their source code.  

Therefore, our design decision is to apply dynamic binary code analysis to auto-
mate the process of obtaining a specialized EH-Signature collection that fits the con-
figuration and usage of each system. Specifically, our design uses the architecture 
shown in Fig. 2. We extend the kernel in a dedicated training environment to log (col-
lect) EH-Signatures of KQ requests that the kernel encounters during the execution of 
legitimate device drivers. Then we extend the kernel in a production environment to 
use such learned EH-Signatures to guard against KQ injection attacks, which can be 
launched by malware installed in the production environment. 

By employing dynamic analysis, our design does not require source code of the 
device drivers, thus it satisfies the inclusiveness requirement. Moreover, by having 
two kinds of environments, we decouple the collection and the use of EH-Signatures, 
which allows future legitimate drivers to be supported by KQguard: we can run the 
new driver in the training environment to collect its EH-Signatures and then add the 
new EH-Signatures into the signature collection used by the production environment. 
By using this method, our design satisfies the extensibility requirement. 

In order to guarantee that EH-Signatures learned from the training environment is 
applicable to the production environment, we assume that the training environment 
and the production environment run the same OS and set of legitimate device drivers. 



In order to guarantee that all the Callback-Signatures learned from the training en-
vironment represent legitimate KQ requests, we assume that any device driver that is 
run in the training environment is benign. This assumption may not hold on a con-
sumer system because a normal user may not have the knowledge and capability to 
tell whether a new driver is benign or not. Therefore, we expect that KQguard is used 
in a strictly controlled environment (such as military and government) where a know-
ledgeable system administrator ensures that only benign device drivers are installed in 
the training environment, by applying standard security practices. 

As is typical of any dynamic analysis approach, we assume that a representative 
and comprehensive workload is available during training to trigger all the legitimate 
KQ event handlers. Because some legitimate KQ requests may be made only under 
certain conditions, the workload must be comprehensive so that such KQ requests can 
be triggered and thus logged. Otherwise, KQguard may raise false alarms. 
3.2 Building the EH-Signature Collection 

In order to collect EH-Signatures in a training environment, we first instrument the 
kernel with KQ request logging capability and then run comprehensive workloads to 
trigger legitimate KQ requests. 
3.2.1 Instrumentation of the Kernel to Log EH-Signatures.  

To collect EH-Signatures, we instrument all places in the kernel where KQ request 
information is available. Specifically, we extend kernel functions that initialize, insert, 
or dispatch KQ requests. We extend these functions with a KQ request logging utility, 
which generates and logs Callback-Signatures from every “raw” KQ request (i.e., 
with absolute addresses) submitted by the legitimate kernel and device drivers. The 
details of Callback-Signature generation are non-trivial and deferred to Section 3.5.  

In general, the information contained in EH-Signatures is readily available in the 
kernel, although the precise location of such information may differ from kernel to 
kernel. It is a matter of identifying the appropriate location to instrument the kernel to 
extract the necessary information. Section 3.6 describes our non-trivial search for all 
the locations of these simple changes, in which we employ static source code analysis 
on the entire kernel. The extensions are applied to the kernel at source code level. The 
instrumented kernel is then rebuilt for the EH-Signature collection process. 
3.2.2 Dynamic Profiling to Collect EH-Signatures.  

In this step, we run a representative set of benchmark applications using a compre-
hensive workload on top of the instrumented kernel. During this phase, the kernel 
extensions described in Section 3.2.1 are triggered by every KQ request. 

To avoid false negatives in KQ defense, the training is performed in a clean envi-
ronment to ensure no malware Callback-Signatures are included. To avoid false posi-
tives, the training workload needs to be comprehensive enough to trigger all of the 
legitimate KQ requests. Our evaluation (Section 5.3) shows a very low false positive 
rate, indicating the feasibility of the dynamic profiling method. In general, the issue of 
test coverage for large scale software without source code is a significant challenge 
and beyond the scope of this paper. 



3.3 Validation Using EH-Signature Collection 
As shown in the “Production Environment” part of Fig. 2, we modify the dispatch-

er of every identified KQ to introduce a KQ guard that checks the legitimacy of a 
pending KQ request before the dispatcher invokes the callback function. To perform 
the check, the KQ guard first builds the Callback-Signature from a pending request 
(detailed in Section 3.5), and then matches the Callback-Signature against the EH-
Signature Collection. If a match is found, the dispatcher invokes the confirmed event 
handler. Otherwise, the dispatcher takes necessary actions against the potential threat 
(e.g., generating a warning message). The details of signature matching are discussed 
in Section 3.4. 

To reduce performance overhead, we cache the results of KQ validation so as to 
avoid repeatedly checking a KQ request if its Callback-Signature has not changed 
since the last time it is checked. Specifically, we maintain cryptographic hashes of the 
“raw” KQ requests (identified by memory location) that pass the validation, so that 
when the same KQ request (at the recorded memory location) is to be checked again, 
we recalculate the cryptographic hash and compare it with the stored one. Our profil-
ing study confirms that a significant fraction (~90%) of KQ validation is redundant 
because the same KQ requests are repeatedly enqueued, dispatched, dequeued, and 
enqueued again. Therefore, caching the validation results for such repeated KQ re-
quests can reduce performance overhead of KQ defense. 
3.4 Specification of the Callback-Signatures 

A critical design issue of KQguard is the determination of the set of characteristics 
in the Callback-Signatures: it must precisely identify the same KQ requests in the 
training and production environments. On one hand, the set must not include charac-
teristics that can vary between the two environments (e.g., the expiration time in a soft 
timer request) because otherwise even the same legitimate KQ requests would appear 
different (false positives); on the other hand, the set must include all the invariant 
characteristics between the two environments because otherwise a malicious KQ re-
quest that differs from a legitimate request only in the missing characteristics would 
also pass the check, resulting in false negatives. For example, the malicious KQ re-
quest in Fig. 3.b is allowed by a KQ guard that only checks the shaded fields, al-
though it causes a malicious function bar_two to be invoked; and the malicious KQ 
request achieves this by tampering with the “action” field of structure se that is not 
covered by the Callback-Signature. Here when the KQ request is dispatched, foo is 
invoked with qe.data as its parameter. 

In order to minimize false negatives such as the one demonstrated in Fig. 3, one 
could include more characteristics (e.g., se.action) into the Callback-Signatures. 
However, there are some challenges in doing that with closed source device drivers. 
Specifically, in order to realize that se.action is important, one can get hints from 
how foo works, but without source code, it is non-trivial to figure out that foo in-
vokes se.action. Another possibility is to use the type information of se (e.g., 
struct S) to know that its “action” field is a function pointer and such information 
can be derived from the type of KQ request data fields (e.g., qe.data); unfortunately, 
this is often not  possible  because  the  data  fields of  KQ  requests  are often  generic 



 
Fig. 3.  Illustration of a False Negative Caused by a Callback-Signature that Only Includes the 
Shaded Fields. The two KQ requests have different executions (i.e., bar_one vs bar_two), 

but their Callback-Signatures are the same. Here bar_two is a malicious function. 

pointers (i.e., void *); in that case, one cannot figure out the type of se easily if it 
resides in a closed source device driver. Therefore, in order to support closed source 
device drivers, our KQ defense assumes that: 

Kernel data reachable from KQ requests (e.g., se.action) can be identified and it 
has integrity in both the training and the production environments (i.e., changing of 
this field from bar_one to bar_two is prohibited by some other security measures).  

To avoid “reinventing the wheel”, we note that techniques such as KOP [7] can 
correctly locate kernel data such as se.action despite the existence of generic poin-
ters, and techniques such as HookSafe [36] can prevent malware from tampering with 
invariant function pointers in legitimate kernel data structures, such as se.action. 
Moreover, both KOP and HookSafe can be used to cover even “deeper” kernel data 
such as be in Fig. 3. Note that the inclusion of qe.data in the Callback-Signature is 
very critical because it ensures that if qe can pass the check performed by KQguard, 
se is a legitimate kernel data structure, and thus its “action” field can be protected by 
HookSafe (HookSafe is designed to protect only legitimate kernel data structures). 

Note that HookSafe cannot be an alternative defense against KQ injection attacks 
from the top level (e.g., by ensuring that “func” and “data” fields in Fig. 3 are not 
tampered with) for two reasons. First, not all top-level KQ request data structures are 
legitimate because malware can allocate and insert its own KQ request data structure. 
Second, not all top-level legitimate KQ request data structures are invariant (i.e., their 
values do not change) but HookSafe can only protect invariant kernel data. We have 
observed multiple cases in the APC queue of the WRK in which top-level legitimate 
KQ requests change their values during normal execution. For example, IopfCom-
pleteRequest (in WRK\base\ntos\io\iomgr\iosubs.c) inserts an APC request with 
callback function IopCompleteRequest (in WRK\base\ntos\io\iomgr\internal.c); 
when this APC request is dispatched (i.e., IopCompleteRequest is invoked), its 
callback function field is changed to IopUserCompletion before it is inserted back 
to the APC queue. 

To summarize the above discussion, (1) we need to support closed source device 
drivers, (2) we need a way to defend against KQ injection attacks from the top level, 
and (3) techniques are available to guard deeper kernel data reachable from KQ re-
quests. Based on these three observations, in this paper we choose a Callback-
Signature format that focuses on KQ request level (the top level) characteristics: 



(callback_function, callback_parameters, insertion_path, allocation). Here call-
back_function is the callback function pointer stored in a KQ request, call-
back_parameters represents the relevant parameters stored in it, insertion_path 
represents how the KQ request is inserted (by which driver? along which code path?), 
and allocation represents how its memory is allocated (global, heap, or stack? by 
which driver?). 

Each characteristic in our Callback-Signature is important for effective KQ guard-
ing. callback_function is used to protect the kernel against callback-into-malware 
attacks, and both callback_function and callback_parameters are used to protect the 
kernel against callback-into-libc attacks (Section 2.2). Furthermore, insertion_path 
and allocation provide the context of the KQ request and thus can also be very useful. 
For example, if KQguard only checks callback_function and callback_parameters, 
malware can insert an existing and legitimate KQ request object LKQ if it can some-
how benefit from the dispatching of LKQ (e.g., resetting a watchdog timer). 

To ensure that the signature matching of a KQ request observed during the produc-
tion use and one observed during the training can guarantee the same execution, we 
need to make sure that the code and static data of the core kernel and legitimate de-
vice drivers have integrity in the production environment. We also need to ensure that 
malware cannot directly attack KQ guards, including their code and the EH-Signature 
collection. We can leverage a hypervisor (e.g., Xen) to satisfy the above requirements. 
The idea is to run the modified kernel (with KQ guards) on top of a hypervisor and 
extend the shadow-based memory management of the hypervisor to write-protect 
code and static data of the modified kernel [37]. Note that this protection covers KQ 
guards and the EH-signature collection because they are part of the modified kernel.  
3.5 Generation of Callback-Signatures from KQ Requests 

In both EH-Signature collection (Section 3.2) and KQ request validation (Section 
3.3), Callback-Signatures need to be derived from raw KQ requests. This is called 
Callback-Signature generation and we discuss the details in this subsection. 
3.5.1 Motivation for Delinking  

As we discuss in Section 3.4, a Callback-Signature is a tuple (callback_function, 
callback_parameters, insertion_path, allocation). Since callback_function and call-
back_parameters correspond to fields in KQ requests (e.g., the “func” field of qe in 
Fig. 3), it seems that we can simply copy the value of those fields into a Callback-
Signature. However, when a Callback-Signature contains a memory reference (e.g., a 
parameter that points to a heap object), we have to overcome one challenge: namely, 
what the KQ loggers and the KQ guards can directly observe is an absolute memory 
address; however, the absolute addresses of the same variable or function can be dif-
ferent in the training and production environments, for example, when they are inside 
a device driver that is loaded at different starting addresses in the two environments. 
Therefore, if we use absolute addresses in the Callback-Signatures, there will not be a 
match for the same callback function, which results in false positives. 

In order to resolve this issue, we raise the level of abstraction for memory refer-
ences in the Callback Signatures so that variations at the absolute address level can be 
tolerated. For example, we translate a callback function pointer (absolute address) into 



a unique module ID, plus the offset relative to the starting address of its containing 
module (usually a device driver, and we treat the core kernel as a special module). 
Under the assumption that the kernel maintains a uniform mapping of module loca-
tion to module ID, the pair (module ID, offset) becomes an invariant representation of 
the callback function pointer independent of where the module is loaded. This kind of 
translation is called delinking. 
3.5.2 Details of Delinking  

KQguard delinks memory references (i.e., pointers) in different ways depending on 
the allocation type of the target memory. As Fig. 4 shows, there can be three types of 
allocations: global variable, heap variable, and local variable. 

The pointer to a global variable is translated into (module ID, offset), in the same 
way as the callback function pointer (Section 3.5.1). There can be two kinds of global 
variables depending on whether they reside in a device driver inside the kernel or in a 
user-level library (e.g., a DLL on Windows). We care about user-level global va-
riables because some KQ parameters reference user-level memory (e.g., the APC 
queue on Windows). We regard device drivers and user-level libraries uniformly as 
modules and we modify the appropriate kernel functions to keep track of their address 
ranges when they are loaded (e.g., PspCreateThread for DLLs). 

The pointer to a heap object is translated into a call stack that corresponds to the 
code path that originates from a requester (e.g., a device driver) and ends in the allo-
cation of the heap object. We use a call stack rather than the immediate return address 
because the immediate return address may not be in the requester’s address space 
(i.e., it may be in some wrapper function for the heap allocation function and the re-
quester can call a function at the top of the call chain to allocate a heap object). Since 
most kernels do not maintain the request call stack for allocated heap objects, we 
instrument their heap allocator functions to collect such information, and the instru-
mentation is called Heap ID Tracker in Fig. 2. Specifically, the Heap ID Tracker tra-
verses the call stack frames backwards until it reaches a return address that falls with-
in the code section of a device driver or it reaches the top of the stack; if no device 
driver is found during the traversal, the core kernel is used as the requester; all return 
addresses encountered during this traversal are part of the call stack, and each of them 
is translated into a  (module ID, offset)  pair,  in the same way as the callback function  

 

Fig. 4. Illustration of Different Allocation Types of Pointers: (a) Heap Variable, (b) Global 
Variable, (c) Local Variable 



pointer discussed in Section 3.5.1. Similar to global variables, our delinking supports 
two types of heap objects: kernel-level and user-level. 

The pointer to a local variable is translated into a pair (call_stack, l_offset). The 
call stack starts in a function where a KQ request is inspected (e.g., in a KQ insertion 
function), and it stops in the function that contains the local variable (e.g., L in func-
tion foo in Fig. 4.c).Each return address encountered during the traversal is translated 
into a (module ID, offset) pair. Finally, l_offset is the relative position of the local 
variable in its containing stack frame. For example, if [ebp-8] is used to represent the 
local variable, l_offset is 8. We have not observed any pointers to user-level local 
variables, so we do not cover the translation for pointers to user-level local variables. 

Because the static type of a KQ request data (e.g., the “data” field of a soft timer 
request structure) is often a generic pointer (i.e., void *), we have to detect its actual 
type at runtime. Given the raw value of a piece of KQ request data, we run a series of 
tests to decide the suitable delinking for it if it is considered a pointer. First, we test 
whether the raw value falls within the address range of a loaded driver or a user-level 
library to decide whether it should be delinked as a pointer to a global variable. If the 
test fails, we test whether it falls within the address range of an allocated heap object 
to decide whether it should be delinked as a pointer to a heap variable. If this test also 
fails, we test whether it falls within the address ranges of the stack frames to see 
whether it should be delinked as a pointer to a local variable. If this test still fails, we 
determine the KQ data to be a non-pointer, and no delinking is performed. 
3.6 Automated Detection of KQs 

Since every KQ can be exploited by malware (part of the attack surface), we need 
to build the EH-Signatures for all of KQs. But before we can guard a KQ, we must 
first know its existence. Therefore, we design and implement a KQ discovery tool that 
automates the process of finding KQs in a kernel by analyzing its source code. Since 
kernel programmers are not intentionally hiding KQs, they usually follow similar 
programming patterns that our tool uses effectively: 

- A KQ is typically implemented as a linked list or an array. In addition to in-
sert/delete, a KQ has a dispatcher that operates on the corresponding type.  

- A KQ dispatcher usually contains a loop to act upon all or a subset of queue ele-
ments. For example, pm_send_all in Fig. 5 contains the dispatcher loop for the 
Power Management Notification queue of Linux kernel 2.4.32. 

- A KQ dispatcher usually changes the kernel control flow, e.g., invoking a call-
back function contained in a queue element. 

Based on the above analysis, the KQ discovery tool recognizes a KQ in several 
steps.  It  starts by detecting  a loop that  iterates  through  a  candidate  data  structure. 
/* linux-2.4.32/kernel/pm.c */ 
int pm_send_all (pm_request_t rqst, void *data) 
{      …… 
 entry = pm_devs.next; 
 while (entry != &pm_devs) { 
   struct pm_dev *dev=list_entry(entry, struct pm_dev, entry);
   if (dev->callback) { 
     int status = pm_send(dev, rqst, data); 

       ……} 
    entry = entry->next;   } 
……} 
int pm_send(struct pm_dev *dev, 
pm_request_t rqst, void *data) 
{…… 
   status = (*dev->callback)(dev, rqst, 
data);……} 

Fig. 5. Details of the Power Management Notification Queue on Linux Kernel 2.4.32 



Then it checks whether a queue element is derived and acted upon inside the loop. 
Next, our tool marks the derived queue element as a taint source and performs a flow-
sensitive taint propagation through the rest of the loop body; this part is flow-sensitive 
because it propagates taint into downstream functions through parameters (e.g., dev 
passed from pm_send_all to pm_send in Fig. 5).  During the propagation, our tool 
checks whether any tainted function pointer is invoked (e.g., dev->callback in 
pm_send in Fig. 5), and if that is the case, it reports a candidate KQ. Due to space 
constraints we omit further details, but the results (e.g., KQs found in WRK) are in-
teresting and discussed in Section 4. 

4 Implementations of KQguard 
The KQguard design (Section 3) is implemented on the WRK and Linux (kernel 

version 3.5). Due to space constraint, we only present our implementation on the 
WRK, which consists of about 3,900 lines of C code and 2,003 lines of Objective 
Caml code. 

Construction of Callback-Signatures in WRK. In order to collect the Callback-
Signatures for the 20 KQs in the WRK, we instrument the kernel in two sets of func-
tions. The first set of functions initialize, insert, or dispatch KQs and our instrumenta-
tion consists of 600 lines of C code. To support delinking of Callback-Signatures, we 
instrument the device driver loader function (IopLoadDriver) and the thread crea-
tion function (PspCreateThread), and we also instrument heap allocation or deallo-
cation functions (ExAllocatePoolWithTag, ExFreePool, NtAllocateVirtual-
Memory, and NtFreeVirtualMemory) to keep track of the address ranges of allo-
cated heap memory blocks and the call stack to the heap allocation function. Our in-
strumentation of the heap allocator / deallocator consists of 800 lines of C code.  

Automated Detection of KQs for the WRK. We implement the KQ discovery al-
gorithm (Section 3.6) based on static source code analysis, using the C Intermediate 
Language (CIL) [22]. Our implementation consists of 2,003 lines of Objective Caml 
code. We applied the KQ discovery tool to the WRK source code (665,950 lines of 
C), 20 KQs were detected (seven of them are mentioned in Table 1 and the rest can be 
found in [38]), and they include all the KQs that we are aware of, which suggests the 
usefulness of our KQ discovery algorithm. However, whether these 20 KQs cover all 
KQs in the WRK is an interesting and open question.  

Callback-Signature Collection Management. We developed a set of utility func-
tions to manage the Callback-Signatures, including the EH-Signatures. These func-
tions support the generation, comparison, insertion, and search of Callback-
Signatures. They are implemented in 2,200 lines of C code. 

Validation of Callback-Signature in WRK. We instrument the dispatcher of 
every identified KQ in the WRK in the production environment so that the dispatcher 
checks the legitimacy of a pending KQ request before invoking the callback function 
(Section 3.3). Our instrumentation consists of about 300 lines of C code. 

5 Evaluation of KQguard in WRK 
Due to space constraints, we only report the evaluation results of the WRK imple-

mentation of KQguard in this section. We evaluate both the effectiveness and effi-



ciency of KQguard through measurements on production kernels. By effectiveness we 
mean precision (whether it misidentifies the attacks found, measured in false posi-
tives) and recall (whether it misses a real attack, measured in false negatives) of KQ-
guard when identifying KQ injection attacks. By efficiency we mean the overhead 
introduced by KQguard. In both the training and the production systems used in our 
evaluation, the hardware is a 2.4 GHz Intel Xeon 8-Core server with 16 GB of RAM, 
and the operating system is Windows Server 2003 Service Pack 1 running the WRK. 
5.1 Real-World KQ Injection Attacks 

We start our evaluation of KQguard effectiveness by testing our WRK implemen-
tation (Section 4) against real-world KQ injection attacks in Windows OS. Since 
malware technology keeps advancing, we focus on the most recent and the most in-
fluential malware samples that represent the state of the art. Specifically, we chose 
125 malware samples from the top 20 malware families [40] and the top 10 botnet 
families [41]. These samples are known to have KQ injection behaviors. 

Overall, our test confirmed that 98 samples inject the APC queue, 34 samples in-
ject the DPC queue, 32 samples inject the load image notification queue, 20 samples 
inject the process creation/deletion notification queue, four samples inject the file 
system registration change queue, four samples inject the registry operation notifica-
tion queue, and two samples inject the system worker thread queue. 

Table 1 reports the results of 10 representative spam bot samples. We started with 
malware with reported KQ injection attacks, which are marked with a “√” with cita-
tion. We were able to confirm some of these attacks, shaded in gray. The rows with 
shaded “√” without citations are confirmed new KQ injection attacks that have not 
been reported by other sources. For example, Rustock.J injects an APC request with a 
callback function at address 0xF83FE316, which falls within the address range of a 
device driver called msliksurserv.sys that is loaded by Rustock.J; this APC request 
raises an alarm because it does not match any of the EH-Signatures we have collected. 

For all the malware that we were able to activate (the Rustock.C sample failed to 
run in our test environment), we confirmed the reported KQ injection attacks, except 
for the Duqu attack on load  image  notification  queue  and Storm on the APC queue. 

Table 1. Known KQ Injection Attacks in Representative Malware 

           KQ 
Malware 

Timer/ 
DPC 

Worker 
Thread  

Load 
Image 

Create 
Process APC FsRegistration

Change 
RegistryOp
Callback 

Rustock.C √ [2, 18]   √ [27] √ [27]   
Rustock.J   √ √ √   
Pushdo √   √ [10] √ √ [10] √ [10] 
Storm √  √  [4]  √ [23]   
Srizbi √    √   
TDSS   √  √ √  
Duqu √  √ [16]  √   
ZeroAccess √ √ [11]   √ [11]  √ 
Koutodoor √   √    
Pandex     √   
Mebroot √       



The Rustock samples show that malware designers have significant ability and flex-
ibility in injecting different KQs. Concretely, Rustock.J has stopped using the timer 
queue, which Rustock.C uses, but Rustock.J started to use the load image notification 
queue, which Rustock.C does not. This may have happened to Duqu’s attack on the 
same queue, or Duqu does not activate the attack on load image notification queue 
during our experiment. Overall, our evaluation indicates that KQguard can have a low 
false negative rate because it detects all except two of the KQ injection attacks by 125 
real-world malware samples. 
5.2 Protection of All KQs  

In addition to real world malware, we create synthetic KQ injection attacks for two 
reasons. First, nine KQs have maximum queue length of zero during the testing in 
Section 5.1, suggesting that malware is not actively targeting them for the moment; 
however, the Rustock evolution shows that malware writers may consider such KQs 
in the near future, so we should ensure that guards for such KQs work properly. 
Second, the malware analyzed in Section 5.1 belongs to the callback-into-malware 
category. Although there have been no reports of callback-into-libc attacks in the 
wild, it is important to evaluate the effectiveness of KQ-guard for both kinds of at-
tacks. Therefore, for completeness, we developed test Windows device drivers for 
each of the KQs  that have not been called and we have confirmed that our KQ de-
fense can detect all the test drivers, which suggests that our defense is effective 
against potential and future KQ injection attacks. 
5.3 False Alarms 

We have experimentally confirmed that it is possible to reduce the false positives 
of KQ guarding to zero. This is achievable when the training workload is comprehen-
sive enough to produce the full EH-Signature collection. 

We first collect EH-Signatures on a training machine with Internet access. We re-
peatedly log in, run a set of normal workload programs, and log off. In order to trigger 
all possible code paths that insert KQ requests, we actively do the above for fifteen 
hours. During this process, we gradually collect more and more EH-Signatures until 
the set does not grow. At the end of training, we collect 813 EH-Signatures. The set of 
workload programs include Notepad, Windows Explorer, WinSCP, Internet Explorer, 
7-Zip, WordPad, IDA, OllyDbg, CFF Explorer, Sandboxie, and Python. 

Next we feed the collected EH-Signatures into a production machine with KQ 
guarding and use that machine for normal workloads as well as the KQ injection 
malware evaluation and the performance overhead tests. During such uses, we ob-
serve zero false alarms. The normal workload programs include the ones mentioned 
above as well as others such as Firefox not used in training. 

While the experimental result appears encouraging, we avoid making a claim that 
dynamic analysis can always achieve zero false positives. For example, the APC 
queue has 733 EH-Signatures, such EH-Signatures have 14 unique callback functions, 
and the most popular callback function is IopCompleteRequest, occurring in 603 
EH-Signatures. While these 603 EH-Signatures share the same callback function, 
their insertion paths originate from 51 device drivers, two DLLs, and the core kernel, 
so the average number of EH-Signatures per requester (e.g., a device driver) is 11, 



and the largest number is 45 (from the driver ntfs.sys). This result implies that there 
can be potentially many code paths within a driver that can prepare and insert an APC 
request with the same callback function, which may or may not be triggered in our 
training. Moreover, there are in total 199 device drivers in our evaluation system, but 
our training only observes a subset of them (e.g., 51 in terms of IopCompleteRe-
quest); so some legitimate KQ requests from the remaining drivers may be triggered 
by events such as inserting a USB device, which we have not tested yet. Fortunately, 
our experience suggests that it is possible to collect the set of EH-Signatures that fits 
the configuration and usage of a given system with enough training workloads. 
5.4 Performance Overhead 

We evaluate the performance overhead of KQguard in two steps: microbenchmarks 
and macrobenchmarks. 

For the first step, we measure the overhead of KQguard validation check and heap 
object tracking. KQguard validation check matches Callback-Signatures against the 
EH-Signature Collection, and its overhead consists of matching the four parts of a 
Callback-Signature. Heap object tracking affects every heap allocation and dealloca-
tion operation (e.g., ExAllocatePoolWithTag and ExFreePool). These heap op-
erations are invoked at a global level, with overhead proportional to the overall sys-
tem and application use of the heap. Specifically, we measure the total time spent in 
performing 1,000 KQguard validation checks for the DPC queue and the I/O timer 
queue, two of the most active KQs. The main result is that global heap object tracking 
during the experiment dominated the KQguard overhead. Specifically, DPC queue 
validation consumed 93.7 milliseconds of CPU, while heap object tracking consumed 
8,527 milliseconds. These 1,000 DPC callback functions are dispatched over a time 
span of 250,878 milliseconds (4 minutes 11 seconds). Therefore, the total CPU con-
sumed by our KQguard validation for DPC queue and the supporting heap object 
tracking is 8,620.7 milliseconds (or about 3.4% of the total elapsed time). The mea-
surements of the I/O timer queue (180 ms for validation, 11,807 ms for heap object 
tracking, and 345,825 ms total elapsed time) confirm the DPC queue results. 

For the second step, Table 2 shows the results of five application level benchmarks 
that stress one or more system resources, including CPU, memory, disk, and network. 
Each workload is run multiple times and the average is reported. We can see that in 
terms of execution time of the selected applications, KQguard incurs modest elapsed 
time increases, from 2.8% for decompression to 5.6% for directory copy. These 
elapsed time increases are consistent with the microbenchmark measurements, with 
higher or lower heap activities as the most probable cause of the variations. We also 
run the PostMark file system benchmark and the  PassMark  PerformanceTest  bench- 

Table 2. Performance Overhead of KQ Guarding in WRK 

Workload Original (sec) KQ Guarding (sec) Slowdown 
Super PI [33] 2,108±41 2,213±37 5.0% 
Copy directory (1.5 GB) 231±9.0 244±15.9 5.6% 
Compress directory (1.5 GB) 1,113±24 1,145±16 2.9% 
Decompress directory (1.5 GB) 181±4.1 186±5.1 2.8% 
Download file (160 MB) 145±11 151±11 4.1% 



mark and see similar overhead (3.9% and 4.9%, respectively). 

6 Related Work 
In this section, we survey related work that can potentially solve the KQ injection 

problem and satisfy the four design requirements: efficiency, effectiveness, extensibil-
ity, and inclusiveness (Section 2.3).  

SecVisor [29] and NICKLE [28] are designed to preserve kernel code integrity or 
block the execution of foreign code in the kernel. They can defeat callback-into-
malware KQ attacks because such attacks require that malicious functions be injected 
somewhere in the kernel space. However, they cannot detect callback-into-libc attacks 
because such attacks do not inject malicious code or modify legitimate kernel code. 
HookSafe [36] is capable of blocking the execution of malware that modifies legiti-
mate function pointers to force a control transfer to the malicious code. However, 
HookSafe cannot prevent KQ injection attacks because they do not modify existing 
and legitimate kernel function pointers but instead supply malicious data in their own 
memory (i.e., the KQ request data structures). CFI [1] can ensure that control transfers 
of a program during execution always conform to a predefined control flow graph. 
Therefore, it can be instantiated into an alternative defense against KQIs that supply 
malicious control data. However, CFI cannot defeat the type of KQI attacks that 
supply malicious non-control data because they do not change the control flow. 
SBCFI [25] can potentially detect a callback-into-malware KQ attack. However, 
SBCFI is designed for persistent kernel control flow attacks (e.g., it only checks pe-
riodically) but KQ injection attacks are transient, so SBCFI may miss many of them. 
Moreover, SBCFI requires source code so it does not satisfy the inclusiveness re-
quirement. IndexedHooks [19] provides an alternative implementation of CFI for the 
FreeBSD 8.0 kernel by replacing function addresses with indexes into read-only 
tables, and it is capable of supporting new device drivers. However, similar to SBCFI, 
IndexedHooks requires source code so it does not satisfy the inclusiveness require-
ment. PLCP [37] is a comprehensive defense against KQ injection attacks, capable of 
defeating both callback-into-malware and callback-into-libc attacks. However, PLCP 
does not satisfy the inclusiveness requirement due to its reliance on source code. 

7 Conclusion 
Kernel Queue (KQ) injection attacks are a significant problem. We test 125 real 

world malware attacks [2,4,10,11,14,16,18,23,27]  and nine synthetic attacks to cover 
20 KQs in the WRK. It is important for a solution to satisfy four requirements: effi-
ciency (low overhead), effectiveness (precision and recall of attack detection), exten-
sibility (accommodation of new device drivers) and inclusiveness (protection of de-
vice drivers with and without source code). Current kernel protection solutions have 
difficulties with simultaneous satisfaction of all four requirements.  

We describe the KQguard approach to defend kernels against KQ injection attacks. 
The design of KQguard is independent of specific details of the attacks. Consequent-
ly, KQguard is able to defend against not only known attacks, but also anticipated 
future attacks on currently unscathed KQs. We evaluated the WRK implementation of 
KQguard, demonstrating the effectiveness and efficiency of KQguard by running a 
number of representative application benchmarks. In effectiveness, KQguard achieves 



very low false negatives (detecting all but two KQ injection attacks in 125 real world 
malware and nine synthetic attacks) and zero false positives (no false alarms after a 
proper training process). In performance, KQguard introduces a small overhead of 
about 100 microseconds per validation and up to about 5% slowdown for resource-
intensive application benchmarks due to heap object tracking. 
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