CHAPTER

% InheritanceAndLateBinding.mkr Page 169 Wednesday, October 20, 1999 101 AM

4 Inheritance

As mentioned in Chapter 2, an important goal of object-oriented programmingis
code reuse. Just as engineers use amponents over and over in their designs, pro-
grammers shoud be ale to reuse objects rather than repeatedly reimplementing
them. In Chapter 3 we saw one mecdhanism for reuse provided by C++, the tem-
plate. Templates are appropriate if the basic functionality of the ade istype inde-
pendent. The other mechanism for code reuse is inheritance. Inheritance al ows
us to extend the functionality of an olject; in other words, we can create new
types with restricted (or extended) properties of the original type. Inheritance
goes along way toward our goal for code reuse.
In this chapter, we will see

» General principles of inheritance and the related objed-oriented concept
of palymorphism

» How inheritance isimplemented in C++

» How acollection of classes can be derived from asingle abstrad class

» How run-time binding decisions, rather than compile time linking deci-
sions, can be made for these dasses

4.1 What is Inheritance?

Inheritanceis the fundamental objed-oriented principle that is used to reuse code
among related classes. Inheritance models the IS-A relationship. In an IS-A rela
tionship, we say the derived classis a (variation d the) base dass For example, a
Circle IS-A Shape anda Car IS-A Vehicle. However, an Ellipse IS-NOT-A Cir-
cle. Inheritance relationships form hierarchies. For instance, we an extend Car
to ather classes, since aForeignCar IS-A Car (and pays tariffs) and a Domestic-
Car IS-A Car (and does not pay tariffs), and so on.

Another type of relationship is a HAS A (or IS COMPOSED-OF) relation-
ship. Thistype of relationship does not passessthe properties that would be natu-
ral in an inheritance hierarchy. An example of aHAS-A relationship is that a ca
HAS-A steering wheel. Generally, HAS-A relationships sould na be modeled
by inheritance. Instead, they shoud use the technique of composition, in which
the mmponents are simply made private data fields.

<

In an IS-A relation-
ship, we say the de-
rived class is a (vari-
ation of the) base
class.

In a HAS-A relation-
ship, we say the de-
rived class has a (in-
stance of the) base
class. Composition
is used to model
HAS-A relationships.

P

InheritanceAndLateBinding.mkr Page 170 Wednesday, October 20, 1999 101 AM

The C++ language itself makes some use of inheritance in implementing its
classlibraries. Two examples are exceptions and fil es:

» Exceptions. C++ defines, in <st dexcept >, theclass
except i on.There ae severa kinds of exceptions, including
bad _al | oc andbad_cast . Figure4.1illustrates some of the dassesin
theexcept i on hierarchy. We will explain the diagram shortly. Eac of
the clasesisaseparate class but for all of them, thewhat method can be
used to return a (primitive) string that details an error message.

* |/O. Asweseein Figure 4.2, the streans hierarchy (i st r eam
i fstream etc.) usesinheritance The streams hierarchy is also more
complex that what is shown.

In addition, systems such as Visual C++ and Borland CBuilder provide class
libraries that can be used to design graphical user interfaces (GUIs). These, librar-
ies, which define mmponents such as buttons, choicelists, text-areas, and win-
dows, (al in different flavors), make heavy use of inheritance

In all cases, the inheritance models an IS-A relationship. A button IS-A com-
ponent. A bad_cast ISA exception.AnifstreamISAistream(but
not viceversal). Because of the IS-A relationship, the fundamental property of
inheritance guarantees that any method that can be performed byi st r eamcan
also beperformed by i f streamandani f st r eamobject can aways be refer-
enced byani st r eamreference Note that the reverse is not true. Thisiswhy I/
O operations are dways writtenintermsof i st r eamandost r eam

range_error
runtime_error

i

underfl ow_error

bad_cast
- -

exception

‘\‘\ bad_al | oc
P i nval i d_argunent

| ogi c_error

\ donmai n_error

Figure 4.1 Part of the exc eption hierarchy

P

InheritanceAndLateBinding.mkr Page 171 Wednesday, October 20, 1999 101 AM

What is Inheritance?

i stringstream

i stream
/ \i fstream
fstream
. i ostream -
o /) stringstream
\ ostringstream

A
- of stream

A

ostream

Figure 4.2 Part of the streams hierarchy

As a seoond example, since what isamethod available in the excepti on
class if we need to catch exceptions defined in Figure 4.1 using a cat ch han-
dier, we can aways writel:

catch(c onste xception&e){c out< < e.what()< < endl;}

If e referencesabad_cast objed, the cdl to e. what () makes ®nse. Thisis
becaise an exc ept i on objed suppats the what method andabad_cast
IS-A exceptio n, meaningthat it suppats at least as much as exc ept i on.
Depending on the drcumstances of the dass hierarchy, the what method could
be invariant or it could be specialized for each dfferent class When amethod is
invariant over a hierarchy, meaning it always has the same functionality for all
classs in the hierarchy, we avoid having to rewrite an implementation of a dass
method.

The cdl to what also illustrates an important objed-oriented principle
known as polymorphism. A reference variable that is polymorphic can reference
objeds of several different types. When operations are gplied to the reference,
the operation that is appropriate to the actua referenced objed is automatically
seleded. The same is true for pointer variables (remember that a reference really
is a painter). In the cae of an excepti on reference a runtime dedsion is
made: thewhat methodfor the objed that e adually references at run-time isthe
onethat isused. Thisisknown as dynamic binding or late binding. Unfortunately,
although dyramic binding is the preferred behavior, it is not the default in C++.
Thislanguage flaw leads to complications.

A polymorphic vari-
able can reference
objects of several
different types.
When operations
are applied to the
polymorphic vari-
able, the operation
appropriate to the
referenced object
is automatically
selected.

1. Exceptions are handled bytry/catch biocks. Anill ustration of the syntax isin Figure 4.7 on page 177. Code
that might throw the exception is placed in atry block. The exception is handled in a catch block. Sincethe
exception objed is passed into the cach block, any public methods defined for the exception oljed can be

used onit and any public data defined in the exception objed can be examined.

<

P

InheritanceAndLateBinding.mkr Page 172 Wednesday, October 20, 1999 101 AM

Inheritance allows
us to derive classes
from a base class
without disturbing
the implementa-
tion of the base
class.

Each derived class
is a completely
new class that
nonetheless has
some compatibility
with the class from
which it was de-
rived.

If X IS-A'Y, then Xis
a subclass of Yand
Yis a superclass of
X. These relation-

ships are transitive.

In inheritance, we have abase class from which other classes are derived.
The base dassis the dass on which the inheritance is based. A derived class
inherits al the properties of a base dass meaning that al public methods avail-
able to the base dassbecome public methods, with identical implementations for
the derived class It can then add dota members and additional methods and
change the meaning o the inherited methods. Each derived classis a ammpletely
new class However, the base classis completely unaffeded by any changes that
are made in the derived class Thus, in designing the derived class it is imposs-
ble to bred the base class This greatly simplifies the task of software mainte-
nance

A derived classis type cmpatible with its base dass meaning that a refer-
ence variable of the base dass type may reference an objed of the derived class
but not vice versa (and similarly for pointers). Sibling classes (that is, classes
derived from a common clasg are not type compatible.

Asmentioned ealier, the use of inheritancetypically generates a hierarchy of
classs. Figure 4.1 illustrated a small part of the except i on hierarchy. Notice
that range_error is indirectly, rather than dredly, derived from
except i on. Thisfad istransparent to the user of the dasses because IS-A rela-
tionships are transitive. In other words, if X ISA YandY ISA Z then X ISA
Z. Theexcept i on hierarchy illustrates the typica design issues of factoring out
commonalities into base classes and then spedalizing in the derived classs. In
this hierarchy, we say that the derived classis a subclass of the base dassand the
base dassis a superclass of the derived class These relationships are transitive.

The arows in the hierarchy diagrams reflect the modern convention o point-
ing toward the top (or root) of the hierarchy. The stream hierarchy illustrates
some fancier design dedsions. Among other things, commonality among
i st reamand ost r eamis fadored out and placed ini 0s. Also, i ost ream
inherits from both i st r eamand ost r eam illustrating multiple inheritance.

The next few sedions examine some of the followingisaes:

* What isthe syntax used to derive anew classfrom an existing base dass?
» How does this affed public or private status?
* How do we specialize amethod?

» How do we fador out common diff erences into an abstract class and then
create ahierarchy?

* How do we specify that dynamic binding should be used?

» Canwe and should we derive anew classfrom more than ore dass(multi-
pleinheritance)?

% InheritanceAndLateBinding.mkr Page 173 Wednesday, October 20, 1999 101 AM

4.2

Inheritance Basics 173

Inheritance Basics

Recall that a derived class inherits all the properties of a base dass It can then
add data members, disable functions, alter functions, and add new functions.
Each derived classis a mmpletely new class. A typicd layout for inheritanceis
shown in Figure 4.3. C++ tokens are set in boldface. The form of inheritance
described here and used almost exclusively throughout the text is public inheri-
tance. Note caefully that the word publ i ¢ after the wlon online 1 signifies
public inheritance. Without it, we have private inheritance, which is not what we
want, because only puHic inheritance models an |S-A relationship. Let us briefly
describe aderived class

Generally al datais private, so wejust add additional data membersin the
derived classby spedfying them in the private sedion.

Any base dassmember functionsthat are not specified in the derived class
are inherited unchanged, with the following exceptions: constructor,
destructor, copy constructor, and operator=. For those the typicad defaults
apply, with the inherited portion considered as a member. Thus by default
a apy constructor is applied to the inherited pation (considered asasin-
gle entity) and then member by member. We will be more spedficin Sec
tion4.2.6.

Any base classmember functionthat is declared in the derived class pri-
vate sedion is disabled in the derived class?

Any base classmember function that is declared in the derived class pub-
lic sedion requires an overriding definition that will be goplied to objeds
of the derived class.

Additional member functions can be alded in the derived class

Public inheritance
models an IS-A rela-
tionship.

The derived class in-
herits all member
functions from the
base class. It may
accept them, disal-
low them, or rede-
fine them. Addition-
ally, it can define
new functions.

2 Thisisbad style, because it violates the IS-A relationship: The derived classcan no longer do everything that
the base class can.

<

% InheritanceAndLateBinding.mkr Page 174 Wednesday, October 20, 1999 101 AM

A protected class
memberis private
to every class
except a derived
class.

1 class Derived: publicBase

2 {

3 /1A nymenberst hata renotl istedarei nheritedu nchanged
4 /e xceptf orc onstructor,d estructor,

5 //c opyc onstructor,a ndo perator=

6 publi c:

7 /1C onstructors,a ndd estructorsi fd efaultsarenotg ood
8 /1B asemenberswhosed efinitionsaret oc hangei nDerived
9 /1A dditionalp ublicmenberf unctions

10 private:

1 /1A dditionald atamenbers(generallyp rivate)

12 /1A dditionalp rivatemenberf unctions

13 /1B asemenberst hats houldb edisabledi nDerived

14 };

Figure 4.3 General layout of public inheritance

4.2.1 Visibility Rules

We know that any member that is dedared with private visibility is accessible
only to methods of the dass. Thus any private members in the base dass are not
accesdble to the derived class

Occasionally we want the derived classto have acessto the base dassmem-
bers. There are several options. Thefirst isto use public acces However, public
accessallows aacessto ather classesin addition to derived classes. We could use
afriend declaration, but thisis also poa design and would require friend dedara-
tionfor each derived class

If we want to allow accessto only derived classes, we can make members
protected. A protected class member is private to every class except a derived
class Dedaring dita members as proteded or public violates the spirit of encap-
sulation and information hding and is generaly dore only as a matter of pro-
gramming expediency. Typicdly, a better aternative is to write acceor and
mutator methods. However, if a protected dedaration allows you to avoid convo-
luted code, then it is not unreasonable to use it. In this text, proteded data mem-
bers are used for precisely this reason. Using proteded methods is also done in
thistext. This allows a derived classto inherit an internal method without making
it accessble outside the dasshierarchy. Figure 4.4 shows the visibility of mem-
bersin certain situations.

Public inheritance situation Public P’°‘§°'e Private
Base class member function accessing M Yes Yes Yes

Figure 4.4 Access rules that depend on what M ’s visibility is in the base
class

<

InheritanceAndLateBinding.mkr Page 175 Wednesday, October 20, 1999 101 AM

P

Inheritance Basics 175

Public inheritance situation Public P’°'§°'e Private
Derived class member function accessing Yes Yes No
mai n, accessing B.M Yes No No
mai n, accessing D.M Yes No No
Derived class member function accessing Yes No No
Bis an object of the base class; D is an object of the publicly derived class; M is
a member of the base class.

Figure 4.4 Access rules that depend on what M s visibility is in the base

class

4.2.2 The Constructor and Base Class Initialization

Ead derived class $iould defineits constructors. If no constructor iswritten, then
asingle zeo-parameter default constructor is generated. This constructor will cdl
the base classzero-parameter constructor for the inherited pation and then apply
the default initialization for any additional data members.

Constructing a derived classobjed by first constructing the inherited partion
is dandard pradice. In fad, it is done by default, even if an explicit derived class
constructor is given. This is natural because the encapsulation viewpaint tells us
that the inherited portion is a single entity, and the base classconstructor tells us
how to initialize this sngle entity.

Base dassconstructors can be explicitly cdled by its name in the initializer
list. Thus the default constructor for aderived classisin redity

publicD erived():B ase()

{
}

1 classUnderfl owException:p ublicu nderflow error
2 {

3 public:

4 Under f| owException(c onsts tring&msg=" ")
5 ;e xception(msg.c_str()){}

6 };

Figure 4.5

Constructor for new exception class Underflow ; uses base

class initializer list

If no constructor is
written, then a sin-
gle zero-parameter
default constructor
is generated that
calls the base class
zero-parameter
constructor for the
inherited portion,
and then applies
the default initializa-
tion for any addi-
tional data fields.

P

InheritanceAndLateBinding.mkr Page 176 Wednesday, October 20, 1999 101 AM

A base-class initial-

izer is used to call

the base class con-

structor,

The base dassinitializer can be cdled with parameters that match a base
class constructor. As an example, Figure 4.5 illustrates a dass
Under f | owExcepti on that could be used when implementing data struc-
tures. Under f | owExcept i on is thrown when an attempt is made to extract
from an empty data structure. An Under f | owExcept i on object is constructed
by providing an optional string. Sincethe under f | ow_err or class pecifica
tion requires a primitive string, we need to use an initializer list. The
Under f| owExcept i on object adds no data members, so the nstruction
method is Smply to construct the inherited portion wing the
under f | ow_error constructor.

If the base dassinitializer is not provided, then an automatic cdl to the base
class constructor with no parameters is generated. If there is no such base dass
constructor, then a cmepiler error results. Thus, this is a case where initializer
lists might be mandatory.

4.2.3 Adding Members

A derived classinherits from its base dassthe behavior of the base dass This
means that all methods defined for the base dassare now defined for the derived
class. In this sedion we examine the consequences of adding extra methods and
data members.

Our vect or classin Section 3.4.2 throws an exception if an ou-of-bounds
index is deteded. It makes no attempt to be fancy, and passes badk no informa-
tion except the fad that an error has occurred. Let us look at an alternative that
could have been used (note that except i on and <st dexcept > arerelatively
new language alditions, which is why we have deded not to use them in the
remainder of the text). The aternative stores information about what went wrong
inside the exception object. It provides accessors to get this information. How-
ever, it still IS‘A excepti on, meaiing that is can be used any place that an
except i on can be used. The new classis sown in Figure 4.6.

Badl ndex has one cnstructor, and three methods (in addition to defaults
for copying and destruction that we ignare for now). The constructor accepts two
parameters. It initializes the inherited except i on portion using a zero-parame-
ter constructor. It then uses the two parameters to store the index that caused the
error and the size of the vector. Presumably, thevect or has code such as:

II'S eeFigure3 .14
Ob ect&o perator[](i nti ndex)

{
if(i ndex<O| |i ndex>=currentSize)
throw Badl ndex(index,s ize())
returnob jects[i ndex] ;
}

% InheritanceAndLateBinding.mkr Page 177 Wednesday, October 20, 1999 101 AM

Inheritance Basics

The threemethods available for Badl ndex areget | ndex, get Si ze, and
what . The behavior of what isunchanged from the except i on class

/1E xanpleo fad erivedc lasst hata ddsn ew menbers.

1

2

3 classB adlndex:p ublice xception
4 {

5 publi c:

6 Badl ndex(i nti dx,i nts z)

7 ci ndex(i dx) ,s ize(s z){}
8

9 intg etlndex()c onst
10 {r eturni ndex;}

11 intg etSize()c onst
12 {r eturnsize;}

13

14 private:

15 inti ndex;

16 ints ize;

17 };

Figure 4.6 Badl ndex class, derived from excepti on

1 //U set heBadl ndexe xception.
2 intm ain()

3 {

4 Newector<int>v (1 0) ;

5

6 try

7 {

8 for(i nti=0 ;i< =v.size() ;i ++) /1o ff-by-one
9 v[i]l=0

10 }

11 catch(c onstB adlndex &e)

12 {

13 cout< <e.what()< <" ,i ndex="< <e.getlndex()
14 <<" ,s ize="< <e.getSize()< <endl;

15 }

16

17 returnO;

18 }

Figure 4.7 Using the BadIlndex class

Besides the new functionality, Badl ndex hastwo data membersin addition
to the data members that are inherited from except i on. What data was inher-
ited from except i on? The answer is, we do not know (unlesswe look at the

<

177

P

InheritanceAndLateBinding.mkr Page 178 Wednesday, October 20, 1999 101 AM

The derived class
method must have
the same or com-
patible return type
and signature.
Partial overriding
involves calling a
base class method
by using the scope
operator.

classdesign), and if the inherited data is private, it is inaccessble. Notice, how-
ever, that we do na neal this knowledge. Furthermore, our design works regard-
lessof the underlying data representation in except i on. Thus changes to the
private implementation of except i on will nat require any changesto Badl n-
dex.

Figure 4.7 shows how the Badl ndex classcould be used. Notice that since
a Badl ndex IS-A exception, a line 11 we coud catch it using an
except i on reference.2 We could apply thewhat methodto get some informa-
tion. However, we could not apply the get | ndex and get Si ze methods,
because those methods are not defined for al excepti on objeds.

Because the predefined excepti on classis arecent language aldition, the
online code has a collection d exceptionsrooted at classDSExcept i on.

4.2.4 Overriding a Method

Methods in the base dassare overridden in the derived classby simply providing
aderived class method with the same signature. The derived class method must
have the same or compatible return type (the notion of a compatible return typeis
new, andisdiscussd in Sedion 4.4.4.)

Sometimes the derived class method wants to invoke the base dassmethod.
Typicdly, this is known as partial overriding. That is, we want to do what the
base dassdoes, plus alittle more, rather than doing something entirely different.
Cdlls to a base dass method can be accomplished by wsing the scope operator.
Hereisan example:

cl ass Workaholic :p ublicWorker

{
public:
voi dd owork()
{
Worker::dowrk() ;/ [/Workl ike aWorker
dri nkCoff ee() ; /1T akeab reak
Worker::dowbrk() ;/ [/Workl ike aWorkerso nemore
}
|

3 Even though the Badl ndex object is an automatic variablein oper at or [] , it can be caight by reference
because thrown objeds are guaranteed longer lifetime than normal function arguments.

<

P

InheritanceAndLateBinding.mkr Page 179 Wednesday, October 20, 1999 101 AM

Inheritance Basics

4.2.,5 Static and Dynamic Binding

Figure 4.8 illustrates that there is no problem in dedaring Worker and
Workahadlic objects in the same scope becaise the compiler can deduce which
doWork methodto apply. w is aWorker and wh is a Workahdlic, so the determi-
nation o which doWork isusedin thetwo cdlsat line 6 iscomputable & compile
time. We cdl this static binding or static overloading.

On the other hand, the code in Figure 4.9 is more complicaed. If x is zero,
we use aplain Wr ker class; otherwise, we use a Wr kahol i ¢. Recdl that
since a Wor kahol i ¢ IS A Wor ker, a Wor kahol i ¢ can be accessed by a
pointer to a Wor ker . Any method that we might call for Wor ker will have a
meaning for Wbr kahol i ¢ objeds. We seethen that public inheritance aitomat-
icdly defines a type conversion from a pointer to a derived classto a pointer to
the base dass Thus we can dedare that wptr is a pointer to the base dass
Wor ker and then dynamicdly alocae ether a Wor ker or Wor kahol i c
objed for it to point at. When we get to line 9, which doWork gets caled?

The dedsion d which dowork to use can be made at compile time or at run
time. If the dedsion is made & compile time (static binding), then we must use
Worker's doWork becaise that is the type of *wptr at compile time. If wptr is
actually pointing at the Workahdlic, this is the wrong dedsion. Because the type
of object that wptr is adually panting at can only be determined orce the pro-
gram has run, this dedsion must be made at run time. This is known as dynamic
binding. As we discussed earlier in this chapter, this is almost aways the pre-
ferred course of adion.

However a run-time dedsion incurs ©me run-time overhead because it
requires that the program maintain extrainformation and that the compil er gener-
ate mde to perform the test. This overhead was once thought to be significant,
and thus athough aher languages, such as Smalltalk and Objedive C, use
dynamic binding by default, C++ does nat.

constV ectorSize=2 0;
Wor kerw ;
Wor kahol i cw h;

wh. doWor k()
w. doWwor k() ;w h.dowsrk() ;

O WN =

Figure 4.8 Worker and Workah olic classes with calls to doWork that
are done automatically and correctly

In static binding, the
decision on which
function to use to
resolve an over-
load is made at
compile time.

If a member func-
tion is declared to
be virtual, dynamic
binding is used. The
decision on which
function to use to
resolve an over-
load is made at run
time, if it cannot be
determined at
compile time.

P

InheritanceAndLateBinding.mkr Page 180 Wednesday, October 20, 1999 101 AM

In general, if a func-
tion is redefined in a
derived class, it
should be declared
virtual in the base
class.

Instead, the C++ programmer must ask for it by spedfying that the function
isvirtual. A virtual function will use dynamic binding if a compile-time binding
dedsion is impasshble to deduce. A non-virtual function will always use static
binding. The default, as we implied above, is that functions are non-virtual. This
is unfortunate because we now know that the overhead is relatively minor.

Virtualnessis inherited, so it can be indicated in the base class Thus if the
base dassdedares that a functionis virtual (in its declaration), then the dedsion
can be made & runtime; otherwise, it is made & compile time. For example, in
the excepti on class the what method is virtual. The derived classs require
no further adion to have dynamic binding apply for what methodcdls.

Consequently, for the example in Figure 4.9, the answer depends entirely on
whether or not doWbr k was dedared virtual in the Wor ker class(or higher in
the hierarchy). Note caefully that if doWbr k is not virtual in the Wor ker class
(or higher in the hierarchy), but is later made virtual in Wor kahol i c, then
acceses through pointers and references to VWr ker will still use static binding.
To make arun-time dedsion, we would have to placethe keyword virtual at the
start of thedoWor k dedaration in the Worker classinterface(the rest of the class
is omitted for brevity):

cl ass Wor ker

{
public:
vi rtualv oid doWwrk()
|
1 Wor ker* wptr;
2 cin>>x;
3 if(x! =0)
4 wptr=n ew Workaholic() ;
5 el se
6 wptr=n ewWorker() ;
7
8
9 wpt r - >doWor k() ; / /W hatd oest hi smean?

Figure 4.9 Worker and Workaholic objects accessed though a pointer
to a Worker ; which version of doWork is used depends on
whether doWork is declared virtual in Wa ker

As agenerd rule, if afunctionis overridden in a derived class it should be
dedared virtual in the base dassto ensure that the wrred function is sleded
when a pointer to an objed is used. An important exception is discussd in Sec
tion4.2.7.

To summarize Static bindingisused by dfault, and dynamic bindingis used
for virtual functionsif the binding cannot be resolved at compile time. However,

<

P

InheritanceAndLateBinding.mkr Page 181 Wednesday, October 20, 1999 101 AM

Inheritance Basics m

aruntime dedsion is only needed when an objed is accessed through a pointer
or referenceto abase dass

4.2.6 The Default Constructor, Copy Constructor, Copy Assignment
Operator, and Destructor

There are two isaues surrounding the default constructor, copy constructor, and
copy assgnment operator: first, if we do nothing, are these operators private or
public? Second, if they are public, what are their semantics?

We assume public inheritance We dso asaume that these functions were
public in the base dass. What happens if they are completely omitted from the
derived class? We know that they will be public, but what will their semantics be?
We know that for classes there ae defaults for the smple cnstructor, the copy
constructor and the copy assgnment operator. Specificdly, the default is to apply
the gpropriate operation to ead member in the dass Thusif a wpy assgnment
operator is not spedfied in a dass we have seen that it is defined as a member-
by-member copy. The same rules apply to inherited classes. This means, for
instance, that

const Badl ndex & operator=(constB adln dex&r hs) ;

sinceit isnot explicitly defined, isimplemented by acall to operator= for the base
class

What is true for any member function is in effed true for these operators
when it comes to visibility. Thus, if operator= is disabled by being placed in the
private section in the base dass then it is gill disabled. The same halds true for
the aopy constructor and default constructor. The reasoning, however, is dightly
different. operator=isin effed disabled because apubic default operator=isgen-
erated. However, by default operator= is applied to the inherited pation and then
member by member. Since operator= for the base dass is disabled, the first step
beommesillegal. Thus pladng default constructors, copy constructors, and opera-
tor=in the private section d the base classhas the effect of disabling them in the
derived class(even though technically they are public in the derived clasg.

4.2.7 Constructors and Destructors: Virtual or not Virtual?

The short answer to the question d whether constructors and destructors soud
be virtual or not is that constructors are never virtual, and destructors should
always be made virtual if they are being used in a base dassand should be non
virtual otherwise. Let us explain the reasoning.

For constructors a virtual label is meaningless We can always determine at
compile time what we ae @nstructing. For destructors we need virtual to ensure
that the destructor for the actual object is called. Otherwise, if the derived class

<

The public/private
status of the de-
fault constructor,
copy constructor,
and copy assign-
ment operator, like
all other members
is inherited.

If a default destruc-
tor, copy construc-
tor, or copy assign-
ment operator is
publicly inherited
but not defined in
the derived class,
then by default the
operator is applied
to each member.

Constructors are
never virtual.

In an inheritance hi-
erarchy the de-
structor is always vir-
tual.

P

InheritanceAndLateBinding.mkr Page 182 Wednesday, October 20, 1999 101 AM

consists of some alditional members that have dynamically allocaed memory,
that memory will not be freed by the base dassdestructor. In a sense the destruc-
tor is no different than any other member function. For example, in Figure 4.10
suppose that the base dasscontains st ri ngs namel and name2. Automaticdly,
its destructor will call the destructors for these strings, so we are tempted to
accept the default. In the derived classwe have an additional st ri ng newName.
Automaticdly, its destructor calls newNane’s destructor, and then the base class
destructor. So it appeas that everything works.

However, if the destructor for the base dassis used for an oljed of the
derived class only those items that are inherited are destroyed. The destructor for
the alditional data member newName canna possbly be cdled becaise the
destructor for the base dassis oblivious to newName's existence.

Thuseven if the default destructor seemsto work, it does not if thereisinher-
itance The base dass constructor should always be made virtual, and if it is a
trivial destructor, it should be written anyway, with a virtual dedaration and
empty body. When the destructor isvirtual, we are certain that aruntime dedsion
will be used to chocse the destructor that is appropriate to the objed being
del et ed.

For a mncrete example, Figure 4.11 shows the dassinterfacefor excep-
t i on. Notice how the destructor isvirtual.

namel

Base Class name?2
_ " namel = |

Derived Class name2
" newName = |

Figure 4.10 Calling the base class destructor does not free memory associ-
ated with newName

% InheritanceAndLateBinding.mkr Page 183 Wednesday, October 20, 1999 101 AM

Inheritance Basics

1 //1 nterfacef orc | asse xceptioni n< exception>
2

3 classe xception

4 {

5 public:

6 exception() ;

7 exception(c onste xception&r hs) ;

8

9 virtual~ exception() ;

10

1 conste xception&o perator=(c onste xception&r hs) ;
12

13 virtualc onstc har*w hat() ;

14

15 private:

16 /1i npl ementation-defined

17 };

Figure 4.11 Closs interface for exception

4.2.8 Absiract Methods and Classes

So far we have seen that some methods are invariant over a hierarchy and that

% other methods can have their meaning changed over the hierarchy. A third poss-
bility is that the method is meaningful for the derived classes and an implementa-
tion must be provided for the derived classes; however, that implementationis not
meaningful for the base dass In this case, we can declare that the base class
method is abstract.

An abstract method is a method that dedares functionality that all derived An abstract
class objects must eventually implement. In ather words, it says what these methodhasno
objeds can do. However, it does not provide a default implementation. Instead, mMeaningful defini-
each dbject must provide its own implementation. fion and is thus al-

A classthat has at least one dstradt method is an abstract class. Sincethe o definedin the

. . . erived class.
behavior of an abstrad classis not completely defined, abstrad classes can never
be instantiated. When a derived classfailsto override an abstract method with an
implementation, the method remains abstrad in the derived class As aresult, the
derived classremains abstrad, and the compiler will report an error if an attempt
to instantiate the @strad derived classis made.

An example is an abstrad class Shape, which is used in a larger example
later in this chapter. Spedfic shapes, such as Ci rcl e and Rect angl e, are
derived from Shape. We can then derive aSquar e as a special Rect angl e.

Figure 4.12 shows the classhierarchy that results.

The Shape classcan have data members that are commonto all classs. Ina
more extensive example, this could include the ordinates of the object’s
extremities. It dedares and provides a definition for methods, such as
posi ti onCf , that are independent of the adual type of objed; posi ti onOf

P &

P

InheritanceAndLateBinding.mkr Page 184 Wednesday, October 20, 1999 101 AM

A class with at least
one abstract
method must be
an abstract class.

An abstract class
object can never
be constructed.
However, we still
provide a construc-
tor that can be
called by derived
classes.

Abstract methods
are also known as
pure virtual func-
tionsin C++.

would be an invariant method. It also dedares methods that apply for each pertic-
ular type of objed. Some of these methods make no sense for the dstrad class
Shape. For instance, it is difficult to compute the aea of an abstrad objed; the
ar ea method would be an abstrad method.

As mentioned ealier, the existence of at least one abstrad method makes the
base dassabstrad and disallows credion of it. Thusa Shape object cannat itself
be aeaed; only the derived objects can. However, asusual, aShape can point to
or reference ay concrete derived oljed, such asa Ci rcl e or Rect angl e.
Thus

Shape *a,* b;
a=ne wCircle(3.0) ; /L egal
b=ne wShape("c ircle") ;/ /1 Ilegal

Figure 4.13 shows the abstract class Shape. At line 30, we declare a
st ri ng that stores the type of shape. This is used only for the derived classes.
The member is private, so the derived classes do not have direct accessto it. The
rest of the dass spedfies a wlledion of methods.

The onstructor never adually gets cdled drectly because Shape is an
abstract class We neal aconstructor, however, so that the derived classcan cdl it
to initialize the private members. The Shape constructor sets the internal nane
data member. Notice the virtual destructor, in according with the discusson in
Sedion 4.2.7.

Line 21 of Figure 4.13 dedares the abstrad method ar ea. A method is
dedared abstract by spedfying that it isvi rt ual , and supplying = 0 inthe
interfacein place of an implementation. Because of the syntax, abstrad methods
are dso known as pure virtual functions in C++. As with all virtual methods, a
run-time dedsion will seled the appropriate ar ea in aderived class ar ea isan
abstract method because there is no meaningful default that could be spedfied to
apply for an inherited classthat chase nat to define its own.

Rectangle

I

Square

Figure 4.12 The hierarchy of shapes used in an inheritance example

<

% InheritanceAndLateBinding.mkr Page 185 Wednesday, October 20, 1999 101 AM

Inheritance Basics m

1 //A bstractb asec |l assf ors hapes

2 //

3 //C ONSTRUCTION:i snota |Ilowed;S hapei sa bstract

4 /1

5 //* *****************PUBLICOPERATI O\IS**********************

6 //d oublearea() -->Returnt hearea(abstract)

7 //b oolo perator<(r hs) -->Conpare2S hapeo bjectsb yarea
8 //v oidprint(o ut=c out) -->Standardprintm ethod

9

10 #i nclude<i ostreanp
11 #include<string>
12 usingn anespaces td;

13
14 cl ass S hape
15 {
16 public:
17 Shape(c onsts tring&s hapeNane=" "):n ane(s hapeNane)
18 {1
19 vi rtual ~ Shape(){}
20
21 virtuald oublearea()c onst=0 ;
22
23 boolo perator<(c onstS hapeé&r hs)c onst
24 {r eturnarea()<r hs.area() ;}
25
% 26 virtualv oidprint(o streamé&out)c onst
27 {o ut< <name<<"o farea"< <area() ;}
28
29 private:
30 stringn ang;
31 };

Figure 413 Abstract base class Shape

The comparison method shown at lines 23 to 24 is not abstract because it can
be meaningfully applied for al derived classs. In fact, its definition is invariant
throughaut the hierarchy of shapes, so we have not made it virtual.

The pri nt method, shown a lines 26 and 27, prints out the name of the
shape and its area. Althoughit appeasto be invariant now, we makeit virtual just
in case we change our mind later on. oper at or << iswrittenin Figure 4.14.

/10O utputr outinef orS hape
ostreamé&o perator<<(o streamé&out,c onstS hape&r hs)

1
2
3 {

4 rhs.print(o ut) ;
5 returno ut;

6

}

Figure 4.14 Output routine for Shape that includes its name and area

P &

% InheritanceAndLateBinding.mkr Page 186 Wednesday, October 20, 1999 101 AM

Static binding is
used for a nonvir-
tual function when
the function is in-
variant over the in-

heritance hierarchy.

Before continuing, let us sImmarizethe threetypes of member functions:
1. Nonvirtual functions. Overloading isresolved at compiletime. To
ensure consistency when pantersto ohjedsare used, we generally
use anonvirtual method aly when the functionisinvariant over
the inheritance hierarchy (that is, when the method is never rede-
fined).The exceptionto thisruleisthat constructors are dways
nonvirtual, as mentioned in Section 4.2.7.

2. Virtual functions. Overloading is resolved at run time. The base
classprovides a default i mplementation that may be overridden by
the derived classes. Destructors sould be virtual, as mentioned in
Sedion 4.2.7.

3. Purevirtual functions. Overloadingis resolved at runtime. The
base dassprovides noimplementation and is abstrad. The
absenceof adefault requires either that the derived classes provide
an implementation or that the derived classes themselves be
abstract.

4.3 Example: Expanding the Shape Class

This sdionimplements the derived Shape classes and shows how they are used
in a polymorphic manner. The following problem is used:

SORTING SHAPES

Read N shapes (circles, squares, or rectangles) and output them
sorted by area.

The implementation d the derived classes, shown in Figure 4.15, is com-
pletely straightforward and illustrates aimost nothing that we have not aready
seen. The only new item is that Squar e is derived from Rect angl e, which
itself is derived from Shape. This derivation is done exactly like dl the others.
In implementing these dasses, we must do the following:

1. Provide anew constructor.

2. Examine eat virtual functionto deadeif we are willing to accept
its defaults. For ead virtual function whose defaults we do rot
like, we must write a new definition.

3. Write adefinitionfor each pure virtual function.

4. Write aditional member functionsif appropriate.

For ead class we provide asimple constructor that all ows initiali zation with
basic dimensions (radius for circles, side lengths for redangles and squares). We
first initialize the inherited pation by cdling the base classinitializer. Each class
isrequired to provide an ar ea method becaise Shape has dedared that it isan

<

% InheritanceAndLateBinding.mkr Page 187 Wednesday, October 20, 1999 101 AM

Example: Expanding the Shape Class

abstract method If the ar ea method is not provided for some dassthen an error
will be deteded at compiletime. Thisis becauseif animplementation of ar ea is
missng, a derived classwill itself be astract. Note that Squar e is willing to
inherit thear ea methodfrom the Rect angl e, so it does nat provide aredefini-
tion. Note also that its name internally is now aredangle.

1 //Circle,S quare,R ectanglec lassi nterfaces;

2 // allb asedo nS hape

3 /1

4 //C ONSTRUCTION:w ith(a)n oi nitializero r(b)r adius(for

5 /1 circle),s idel ength(fors quare),| engthandwidth

6 /1 (forr ectangle)

7 //* *****************PUBLICOPERATI O\IS**********************
8 //d oublearea() -->| nplenentsS hapepurevirtuala rea
9

10 constd oubleP|1=3 .1415927;
11
12 classCircle:p ublicS hape

13 {
14 publi c:
15 Circle(d oubler ad=0 .0)
16 :S hape(" circle") ,r adius(r ad){}
17 doublearea()c onst
% 18 {r eturnPl*r adius*r adius;}
19
20 private:
21 doubl er adi us;
22 };
23
24 classRectangle:p ublicsS hape
25 {
26 publi c:
27 Rectangl e(d oublel en=0 .0,d oublewid=0 .0)
28 :S hape(" rectangle") ,lI ength(l en) ,width(wid){}
29 doublearea()c onst
30 {r eturnl ength*w idth;}
31
32 private:
33 doubl el engt h;
34 doubl e wi dt h;
35 };
36
37 classSquare:p ublicRectangle
38 {
39 public:
40 Square(d oubleside=0 .0)
41 R ectangle(s ide,s ide){}
42 };

Figure 415 Complete Circle ,Rectangle ,and Square classes

P &

P

InheritanceAndLateBinding.mkr Page 188 Wednesday, October 20, 1999 101 AM

We can only de-
clare arrays of
pointers to base
classesbecause the
size of the base
class is usually
smaller than the
size of the derived
class. It can never
be larger.

Now that we have written the dasses, we ae ready to solvethe origina prob-
lem. What we would like to do is declare an array of Shapes. But we cannot
dedare one Shape, much lessan array of them. There ae two reasons for this.
First, Shape is an abstract base dass so a Shape objed does nat exist. Even if
Shape was nat abstrad, which would be the ase if it defined an areafunction, we
still could not reasonably declare an array of Shapes. This is because the basic
Shape has one data member, Circle adds a second data member, Redangle adds a
third data member, and so on. The basic Shape is nat large enoughto hold al of
the posshble derived types. Consequently, we nead an array of pointers to Shape.
Figure 4.16 attempts this approacdh; however, it does not quite work because we
get in trouble & the sorting stage.

We examinethelogic in Figure 4.16 and show how to correct the deficiency.
First we read the objeds. At line 17 we ae adually reading a character and then
the dimensions of some shape, creaing a shape, and finaly assgning a pointer to
point at the newly creaed shape. Figure 4.17 shows a bare bones implementation.
So far so good

#i ncl ude < i ostr eanp
#i ncl ude < vect or>
usi ngn anespaces td;

//main:r eads hapesa ndo utputi ncreasingordero fa rea.
/I1E rrorc hecksomttedf orb revity.
7 intm ain()

OB WN —

8 {

9 i ntn unShapes;

10 ci n > >n unShapes;

11 vector<Shape* >array(n unShapes) ; / /A rrayo fS hape*
12

13 /IR eadt hes hapes

14 for(i nti=0 ;i<n unBhapes;i ++)

15 {

16 cout< <" Enteras hape:" ;

17 cin>>array[i]

18 }

19

20 insertionSort(a rray) ;

21

22 cout< <" Sortedbyi ncreasingsize:"< <endl;
23 for(i ntj=0 ;j<n unBhapes;j ++)

24 cout< <* array[j]< <endl;

25

26 returnO;

27 }

Figure 4.16 mai h routine to read shapes and output them in increasing
order of area

% InheritanceAndLateBinding.mkr Page 189 Wednesday, October 20, 1999 101 AM

Example: Expanding the Shape Class m

1 //CreateanappropriateShapeo bjectb asedo ni nput.

2 //T heusert ypes' ¢'," s',or' r't oi ndicatet hes hape
3 //a ndt henprovidesd inmensionswhenp ronpted.

4 //Az ero-radiuscirclei sr eturnedf ora nyerror.

5 istream&o perator>>(i stream&i n,S hape*&s)

6 {
7 charc h;
8 doubled 1,d 2;
9
10 in.get(c h) ; / IF irstc haracterr epresentss hape
1 switch(c h)
12 {
13 case' c':
14 in>>d1;
15 s=n ewCircle(d 1) ;
16 br eak;
17
18 case' r'
19 in>>d1>>d 2;
20 s=n ewRectangle(d 1,d 2) ;
21 br eak;
22
23 case' s':
24 in>>d1;
25 s=n ewSquare(d 1) ;
% 26 br eak;
27
28 case' \n':
29 returni n>>s;
30
31 def aul t:
32 cerr< <" Neededoneofc ,r ,0rs "< <endl;
33 s=n ewCircle; / IR adiusi sO
34 br eak;
35 }
36
37 returni n;
38 }

Figure 4.17 Simple input routine for reading a pointer to a Shape

We then call insertionSort to sort the shapes. Recdl that we dready have a
insertionSort template from Section 3.3. Since array is an array of pointers to
shapes, we expect that it will work as long as we provide a comparison routine
with the declaration

intop erator<(co nstS hape *| hs,c onstS hape*r hs);

P

InheritanceAndLateBinding.mkr Page 190 Wednesday, October 20, 1999 101 AM

If a class is instanti-
ated with pointer
types. shallow oper-
ations are used.

Unfortunately, that does not work. insertionSort uses the oper ato r < that
already exists for pointers. That operator compares the aldresses being pointed
at, which guarantees that the array will be unaltered (because g[i] is always dored
at alower addressthan &[] if i<j).

1 structP trToShape

2 {

3 Shape * ptr;

4

5 boolo perator<(c onstP trToShapeé&r hs)c onst
6 {r eturn* ptr<* rhs.ptr;}

7

8 constS hape &o perator*()c onst

9 {r eturn* ptr;}

10 };

11

12 //main:r eads hapesa ndo utputi ncreasingordero fa rea.
13 //E rrorc hecksomttedf orb revity.

14 intm ain()

15 {

16 i ntn unthapes;

17 cout< <" Entern unbero fs hapes:" ;

18 ci n > >n unShapes;

19

20 /IR eadt hes hapes

21 vect or <Pt r ToShape>a rray(n untShapes) ;
22

23 for(i nti=0 ;i<n unBhapes;i ++)
24 {

25 cout< <" Enteras hape(c,r ,0 rsw ithdinmensions):" ;
26 cin>>array[i] .ptr;

27 }

28

29 insertionSort(a rray) ;

30 cout< <" Sortedbyi ncreasingsize:"< <endl;
31 for(i ntj=0 ;j<n unBhapes;j ++)
32 cout< <* array[j]< <endl;

33

34 for(i ntk=0 ;k<n unBhapes;k ++)
35 deletearray[k] .ptr;

36

37 returnoO;

38 }

Figure 4.18 mai n routine reads shapes and outputs them in increasing order
of area

P

InheritanceAndLateBinding.mkr Page 191 Wednesday, October 20, 1999 101 AM

Tricky C++ Details ||

To make this work, we neal to define anew classthat hides the fact that the
objeds we are storing and sorting are pointers. Thisis shown in Figure 4.18. The
PtrToShape objed stores the pointer to a Shape and provides a mmparison func-
tion that compares Shapes rathers than pdnters. It does this by dereferencing
both pointers and cdling the Shape oper at or < on the resulting Shape
objeds. Note that we make excessve cdculations to compute aess. Avoiding
this is left as Exercise 4.13. Note dso that in general, we must cdl del et e to
redaim the memory consumed by the Shape objeds.

The Pt r ToShape class also owerloads the unary * operator, so that a
PtrToShape objed looks just like apointer to a Shape. We certainly can add more
members to hide information better, but we prefer to keep things as sort as pos-
sible. The idea of wrapping a pointer inside aclassis a common design pattern.
Welookat this reaurring theme in Section 5.3.

4.4 Tricky C++ Details

Inheritance in C++ has numerous subtle points. Some of these ae discussd in
this sdion.

4.4.1 Static Binding of Parameters

Dynamic binding means that the member function that is appropriate for the
objed being operated onis used. However, it does not mean that the absol ute best
match is performed for al parameters. Spedfically, in C++, the parametersto a
method are dways deduced statically, at compile time.

For a concrete example, consider the ade in Figure 4.19. In the whi chFoo
method, acdl ismadeto f oo. But which f 0o is called? We exped the answer to
depend ontheruntimetypesof ar g1 andar g2.

Because parameters are dways matched at compile time, it does not matter
what type ar g2 isadually referencing. Thef oo that is matched will be

virtualv oid foo(c onst Base &X); /IM ETHOD AorC

Theonly issueiswhether the Base or Der i ved versionisused That isthe deci-

sionthat is made & runtime, when the objed that ar g1 referencesis known.
Static binding hes important ramificaions. Consider the following situation

in which we overload the output operator for both a base dassand derived class

ostream&o perator<<(o stream&out, constB ase& x) ;
ostream&o perator<<(o stream&o ut, constD erived &Xx)

Suppose we now try to cdl the output function.

<

Deep comparison
semantics can be
obtained by de-
signing a class to
store the pointer.

In C++, the parame-
ters to a method
are always de-
duced statically, at
compile time.

% InheritanceAndLateBinding.mkr Page 192 Wednesday, October 20, 1999 101 AM

Base* b=n ewDerived,

cout< <* pb<<e ndl;
Because parameters are statically deduced, output is done (unfortunately) using
theoper at or << that takes aBase parameter.

classDerived,; / Il nconpleted eclaration

cl ass B ase

1

2

3

4 {

5 publi c:
6

7

8

virtualv oidf oo(c onstB ase &x) / I M ETHOD A
virtualv oidf oo(c onstD erived&x) / I M ETHOD B
b

9

10 classDerived:p ublicB ase

11 {

12 publi c:

13 virtualv oidf oo(c onstB ase &x) / /M ETHOD C

14 virtualv oidf oo(c onstD erived&x) / /M ETHOD D

15 };

16

17 voidwhichFoo(B ase&a rgl,B ase&a rg2)

18 {

% 19 argl.foo(a rg2) ;
20 }

Figure 4.19 lllustration of static binding for parameters

However, recdl that we have been recommending the gproach of having the
classdefine apri nt method, and then implementing oper at or << by caling
the pri nt method. If we do this, we only need to write oper at or << for the
base dass

ostream&o perator<<(o streamé&out,c onstB ase& x)

{

out.print(x); [lpr inti sdeducedatr unti me
returno ut;

Now the base dassand derived classead provide their own version of the
print method. oper at or << is cdled for al Base and Deri ved obeds.
However, when that happens, the cll to pri nt uses dynamic binding!

% InheritanceAndLateBinding.mkr Page 193 Wednesday, October 20, 1999 101 AM

Tricky C++ Details

4.4.2 Default Parameters

Default parameters are statically bound, meaning that they are deduced at com- It is unsafe to
pile time. It is unsafe to change the default value in a derived class because this change the default

can creae an inconsistency with virtual functions, which are boundat run time. value in a derived
class.

4.4.3 Derived Class Methods Hide Base Class Methods

C++ has an annoying feature ill ustrated by the example in Figure 4.20. In the
code, we have abase dassand a derived class The base dassdedares afunction
named bar , with zero parameters. The derived classadds afunction remed bar ,
with ore parameter.

In t est, we illustrate the various cdls that can be made. At line 15, we
attempt to call the zeo-parameter bar through aBase reference We exped this
to work and it does. Notice that the actual object being aded upon could be a
Deri ved objed. The next line @temptsto call the one-parameter bar through a
Base reference. Since this is not defined for Base objeds, it must fail, and
indedd, the line does nat compile. The one-parameter bar must be cdl ed through
aDer i ved reference, as down online 17.

So far dl isgood. Now comes the unexpeded pert. If we call the zeo-param-

% eter bar with a Deri ved reference the code does not compile. This is unex-
peded, sincethe ade at line 15 compiles, andaDer i ved IS-A Base.

What has happened appeas to be alanguage flaw. When a method is
dedared in a derived class, it hides al methods of the same name in the base
class Thus bar is no longer accessble through a Deri ved reference, even
thoughit would be accesdble through aBase reference

Base &tm p=a rg3; tnp.bar() ; //L egal!

There ae two ways arourd this. Onceway isto override the zeo-parameter
bar in Deri ved, with an implementation that cdls the Base classversion. In
other words, in Der i ved, add:

voidbar() {B ase::bar() ;} /'l InclassDeri ved

The other method is newer and does not work on all compilers. Introducethe base
classmember function into the derived class sope with ausi ng dedaration:

% InheritanceAndLateBinding.mkr Page 194 Wednesday, October 20, 1999 101 AM

1 classB ase

2 {

3 publi c:

4 virtualv oidbar() ; / 1M ETHOD A

5}

6

7 classDerived:p ublicB ase

8 {

9 publi c:

10 virtualv oidbar(i ntx) ; / I M ETHOD B

11 };

12

13 voidt est(B ase&a rgl,D erived&a rg2,D erived&a rg3)
14 {

15 argl. bar() ; /1C onpiles,a se xpected.

16 argl. bar(4) ; /D oesn otc onpile,a se xpected.
17 arg2.bar(4) ; /1 C onpiles,a se xpected.

18 arg3. bar() ; /1D oesn otc onpile.N ote xpected.
19 }

Figure 4.20 lllustration of hiding

usi ng B ase: :b ar; /[lInc lassDeri ved

The most important reason you should be aware of this rule is that many
compilers will issue a warning when you hide amember function. Since asigna-
ture includes whether or not afunction is an accesor, if the base dassfunction is
an acesr (a mnstant member function), and the derived classfunction is nat,
you have usually made an error, and thisis how the compiler might let you knov
about it. Pay attention to these warnings.

4.4.4 Compatible Return Types for Overridden Methods

Return types present an important difficulty. Consider the following operator,
defined in abase dass

virtualc onstB ase &o perator++() ;

The derived classinheritsit,

const Base &0 perator++() ;

but that is not really what we want. If we have areturn typein the derived class it
ought to be aconstant reference to the derived type and nd the base type. Thus

the operator++ that is inherited is not the one we want. We would like instead to
override oper at or ++ with;

P &

P

InheritanceAndLateBinding.mkr Page 195 Wednesday, October 20, 1999 101 AM

Tricky C++ Details ||

const Derived& operator++();

Recdl that overriding afunction means writing a new function with the same
signature. Under original C++ rules, the return type of the new and overridden
function had to match exactly.

Under the new rules, the return type may be relaxed. By this we mean that if
the original return typeis apointer (or reference) to B, the new return type may be
apointer (or reference) to D, provided D isapubicly derived class of B. This cor-
responds to our normal expedation of |S-A relationships.

4.4.5 Private Inheritance

Private inheritance means that even public members of the base dassare hidden.
Seanslikeasilly ideg doesn'tit? Infact it is, if we ae talking about implement-
ing an IS-A relationship. Private inheritanceis thus generally used to implement a
HAS-A relationship (that is, a derived classD has or uses a base dassB).

In many cases we @n get by without using inheritance: We can make an
objed of classB a member of classD and, if necessary, make D afriend of B.
This is known as composition. Compasition is the preferred mechanism, but
occasionaly private inheritance is more expedient or slightly faster (because it
avoids a layer of function cdls). For the most part, it is best to avoid private
inheritance unlessit grealy simplifies me cding logic or can be justified on
performance grounds. However, in Section 5.3.3, we will see a appropriate and
typical use of private inheritance.

It isimportant to remember that by default, private inheritance is used. If the
keyword publ i ¢ was omitted on line 3 of Figure 4.6, we would have private
inheritance. In that case the public member functions of except i on would still
be inherited, but they would be private members of Badl ndex and they could
not be cdled by wsers of Badl ndex. Thusthe what method would not be visi-
ble. The type compatibility of base classand derived classpointers and references
described earlier does not apply for norpublic inheritance Thus, in the following
code, aBadl ndex exception would not be caight:

catch(c onste xception&e){c out< < e.what()< < endl;}

4.4.6 Friends

Arefriends of a dass $ill friendsin a derived class? The answer is no. For exam-
ple, suppose F isafriend d classB, and D isderived from B. Suppose D has nornt
public member M. Then in class D, F does not have accessto M. However, the
inherited portion of B isaacessibleto F in class D. Figure 4.21 summarizes the
results. D can declare that F is also a friend, in which case dl of D’s members
would be visible.

<

If the original return
type is a pointer (or
reference) to B, the
new return type
may be a pointer
(or reference) to D,
provided Dis a pub-
licly derived class

of B.

Private inheritance
means that even
public members of
the base class are
hidden.
Compoisition is pre-
ferred to private in-
heritance. In com-
position, we say
that class Bis com-
posed of class A
(and other objects).

The default is pri-
vate inheritance
but it should be
avoided.

Friendship is not in-
herited.

P

InheritanceAndLateBinding.mkr Page 196 Wednesday, October 20, 1999 101 AM

Slicing is the loss of
inherited data
members when a
derived class object
is copied into a
base class object.

Multiple inheri-
tance is used to de-
rive a class from
several base
classes. We do not
use multiple inheri-
tance in this book.

4.4.7 Call by Value and Polymorphism Do Not Mix

Consider the following statement, assume that Badl ndex is publicly inherited
fromexcept i on, and suppose that it has overridden the what method:

catch(e xception e){c out <<e.what() <<endl;}

Notice that e is passed using cdl by value. Now suppose a Badl ndex
exception has been thrown. Which what method gets called? The answer is not
what we want.

Public inheritance situation Public Protected Private
Faccessing B.MB Yes Yes Yes
Faccessing D.MD Yes No No
Faccessing D.MB Yes Yes Yes

Bis an object of the base class; Dis an object of the publicly derived class; MBis
a member of the base class. MD is a member of the derived class. Fis a friend of
the base class (but not the derived class)

Figure 4.21 Friendship is not inherited

When we use cdl by value, the actual argument is always copied into the for-
mal parameter. This means that the Badl ndex objed is copied into e. Thisis
doneby using e’soper at or =, which meansthat only theexcept i on compo-
nent of Badl ndex iscopied. (Thisisknown as dicing.) In any event, the type of
e isexception, and so it is the excepti on class what method that is
called, andit is acting on atrimmed portion of the Badl ndex objed. The moral
of the story: palymorphism and cadl by value do not mix.

4.5 Multiple Inheritance

All the inheritance examples sen so far derived one classfrom a single base
class In multiple inheritance a dassmay be derived from more than ore base
class. As an example, in the iostream library, an iostream (which all ows both
reading and writing) is derived from both an istream and an ostream. As a second
example, a university has several classes of people, including: students and
employees. But some people ae both students and employees. The StudentEm-
ployeeclass could be derived from both the Student classand the Employee
class each of those dasses could be derived from the dstrad base dassUniver-
sityPerson.

% InheritanceAndLateBinding.mkr Page 197 Wednesday, October 20, 1999 101 AM

Multiple Inheritance

In multiple inheritance the new classinherits members from all of its base
classes. This leads to some immediate problems that the user will need to watch
out for:

» Suppose UniversityPerson has classmembers name and ss. Then these
are inherited by Student and Employee. However, since StudentEmployee
inherits the data members from both Student and Employee we will get
two copies of name and s unless we use virtual inheritance, asin thefol-

lowing:
class Student: wvirtualp ublicUniversityPerson{ ...}
class Enployee:v irtualp ublicUniversityPerson{ ...}

cl ass Student Enpl oyee:p ublicS tudent,
publicE nployee{ ...}

» What if Student and Employeehave member functionsthat are augmented
to Employee but have the same signatures? For instance, the credit func-
tion, not given in UniversityPerson, is added to Student to mean the num-
ber of credits for which a student is currently registered. For employees
the function returns the number of vacdion days gill | eft. Consider the

following:
% Uni ver sityPerson *p=n ew St udent Enpl oyee;
cout <<p->Student::credits() ; Il K
cout <<p ->Empl oyee::credits () ; Il K
cout <<p->credit s() ; /1 Ambi guous

» Suppose UniversityPerson defines a virtual member function f, and Stu-
dent redefines it. However, Employee and StudentEmployee do nothing.
Then, for p defined in the previous example, is p->f() ambiguows? In the
example dove, the answer is no becaise UniversityPersonis a virtual
base dasswith resped to Student; consequently, Student::f() is sid to
dominate UniversityPerson::f(), and there is no ambiguity. There would
be an ambiguity if we did not use virtual inheritance for Student.

Does all this make your head spin? Most of these problems tend to suggest
that multiple inheritance is a tricky feaure that requires careful analysis before
use. Generally speaing, multiple inheritanceis not needed nealy as often as we
might susped, but when it is neaded it is extremely important. Although the rules
for multiple inheritance ae caefully defined in the language standard, it is also
an unfortunate fad that many compilers have bugs associated with this fedure
(espedally in conjunctionwith athers).

We will not use multiple inheritance in this text. The most common (and
safe) way to use multiple inheritanceisto inherit only from classes that define no
data members and no implementations. Such classes gedfy protocols only, and
most of the anbiguity problems described above go away. A popular program-

P &

P

InheritanceAndLateBinding.mkr Page 198 Wednesday, October 20, 1999 101 AM

ming language, Java, formalizes this into a speda class cdled, interestingly
enoudh, theinterface. Java does not all ow arbitrary multiple inheritance, but does
allow multiple interfaces, and the result seems to be very clean code.

You shoud avoid general use of multiple inheritance in C++ until you are
extremely comfortable with simple inheritance and wirtual functions; many
object-oriented languages (such as Smalltalk, Objea Pascal, Objedive C, and
Ada) do ot suppart multiple inheritance, so youcan live without it.

Summary

Inheritance is a powerful feature that allows the reuse of code. However, make
sure that functions applied to objects creaed at run time through the new operator
are boundat runtime. This feaure is known as dynamic binding, and the use of
virtual functions is required to ensure that run-time decisions are made. Reread
this chapter as often as necessary to make sure you understand the distinction
between nonvrtual functions (in which the same definition applies throughaut
the inheritance hierarchy, and thus compile-time dedsions are @rred), virtual
functions (in which the default provided in the base class can be overwritten in
the derived class; run-time dedsions are made if needed), and pue virtual func-
tions (which have no default definition).

In this chapter we also saw the programming techniques of wrapping a vari-
ableinside aclass(Figure 4.18), and mentioned the occasional usefulnessof pri-
vate inheritance. These ae two examples of design patterns: techniques that we
see over and over again. The next chapter discusses me common design pat-
terns.

R Objects of the G
nmam jects of the Game

abstract base class A classwith at least one pure virtual function. (184)

abstract method A method that has no meaningful definition andisthus
always defined in the derived class (183)

base class The classon which the inheritanceis based. (172

composition Preferred mechanism to private inheritancewhen an IS-A rela-
tionship does not hald. In composition, we say that an dbject of classB is
composed of an objed of classA (and other objeds). (195)

derived class A completely new classthat nonethel ess has sme compatibility
with the dassfrom which it was derived. (172)

dynamic binding A run-time dedsion to apply the method corresponding to
the adual referenced objed. Used when a member functionis declared to
be virtual and the mrred method cannot be determined at compile time.
(179)

HAS-A relationship A relationship in which the derived classhas a (property
of the) base dass (169)

<

% InheritanceAndLateBinding.mkr Page 199 Wednesday, October 20, 1999 101 AM

Common Errors m

inheritance The processwhereby we may derive a classfrom a base dass
withou disturbing the implementation of the base dass Also alows the
design of classhierarchies, suchasexcepti on. (172)
| S-A relationship A relationshup in which the derived classis a (variation of
the) base dass (169)
multipleinheritance The processof deriving a dass from several base
classs. (196)
nonvirtual functions Used when the functionisinvariant over the inheritance
hierarchy. Static binding is used for nonvirtual functions. (186)
partial overriding The at of augmenting a base dass method to perform
additional, but not entirely diff erent, tasks. (178)
polymor phism The aility of areference or pointer variable to reference or
point to ojeds of severa different types. When operations are goplied to
the variable, the operation that is appropriate to the adual referenced
objed isautomaticdly seleded. (1717)
private inheritance The processoccasionaly used to implement aHAS-A
relationship. Even public members of the base classare hidden. (195)
protected class member Accesshle by the derived classbut private to every-
one dse. (174)
public inheritance The processby which all public members of the base dass
remain publicin the derived class Public inheritancemodels an IS-A rela
@ tionship. (173)
purevirtual function An abstrad method. (184)
dlicing The lossof inherited data when a derived classobjed is copied into a
base dassobject. (196)
static binding/overloading The dedsion on which function to useis made &
compiletime. (179)
virtual functions A functionfor which dynamic binding is used. It should be
used if the functionis redefined in the inheritance hierarchy.
(179)

Common Errors

1. Inheritanceis private by default. A common error isto omit the
keyword public that is needed to spedfy public inheritance

2. If abase dassmember function isredefined in aderived class it
should be made virtual. Otherwise, the wrongfunction could be
called when accessed through a pointer or reference.

3. Base dassdestructors sould be dedared as virtual functions. Oth-
erwise, the wrong destructor may get cdled in some cases.

4. Constructors should never be dedared virtual.

5. Objeds of an abstrad base classcannot be instantiated.

P &

% InheritanceAndLateBinding.mkr Page 200 Wednesday, October 20, 1999 101 AM

200

6. If the derived classfail s to implement any inherited pure virtual
function, then the derived classbecomes abstract and canna be
instantiated, even if it makes no attemptsto use the undefined pure
virtual function.

7. Never redefine adefault parameter for avirtual function. Default
parameters are bound at compile time, and this can create an
inconsistency with virtua functions that are boundat run time.

8. Toaaessabase dassmember, the scope resol ution must be used.
Otherwise, the scope isthe airrent class

9. Friendship isnot inherited.

10. Inaderived class, the inherited base classmembers can orly be
initialized as an aggregate in aconstructor’ sinitiali zer list. If these
members are public or proteded, they may later beread or
assgned to individually.

11. A commonerror isto declare avirtual destructor in an abstract
base dasshut not provide an implementation (virtual~Base() or
virtual~Base()=0). Both are wrong because the derived class
destructor needsto cdl the base dassdestructor. If thereisnathing
to do, then use {} asthe definition.

12. If aconstructor declarationis provided in the base dass provide

% the definition, too, for the same reason that we saw in the destruc-
tor case.

13. Thereturn typein aderived classcanna be redefined to be differ-
ent from the base classunlessthey are both pointer or bath refer-
encetypes, and the new return type is type-compatible with the
original.

14. If the base classhas a mnstant member function F and the derived
classattemptsto define anonconstant member function F with an
otherwise identicd signature, the compil er will warn that the
derived F hides the base F. Head the warning and find a
workaround.

On the Internet

Threesdf-contained files plus a set of exception clases are available..

Except.h Contains the exception hierarchy.
Shape.cpp The Shape example.
StaticBinding.cpp Contains the codein Figure 4.19illustrating that
parameters are staticdly bound
Hiding.cpp Contains the code in Figure 4.20illustrating how

methods are hidden.

P &

