
� � � � � � �

Inheritance

As mentioned in Chapter 2, an important goal of object-oriented programming is
code reuse. Just as engineers use components over and over in their designs, pro-
grammers should be able to reuse objects rather than repeatedly reimplementing
them. In Chapter 3 we saw one mechanism for reuse provided by C++, the tem-
plate. Templates are appropriate if the basic functionality of the code is type inde-
pendent. The other mechanism for code reuse is inheritance. Inheritance allows
us to extend the functionality of an object; in other words, we can create new
types with restricted (or extended) properties of the original type. Inheritance
goes a long way toward our goal for code reuse.

In this chapter, we will see:

• General principles of inheritance and the related object-oriented concept
of polymorphism

• How inheritance is implemented in C++
• How a collection of classes can be derived from a single abstract class
• How run-time binding decisions, rather than compile time linking deci-

sions, can be made for these classes

� � 	
 � �
 � � � � � � � �
 � � � � �

� � � � � � � � � � � ! " # $ �
% & " ' () * + � , - . * / * 0
1 2 3 * / 4 5 � + + " % 6 3 � 1 2 0
� - 2 7 � 7 8 - . * 9 : � + *
4 5 � + + ;

Inheritance is the fundamental object-oriented principle that is used to reuse code
among related classes. Inheritance models the IS-A relationship. In an IS-A rela-
tionship, we say the derived class is a (variation of the) base class. For example, a
Circle IS-A Shape and a Car IS-A Vehicle. However, an Ellipse IS-NOT-A Cir-
cle. Inheritance relationships form hierarchies. For instance, we can extend Car
to other classes, since a ForeignCar IS-A Car (and pays tariffs) and a Domestic-
Car IS-A Car (and does not pay tariffs), and so on. � � � < � � � � � � � ! " # $ �

% & " ' () * + � , - . * / * 0
1 2 3 * / 4 5 � + + & % 6 2 � 0
+ - � � 4 * 7 8 - . * 9 : � + *
4 5 � + + ; = # > ' # % " ! " # $
2 + ? + * / - 7 @ 7 / * 5

A B C 0 B 1 * 5 � - 2 7 � + . 2 D + ;

Another type of relationship is a HAS-A (or IS-COMPOSED-OF) relation-
ship. This type of relationship does not possess the properties that would be natu-
ral in an inheritance hierarchy. An example of a HAS-A relationship is that a car
HAS-A steering wheel. Generally, HAS-A relationships should not be modeled
by inheritance. Instead, they should use the technique of composition, in which
the components are simply made private data fields.

InheritanceAndLateBinding.mkr Page 169 Wednesday, October 20, 1999 1:01 AM

E F G

The C++ language itself makes some use of inheritance in implementing its
class libraries. Two examples are exceptions and files:

• Exceptions. C++ defines, in <st dexcept >, the class
except i on.There are several kinds of exceptions, including
bad_al l oc and bad_cast . Figure 4.1 il lustrates some of the classes in
the except i on hierarchy. We will explain the diagram shortly. Each of
the classes is a separate class, but for all of them, the what method can be
used to return a (primitive) string that details an error message.

• I/O. As we see in Figure 4.2, the streams hierarchy (i s t r eam,
i f st r eam, etc.) uses inheritance. The streams hierarchy is also more
complex that what is shown.

In addition, systems such as Visual C++ and Borland CBuilder provide class
libraries that can be used to design graphical user interfaces (GUIs). These, librar-
ies, which define components such as buttons, choice-lists, text-areas, and win-
dows, (all in different flavors), make heavy use of inheritance.

In all cases, the inheritance models an IS-A relationship. A button IS-A com-
ponent. A bad_cast IS-A except i on. An i f s t r eam IS-A i s t r eam (but
not vice-versa!). Because of the IS-A relationship, the fundamental property of
inheritance guarantees that any method that can be performed by i s t r eam can
also be performed by i f s t r eam, and an i f s t r eam object can always be refer-
enced by an i s t r eam reference. Note that the reverse is not true. This is why I/
O operations are always written in terms of i s t r eam and ost r eam.

H I J K L M N O P Q R S T U V T W X
exc eption

W Y X S R S Z W [

i nval i d_ar gument

domai n_er r or

r ange_er r or

r unt i me_er r or

l ogi c_er r or

under f l ow_er r or

bad_cast

bad_al l oc

except i on

InheritanceAndLateBinding.mkr Page 170 Wednesday, October 20, 1999 1:01 AM

\ W R T Y] ^ _ W X S Y T R _ Z X ` E F E

H I J K L M N O a Q R S T U V T W X] T S X R b] W Y X S R S Z W [

As a second example, since what is a method available in the except i on
class, if we need to catch exceptions defined in Figure 4.1 using a cat ch han-
dler, we can always write1:

cat ch(c onst e xcept i on & e) { c out < < e. what () < < endl ; }

If e references a bad_cast object, the call to e. what () makes sense. This is
because an exc ept i on object supports the what method, and a bad_ca st
IS-A exce ptio n, meaning that it supports at least as much as exc ept i on .
Depending on the circumstances of the class hierarchy, the what method could
be invariant or it could be specialized for each different class. When a method is
invariant over a hierarchy, meaning it always has the same functionalit y for all
classes in the hierarchy, we avoid having to rewrite an implementation of a class
method.

1. Exceptions are handled by try/catch blocks. An ill ustration of the syntax is in Figure 4.7 on page 177. Code
that might throw the exception is placed in a try block. The exception is handled in a catch block. Since the
exception object is passed into the catch block, any public methods defined for the exception object can be
used on it and any public data defined in the exception object can be examined.

B ' # � c > # � ' & " d 3 � 1 2 0
� : 5 * 4 � � 1 * 8 * 1 * � 4 *
7 : e * 4 - + 7 8 + * 3 * 1 � 5
/ 2 8 8 * 1 * � - - , D * + ;
f . * � 7 D * 1 � - 2 7 � +
� 1 * � D D 5 2 * / - 7 - . *
D 7 5 , @ 7 1 D . 2 4 3 � 1 2 0
� : 5 * (- . * 7 D * 1 � - 2 7 �
� D D 1 7 D 1 2 � - * - 7 - . *
1 * 8 * 1 * � 4 * / 7 : e * 4 -
2 + � ? - 7 @ � - 2 4 � 5 5 ,
+ * 5 * 4 - * / ;

The call to what also il lustrates an important object-oriented principle
known as polymorphism. A reference variable that is polymorphic can reference
objects of several different types. When operations are applied to the reference,
the operation that is appropriate to the actual referenced object is automatically
selected. The same is true for pointer variables (remember that a reference really
is a pointer). In the case of an except i on reference, a run-time decision is
made: the what method for the object that e actually references at run-time is the
one that is used. This is known as dynamic binding or late binding. Unfortunately,
although dynamic binding is the preferred behavior, it is not the default in C++.
This language flaw leads to complications.

f s t r eam

st r i ngst re am

i st r i ngst r eam

i s t r eam

ost r eam

i f st r eam

ost r i ngst r eam

of s t r eam

i os
i ost r eam

InheritanceAndLateBinding.mkr Page 171 Wednesday, October 20, 1999 1:01 AM

E F g

� $ & � � " ! $ d � � 5 5 7) +
? + - 7 / * 1 2 3 * 4 5 � + + * +
8 1 7 @ � h % � d � % %) 2 - . 7 ? - / 2 + - ? 1 : 2 � i
- . * 2 @ D 5 * @ * � - � 0
- 2 7 � 7 8 - . * : � + *
4 5 � + + ;

In inheritance, we have a base class from which other classes are derived.
The base class is the class on which the inheritance is based. A derived class
inherits all the properties of a base class, meaning that all public methods avail-
able to the base class become public methods, with identical implementations for
the derived class. It can then add data members and additional methods and
change the meaning of the inherited methods. Each derived class is a completely
new class. However, the base class is completely unaffected by any changes that
are made in the derived class. Thus, in designing the derived class, it is impossi-
ble to break the base class. This greatly simplifies the task of software mainte-
nance. j � 4 . k � � " l � k d � % %

2 + � 4 7 @ D 5 * - * 5 ,
� *) 4 5 � + + - . � -
� 7 � * - . * 5 * + + . � +
+ 7 @ * 4 7 @ D � - 2 : 2 5 2 - ,
) 2 - . - . * 4 5 � + + 8 1 7 @) . 2 4 . 2 -) � + / * 0
1 2 3 * / ;

� 8 m � C 0 B n (- . * � m 2 +
� % o h d � % % 7 8 n � � /

n 2 + � % o ' � � d � % % 7 8
m ; p . * + * 1 * 5 � - 2 7 � 0
+ . 2 D + � 1 * - 1 � � + 2 - 2 3 * ;

A derived class is type compatible with its base class, meaning that a refer-
ence variable of the base class type may reference an object of the derived class,
but not vice versa (and similarly for pointers). Sibling classes (that is, classes
derived from a common class) are not type compatible.

As mentioned earlier, the use of inheritance typically generates a hierarchy of
classes. Figure 4.1 illustrated a small part of the except i on hierarchy. Notice
that r ange_er r or is indirectly, rather than directly, derived from
except i on. This fact is transparent to the user of the classes because IS-A rela-
tionships are transitive. In other words, if X IS-A Y and Y IS-A Z, then X IS-A
Z. The except i on hierarchy illustrates the typical design issues of factoring out
commonali ties into base classes and then specializing in the derived classes. In
this hierarchy, we say that the derived class is a subclass of the base class and the
base class is a superclass of the derived class. These relationships are transitive.

The arrows in the hierarchy diagrams reflect the modern convention of point-
ing toward the top (or root) of the hierarchy. The stream hierarchy il lustrates
some fancier design decisions. Among other things, commonality among
i s t r eam and ost r eam is factored out and placed in i os . Also, i ost r eam
inherits from both i s t r eam and ost r eam, illustrating multiple inheritance.

The next few sections examine some of the following issues:

• What is the syntax used to derive a new class from an existing base class?
• How does this affect public or private status?
• How do we specialize a method?
• How do we factor out common differences into an abstract class and then

create a hierarchy?
• How do we specify that dynamic binding should be used?
• Can we and should we derive a new class from more than one class (multi-

ple inheritance)?

InheritanceAndLateBinding.mkr Page 172 Wednesday, October 20, 1999 1:01 AM

^ _ W X S Y T R _ Z X q R] Y Z] E F r

� � s � � � � � �
 � � � � t � � � � �

u ? : 5 2 4 2 � . * 1 2 - � � 4 *
@ 7 / * 5 + � � � C 0 B 1 * 5 � 0
- 2 7 � + . 2 D ;

Recall that a derived class inherits all the properties of a base class. It can then
add data members, disable functions, alter functions, and add new functions.
Each derived class is a completely new class. A typical layout for inheritance is
shown in Figure 4.3. C++ tokens are set in boldface. The form of inheritance
described here and used almost exclusively throughout the text is public inheri-
tance. Note carefully that the word publ i c after the colon on line 1 signifies
public inheritance. Without it, we have private inheritance, which is not what we
want, because only public inheritance models an IS-A relationship. Let us briefly
describe a derived class:

• Generally all data is private, so we just add additional data members in the
derived class by specifying them in the private section. p . * / * 1 2 3 * / 4 5 � + + 2 � 0

. * 1 2 - + � 5 5 @ * @ : * 1
8 ? � 4 - 2 7 � + 8 1 7 @ - . *
: � + * 4 5 � + + ; � - @ � ,
� 4 4 * D - - . * @ (/ 2 + � 5 0
5 7) - . * @ (7 1 1 * / * 0
8 2 � * - . * @ ; B / / 2 - 2 7 � 0
� 5 5 , (2 - 4 � � / * 8 2 � *
� *) 8 ? � 4 - 2 7 � + ;

• Any base class member functions that are not specified in the derived class
are inherited unchanged, with the following exceptions: constructor,
destructor, copy constructor, and operator=. For those the typical defaults
apply, with the inherited portion considered as a member. Thus by default
a copy constructor is applied to the inherited portion (considered as a sin-
gle entity) and then member by member. We will be more specific in Sec-
tion 4.2.6.

• Any base class member function that is declared in the derived class’ pri-
vate section is disabled in the derived class.2

• Any base class member function that is declared in the derived class’ pub-
lic section requires an overriding definition that wil l be applied to objects
of the derived class.

• Additional member functions can be added in the derived class.

2. This is bad style, because it violates the IS-A relationship: The derived class can no longer do everything that
the base class can.

InheritanceAndLateBinding.mkr Page 173 Wednesday, October 20, 1999 1:01 AM

E F v

w
class Der i ved : public B asex
{ y
 / / A ny m ember s t hat a r e n ot l i s t ed a r e i nher i t ed u nchangedz
 / / e xcept f or c onst r uct or , d est r uct or ,{
 / / c opy c onst r uct or , a nd o per at or =|
 public:}
 / / C onst r uc t or s , a nd d est r uct or s i f d ef aul t s a r e n ot g ood~
 / / B ase m ember s w hose d ef i ni t i ons a r e t o c hange i n D er i ved�
 / / A ddi t i onal p ubl i c m ember f unct i onsw �
 private:w w
 / / A ddi t i onal d at a member s (gener al l y p r i vat e)w x
 / / A ddi t i onal p r i vat e m ember f unct i onsw y
 / / B ase m ember s t hat s houl d b e d i sabl ed i n D er i vedw z
};

H I J K L M N O � � X _ X S R � � R [U � T U V � � � � Y Z Y _ W X S Y T R _ Z X

� � � � � � � � � � � � � � � � � � � �

We know that any member that is declared with private visibility is accessible
only to methods of the class. Thus any private members in the base class are not
accessible to the derived class.

Occasionally we want the derived class to have access to the base class mem-
bers. There are several options. The first is to use public access. However, public
access allows access to other classes in addition to derived classes. We could use
a friend declaration, but this is also poor design and would require friend declara-
tion for each derived class.B ' � # ! � d ! � k d � % %> � > h � � 2 + D 1 2 3 � - *

- 7 * 3 * 1 , 4 5 � + +
* � 4 * D - � / * 1 2 3 * /
4 5 � + + ;

If we want to allow access to only derived classes, we can make members
protected. A protected class member is private to every class except a derived
class. Declaring data members as protected or public violates the spirit of encap-
sulation and information hiding and is generally done only as a matter of pro-
gramming expediency. Typically, a better alternative is to write accessor and
mutator methods. However, if a protected declaration allows you to avoid convo-
luted code, then it is not unreasonable to use it. In this text, protected data mem-
bers are used for precisely this reason. Using protected methods is also done in
this text. This allows a derived class to inherit an internal method without making
it accessible outside the class hierarchy. Figure 4.4 shows the visibil ity of mem-
bers in certain situations.

� � � � � � � � � � � � ¡ � � � ¢ � � ¡ � £ � � � � � � � � � £ � � �
¤ � � � ¥ ¡ �

¦ § ¨ © ª « § ¨ ¨ ¬ © ¬ ­ © ® ¯ ° ± ª ² ³ ´ ± § ª ª © ¨ ¨ ³ ± µ ¶ · © ¨ · © ¨ · © ¨
H I J K L M N O N ¸ Z Z X]] S � � X] T W R T ¹ X � X _ ¹ U _ º W R T » ¼] ½ Y] Y � Y � Y T [Y] Y _ T W X � R] X

Z � R]]

InheritanceAndLateBinding.mkr Page 174 Wednesday, October 20, 1999 1:01 AM

^ _ W X S Y T R _ Z X q R] Y Z] E F ¾

� � � � � ¿ À � Á Â Ã � � Ä � Å � Â Ä Æ Ã Ç È Æ � � Á � Æ � � É Ã � � � Æ � � Ê Æ � � Â Ã

� 8 � 7 4 7 � + - 1 ? 4 - 7 1 2 +
) 1 2 - - * � (- . * � � + 2 � 0
i 5 * Ë * 1 7 0 D � 1 � @ * - * 1/ * 8 � ? 5 - 4 7 � + - 1 ? 4 - 7 1
2 + i * � * 1 � - * / - . � -
4 � 5 5 + - . * : � + * 4 5 � + +
Ë * 1 7 0 D � 1 � @ * - * 14 7 � + - 1 ? 4 - 7 1 8 7 1 - . *
2 � . * 1 2 - * / D 7 1 - 2 7 � (
� � / - . * � � D D 5 2 * +
- . * / * 8 � ? 5 - 2 � 2 - 2 � 5 2 Ë � 0
- 2 7 � 8 7 1 � � , � / / 2 0
- 2 7 � � 5 / � - � 8 2 * 5 / + ;

Each derived class should define its constructors. If no constructor is written, then
a single zero-parameter default constructor is generated. This constructor will call
the base class zero-parameter constructor for the inherited portion and then apply
the default initialization for any additional data members.

Constructing a derived class object by first constructing the inherited portion
is standard practice. In fact, it is done by default, even if an explicit derived class
constructor is given. This is natural because the encapsulation viewpoint tells us
that the inherited portion is a single entity, and the base class constructor tells us
how to initialize this single entity.

Base class constructors can be explicitly called by its name in the initializer
list. Thus the default constructor for a derived class is in reality

publ ic D er i ved() : B ase()
{
}

w
c l ass U nder f l owExcept i on : p ubl i c u nder f l ow_er r orx
{y
 publ i c:z
 Under f l owExcept i on(c onst s t r i ng & m sg = " "){
 : e xcept i on(m sg. c_st r ()) { }|
} ;

H I J K L M N O Ì Í U _] T S � Z T U S V U S _ X º X Î Z X � T Y U _ Z � R]]
Underflow Ï �] X] � R] X

Z � R]] Y _ Y T Y R � Y Ð X S � Y] T

Ñ © ® ³ Ò © Ó ª « § ¨ ¨ ¬ © ¬ ­ © ® ¯ ° ± ª ² ³ ´ ± § ª ª © ¨ ¨ ³ ± µ · © ¨ · © ¨ Ô ´
mai n Õ § ª ª © ¨ ¨ ³ ± µ Ö × ¶ · © ¨ Ô ´ Ô ´
mai n Õ § ª ª © ¨ ¨ ³ ± µ Ø × ¶ · © ¨ Ô ´ Ô ´

Ñ © ® ³ Ò © Ó ª « § ¨ ¨ ¬ © ¬ ­ © ® ¯ ° ± ª ² ³ ´ ± § ª ª © ¨ ¨ ³ ± µ · © ¨ Ô ´ Ô ´
Ö ³ ¨ § ± ´ ­ Ù © ª ² ´ ¯ ² Ú © ­ § ¨ © ª « § ¨ ¨ Û Ø ³ ¨ § ± ´ ­ Ù © ª ² ´ ¯ ² Ú © Ü ° ­ « ³ ª « Ý Ó © ® ³ Ò © Ó ª « § ¨ ¨ Û ¶ ³ ¨

§ ¬ © ¬ ­ © ® ´ ¯ ² Ú © ­ § ¨ © ª « § ¨ ¨ Þ

� � � � � � � � � � � � ¡ � � � ¢ � � ¡ � £ � � � � � � � � � £ � � �
¤ � � � ¥ ¡ �

H I J K L M N O N ¸ Z Z X]] S � � X] T W R T ¹ X � X _ ¹ U _ º W R T » ¼] ½ Y] Y � Y � Y T [Y] Y _ T W X � R] X
Z � R]]

InheritanceAndLateBinding.mkr Page 175 Wednesday, October 20, 1999 1:01 AM

E F ß

B : � + * 0 4 5 � + + 2 � 2 - 2 � 5 0
2 Ë * 1 2 + ? + * / - 7 4 � 5 5
- . * : � + * 4 5 � + + 4 7 � 0
+ - 1 ? 4 - 7 1 ;

The base class initializer can be called with parameters that match a base
class constructor. As an example, Figure 4.5 illustrates a class
Under f l owExcept i on that could be used when implementing data struc-
tures. Under f l owExcept i on is thrown when an attempt is made to extract
from an empty data structure. An Under f l owExcept i on object is constructed
by providing an optional string. Since the under f l ow_er r or class specifica-
tion requires a primitive string, we need to use an initializer list. The
Under f l owExcept i on object adds no data members, so the construction
method is simply to construct the inherited portion using the
under f l ow_er r or constructor.

If the base class initializer is not provided, then an automatic call to the base
class constructor with no parameters is generated. If there is no such base class
constructor, then a compiler error results. Thus, this is a case where initializer
lists might be mandatory.

� � � � à á Ç Ç � Ã â ã � ä � � Ä �

A derived class inherits from its base class the behavior of the base class. This
means that all methods defined for the base class are now defined for the derived
class. In this section we examine the consequences of adding extra methods and
data members.

Our vect or class in Section 3.4.2 throws an exception if an out-of-bounds
index is detected. It makes no attempt to be fancy, and passes back no informa-
tion except the fact that an error has occurred. Let us look at an alternative that
could have been used (note that except i on and <st dexcept > are relatively
new language additions, which is why we have elected not to use them in the
remainder of the text). The alternative stores information about what went wrong
inside the exception object. It provides accessors to get this information. How-
ever, it still IS-A except i on, meaning that is can be used any place that an
except i on can be used. The new class is shown in Figure 4.6.

BadI ndex has one constructor, and three methods (in addition to defaults
for copying and destruction that we ignore for now). The constructor accepts two
parameters. It initializes the inherited except i on portion using a zero-parame-
ter constructor. It then uses the two parameters to store the index that caused the
error and the size of the vector. Presumably, the vect or has code such as:

 // S ee F i gure 3 . 14
 Obj ect & o per at or [] (i nt i ndex)
 {
 i f (i ndex < 0 | | i ndex > = c ur r ent Si ze)
 t hr ow B adI ndex(i ndex, s i ze()) ;
 r et ur n ob j ect s[i ndex] ;
 }

InheritanceAndLateBinding.mkr Page 176 Wednesday, October 20, 1999 1:01 AM

^ _ W X S Y T R _ Z X q R] Y Z] E F F

The three methods available for BadI ndex are get I ndex , get Si ze, and
what . The behavior of what is unchanged from the except i on class.

w
/ / E xampl e o f a d er i ved c l ass t hat a dds n ew member s .x

y
c l ass B adI ndex : p ubl i c e xcept i onz
{{
 publ i c:|
 BadI ndex(i nt i dx , i nt s z)}
 : i ndex(i dx) , s i ze(s z) { }~

�
 i nt g et I ndex() c onstw �
 { r et ur n i ndex; }w w
 i nt g et Si ze() c onstw x
 { r et ur n s i ze; }w y

w z
 pr i vat e:w {
 i nt i ndex;w |
 i nt s i ze;w }
} ;

H I J K L M N O å
BadI ndex

Z � R]] æ ¹ X S Y ½ X ¹ V S U b
excepti on

w
/ / U se t he B adI ndex e xcept i on.x
i nt m ai n()y
{z
 NewVect or <i nt > v (1 0) ;{

|
 t r y}
 {~
 f or (i nt i = 0 ; i < = v . s i ze() ; i ++) / / o f f - by- one�
 v [i] = 0 ;w �
 }w w
 cat ch(c onst B adI ndex & e)w x
 {w y
 cout < < e . what () < < " , i ndex=" < < e . get I ndex()w z
 < < " , s i ze=" < < e . get Si ze() < < e ndl ;w {
 }w |

w }
 r et ur n 0 ;w ~
}

H I J K L M N O ç è] Y _ é T W X
BadIndex

Z � R]]

Besides the new functionality, BadI ndex has two data members in addition
to the data members that are inherited from except i on. What data was inher-
ited from except i on? The answer is, we do not know (unless we look at the

InheritanceAndLateBinding.mkr Page 177 Wednesday, October 20, 1999 1:01 AM

E F ê

class design), and if the inherited data is private, it is inaccessible. Notice, how-
ever, that we do not need this knowledge. Furthermore, our design works regard-
less of the underlying data representation in except i on. Thus changes to the
private implementation of ex cept i on wil l not require any changes to BadI n-
dex .

Figure 4.7 shows how the BadI ndex class could be used. Notice that since
a BadI ndex IS-A except i on, at line 11 we could catch it using an
except i on reference.3 We could apply the what method to get some informa-
tion. However, we could not apply the get I ndex and get Si ze methods,
because those methods are not defined for all except i on objects.

Because the predefined excepti on class is a recent language addition, the
online code has a collection of exceptions rooted at class DSExcept i on.

� � � � � ë ì � Ä Ä � Ç � Ã â Æ ã � � À Â Ç

3. Even though the BadI ndex object is an automatic variable in oper at or [] , it can be caught by reference
because thrown objects are guaranteed longer li fetime than normal function arguments.

p . * / * 1 2 3 * / 4 5 � + +
@ * - . 7 / @ ? + - . � 3 *
- . * + � @ * 7 1 4 7 @ 0
D � - 2 : 5 * 1 * - ? 1 � - , D *
� � / + 2 i � � - ? 1 * ;

Methods in the base class are overridden in the derived class by simply providing
a derived class method with the same signature. The derived class method must
have the same or compatible return type (the notion of a compatible return type is
new, and is discussed in Section 4.4.4.)

í � ! " � # l � � � " k " $ î
2 � 3 7 5 3 * + 4 � 5 5 2 � i �
: � + * 4 5 � + + @ * - . 7 /
: , ? + 2 � i - . * + 4 7 D *
7 D * 1 � - 7 1 ;

Sometimes the derived class method wants to invoke the base class method.
Typically, this is known as partial overriding. That is, we want to do what the
base class does, plus a li ttle more, rather than doing something entirely different.
Calls to a base class method can be accomplished by using the scope operator.
Here is an example:

cl ass Wor kahol i c : p ubl i c Wor ker
{
 publ i c:
 vo i d d oWor k()
 {
 Wor ker : :d oWor k() ; / / W or k l i ke a Wor ker
 dr i nkCoff ee() ; / / T ake a b re ak
 Wor ker : :d oWor k() ; / / W or k l i ke a Wor ker so me mor e
 }
} ;

InheritanceAndLateBinding.mkr Page 178 Wednesday, October 20, 1999 1:01 AM

^ _ W X S Y T R _ Z X q R] Y Z] E F ï

� � � � ð ñ � Æ � � Å Æ Ã Ç ò � Ã Æ ä � Å È � Ã Ç � Ã â

� � % ! ! " d h " $ k " $ î (- . *
/ * 4 2 + 2 7 � 7 �) . 2 4 .
8 ? � 4 - 2 7 � - 7 ? + * - 7
1 * + 7 5 3 * � � 7 3 * 1 0
5 7 � / 2 + @ � / * � -
4 7 @ D 2 5 * - 2 @ * ;

Figure 4.8 i l l ustrates that there i s no problem in declaring Worker and
Workaholic objects in the same scope because the compiler can deduce which
doWork method to apply. w is a Worker and wh is a Workaholic, so the determi-
nation of which doWork is used in the two calls at line 6 is computable at compile
time. We call this static binding or static overloading.

On the other hand, the code in Figure 4.9 is more complicated. If x is zero,
we use a plain Wor ker class; otherwise, we use a Wor kahol i c . Recall that
since a Wor kahol i c IS-A Wor ker , a Wor kahol i c can be accessed by a
pointer to a Wor ker . Any method that we might call for Wor ker will have a
meaning for Wor kahol i c objects. We see then that public inheritance automat-
ically defines a type conversion from a pointer to a derived class to a pointer to
the base class. Thus we can declare that wptr is a pointer to the base class
Wor ker and then dynamically allocate either a Wor ker or Wor kahol i c
object for it to point at. When we get to line 9, which doWork gets called? � 8 � @ * @ : * 1 8 ? � 4 0

- 2 7 � 2 + / * 4 5 � 1 * / - 7: * 3 2 1 - ? � 5 (k c $ > " d
h " $ k " $ î 2 + ? + * / ; p . *
/ * 4 2 + 2 7 � 7 �) . 2 4 .
8 ? � 4 - 2 7 � - 7 ? + * - 7
1 * + 7 5 3 * � � 7 3 * 1 0
5 7 � / 2 + @ � / * � - 1 ? �
- 2 @ * (2 8 2 - 4 � � � 7 - : *
/ * - * 1 @ 2 � * / � -
4 7 @ D 2 5 * - 2 @ * ;

The decision of which doWork to use can be made at compile time or at run
time. If the decision is made at compile time (static binding), then we must use
Worker’s doWork because that is the type of *wptr at compile time. If wptr is
actually pointing at the Workaholic, this is the wrong decision. Because the type
of object that wptr is actually pointing at can only be determined once the pro-
gram has run, this decision must be made at run time. This is known as dynamic
binding. As we discussed earlier in this chapter, this is almost always the pre-
ferred course of action.

However a run-time decision incurs some run-time overhead because it
requires that the program maintain extra information and that the compiler gener-
ate code to perform the test. This overhead was once thought to be significant,
and thus although other languages, such as Smalltalk and Objective C, use
dynamic binding by default, C++ does not.

w
 const V ect or Si ze = 2 0;x
 Wor ker w ;y
 Wor kahol i c w h;z
 . . .{
 wh. doWor k()|
 w. doWor k() ; w h. doWor k() ;

H I J K L M N O ó
Worker

R _ ¹
Workah olic

Z � R]] X] º Y T W Z R � �] T U
doWork

T W R T
R S X ¹ U _ X R � T U b R T Y Z R � � [R _ ¹ Z U S S X Z T � [

InheritanceAndLateBinding.mkr Page 179 Wednesday, October 20, 1999 1:01 AM

E ê G

� � i * � * 1 � 5 (2 8 � 8 ? � 4 0
- 2 7 � 2 + 1 * / * 8 2 � * / 2 � �
/ * 1 2 3 * / 4 5 � + + (2 -
+ . 7 ? 5 / : * / * 4 5 � 1 * /
3 2 1 - ? � 5 2 � - . * : � + *
4 5 � + + ;

Instead, the C++ programmer must ask for it by specifying that the function
is virtual. A virtual function will use dynamic binding if a compile-time binding
decision is impossible to deduce. A non-virtual function wil l always use static
binding. The default, as we implied above, is that functions are non-virtual. This
is unfortunate because we now know that the overhead is relatively minor.

Virtualness is inherited, so it can be indicated in the base class. Thus if the
base class declares that a function is virtual (in its declaration), then the decision
can be made at run time; otherwise, it is made at compile time. For example, in
the excepti on class, the what method is virtual. The derived classes require
no further action to have dynamic binding apply for what method calls.

Consequently, for the example in Figure 4.9, the answer depends entirely on
whether or not doWor k was declared virtual in the Wor ker class (or higher in
the hierarchy). Note carefully that if doWor k is not virtual in the Wor ker class
(or higher in the hierarchy), but is later made virtual in Wor kahol i c , then
accesses through pointers and references to Wor ker wil l still use static binding.
To make a run-time decision, we would have to place the keyword virtual at the
start of the doWor k declaration in the Worker class interface (the rest of the class
is omitted for brevity):

cl ass Wor ker
{
 publ i c:
 vi r t ual v oi d doWor k() ;
} ;

w
 Wor ker * wpt r ;x
 c i n > > x ;y
 i f (x ! = 0)z
 wpt r = n ew Wor kahol i c () ;{
 el se|
 wpt r = n ew Wor ker () ;}

~
 . . .�
 wpt r - >doWor k() ; / / W hat d oes t hi s m ean?

H I J K L M N O ô
Worker

R _ ¹
Workaholic

U � õ X Z T] R Z Z X]] X ¹ T W U � é W R � U Y _ T X S
T U R

Worker Ï º W Y Z W ½ X S] Y U _ U V
doWork

Y] �] X ¹ ¹ X � X _ ¹] U _
º W X T W X S

doWork
Y] ¹ X Z � R S X ¹ ½ Y S T � R � Y _

Wor ker

As a general rule, if a function is overridden in a derived class, it should be
declared virtual in the base class to ensure that the correct function is selected
when a pointer to an object is used. An important exception is discussed in Sec-
tion 4.2.7.

To summarize: Static binding is used by default, and dynamic binding is used
for virtual functions if the binding cannot be resolved at compile time. However,

InheritanceAndLateBinding.mkr Page 180 Wednesday, October 20, 1999 1:01 AM

^ _ W X S Y T R _ Z X q R] Y Z] E ê E

a run-time decision is only needed when an object is accessed through a pointer
or reference to a base class.

� � � � ö ¿ À � ò � ÷ Æ � � � Á Â Ã � � Ä � Å � Â Ä ø Á Â ù � Á Â Ã � � Ä � Å � Â Ä ø Á Â ù � á � � � â Ã ä � Ã �
ë ù � Ä Æ � Â Ä ø Æ Ã Ç ò � � � Ä � Å � Â Ä

p . * D ? : 5 2 4 ú D 1 2 3 � - *
+ - � - ? + 7 8 - . * / * 0
8 � ? 5 - 4 7 � + - 1 ? 4 - 7 1 (
4 7 D , 4 7 � + - 1 ? 4 - 7 1 (
� � / 4 7 D , � + + 2 i � 0
@ * � - 7 D * 1 � - 7 1 (5 2 û *
� 5 5 7 - . * 1 @ * @ : * 1 +
2 + 2 � . * 1 2 - * / ;

There are two issues surrounding the default constructor, copy constructor, and
copy assignment operator: first, if we do nothing, are these operators private or
public? Second, if they are public, what are their semantics?

We assume public inheritance. We also assume that these functions were
public in the base class. What happens if they are completely omitted from the
derived class? We know that they wil l be public, but what wil l their semantics be?
We know that for classes there are defaults for the simple constructor, the copy
constructor and the copy assignment operator. Specifically, the default is to apply
the appropriate operation to each member in the class. Thus if a copy assignment
operator is not specified in a class, we have seen that it is defined as a member-
by-member copy. The same rules apply to inherited classes. This means, for
instance, that

const BadI ndex & oper at or =(const B adIn dex & r hs) ;

� 8 � / * 8 � ? 5 - / * + - 1 ? 4 0
- 7 1 (4 7 D , 4 7 � + - 1 ? 4 0
- 7 1 (7 1 4 7 D , � + + 2 i � 0
@ * � - 7 D * 1 � - 7 1 2 +
D ? : 5 2 4 5 , 2 � . * 1 2 - * /
: ? - � 7 - / * 8 2 � * / 2 �
- . * / * 1 2 3 * / 4 5 � + + (
- . * � : , / * 8 � ? 5 - - . *
7 D * 1 � - 7 1 2 + � D D 5 2 * /
- 7 * � 4 . @ * @ : * 1 ;

since it is not explicitly defined, is implemented by a call to operator= for the base
class.

What is true for any member function is in effect true for these operators
when it comes to visibil ity. Thus, if operator= is disabled by being placed in the
private section in the base class, then it is still disabled. The same holds true for
the copy constructor and default constructor. The reasoning, however, is slightly
different. operator= is in effect disabled because a public default operator= is gen-
erated. However, by default operator= is applied to the inherited portion and then
member by member. Since operator= for the base class is disabled, the first step
becomes illegal. Thus placing default constructors, copy constructors, and opera-
tor= in the private section of the base class has the effect of disabling them in the
derived class (even though technically they are public in the derived class).

� � � � ü Á Â Ã � � Ä � Å � Â Ä � Æ Ã Ç ò � � � Ä � Å � Â Ä � ý � � Ä � � Æ � Â Ä Ã Â � � � Ä � � Æ � þ

ÿ 7 � + - 1 ? 4 - 7 1 + � 1 *
� * 3 * 1 3 2 1 - ? � 5 ;The short answer to the question of whether constructors and destructors should

be virtual or not is that constructors are never virtual, and destructors should
always be made virtual if they are being used in a base class and should be non-
virtual otherwise. Let us explain the reasoning. � � � � 2 � . * 1 2 - � � 4 * . 2 0

* 1 � 1 4 . , - . * / * 0
+ - 1 ? 4 - 7 1 2 + � 5) � , + 3 2 1 0
- ? � 5 ;

For constructors a virtual label is meaningless. We can always determine at
compile time what we are constructing. For destructors we need virtual to ensure
that the destructor for the actual object is called. Otherwise, if the derived class

InheritanceAndLateBinding.mkr Page 181 Wednesday, October 20, 1999 1:01 AM

E ê g

consists of some additional members that have dynamically allocated memory,
that memory will not be freed by the base class destructor. In a sense the destruc-
tor is no different than any other member function. For example, in Figure 4.10
suppose that the base class contains st r i ngs name1 and name2. Automatically,
its destructor will call the destructors for these strings, so we are tempted to
accept the default. In the derived class we have an additional st r i ng newName.
Automatically, its destructor calls newName’ s destructor, and then the base class
destructor. So it appears that everything works.

 However, if the destructor for the base class is used for an object of the
derived class, only those items that are inherited are destroyed. The destructor for
the additional data member newName cannot possibly be called because the
destructor for the base class is oblivious to newName’s existence.

Thus even if the default destructor seems to work, it does not if there is inher-
itance. The base class constructor should always be made virtual, and if it is a
trivial destructor, it should be written anyway, with a virtual declaration and
empty body. When the destructor is virtual, we are certain that a runtime decision
will be used to choose the destructor that is appropriate to the object being
del et ed.

For a concrete example, Figure 4.11 shows the class interface for excep-
t i on. Notice how the destructor is virtual.

H I J K L M N O P � Í R � � Y _ é T W X � R] X Z � R]] ¹ X] T S � Z T U S ¹ U X] _ U T V S X X b X b U S [R]] U Z Y �
R T X ¹ º Y T W

newName

name1
name2

name1
name2

newName

Base Class

Derived Class

InheritanceAndLateBinding.mkr Page 182 Wednesday, October 20, 1999 1:01 AM

^ _ W X S Y T R _ Z X q R] Y Z] E ê r

w
/ / I nt er f ace f or c l ass e xcept i on i n < except i on>x

y
c l ass e xcept i onz
{{
 publ i c:|
 except i on() ;}
 except i on(c onst e xcept i on & r hs) ;~

�
 v i r t ual ~ except i on() ;w �
 w w
 const e xcept i on & o per at or =(c onst e xcept i on & r hs) ;w x

w y
 v i r t ual c onst c har * w hat () ;w z

w {
 pr i vat e:w |
 / / i mpl ement at i on- def i nedw }
} ;

H I J K L M N O P P Í � R]] Y _ T X S V R Z X V U S
exception

� � � � � á � � � Ä Æ Å � ã � � À Â Ç � Æ Ã Ç Á � Æ � � � �

So far we have seen that some methods are invariant over a hierarchy and that
other methods can have their meaning changed over the hierarchy. A third possi-
bili ty is that the method is meaningful for the derived classes and an implementa-
tion must be provided for the derived classes; however, that implementation is not
meaningful for the base class. In this case, we can declare that the base class
method is abstract. B � h % ! � d !

> � ! & # k . � + � 7
@ * � � 2 � i 8 ? 5 / * 8 2 � 2 0
- 2 7 � � � / 2 + - . ? + � 5 0
) � , + / * 8 2 � * / 2 � - . *
/ * 1 2 3 * / 4 5 � + + ;

An abstract method is a method that declares functionality that all derived
class objects must eventually implement. In other words, it says what these
objects can do. However, it does not provide a default implementation. Instead,
each object must provide its own implementation.

A class that has at least one abstract method is an abstract class. Since the
behavior of an abstract class is not completely defined, abstract classes can never
be instantiated. When a derived class fails to override an abstract method with an
implementation, the method remains abstract in the derived class. As a result, the
derived class remains abstract, and the compiler will report an error if an attempt
to instantiate the abstract derived class is made.

An example is an abstract class Shape, which is used in a larger example
later in this chapter. Specific shapes, such as Ci r cl e and Rect angl e, are
derived from Shape. We can then derive a Squar e as a special Rect angl e.
Figure 4.12 shows the class hierarchy that results.

The Shape class can have data members that are common to all classes. In a
more extensive example, this could include the coordinates of the object’s
extremities. It declares and provides a definition for methods, such as
posi t i onOf , that are independent of the actual type of object; posi t i onOf

InheritanceAndLateBinding.mkr Page 183 Wednesday, October 20, 1999 1:01 AM

E ê v

would be an invariant method. It also declares methods that apply for each partic-
ular type of object. Some of these methods make no sense for the abstract class
Shape. For instance, it is diff icult to compute the area of an abstract object; the
ar ea method would be an abstract method.B 4 5 � + +) 2 - . � - 5 * � + -

7 � * � : + - 1 � 4 -
@ * - . 7 / @ ? + - : *
� � h % ! � d ! d � % % ;

As mentioned earlier, the existence of at least one abstract method makes the
base class abstract and disallows creation of it. Thus a Shape object cannot itself
be created; only the derived objects can. However, as usual, a Shape can point to
or reference any concrete derived object, such as a Ci r cl e or Rect angl e.
Thus

Shape * a, * b;
a = ne w Ci r cl e(3. 0) ; / / L egal
b = ne w S hape("c i r c l e") ; / / I l l egal

B � � : + - 1 � 4 - 4 5 � + +
7 : e * 4 - 4 � � � * 3 * 1: * 4 7 � + - 1 ? 4 - * / ;

A 7) * 3 * 1 () * + - 2 5 5
D 1 7 3 2 / * � 4 7 � + - 1 ? 4 0
- 7 1 - . � - 4 � � : *
4 � 5 5 * / : , / * 1 2 3 * /
4 5 � + + * + ;

Figure 4.13 shows the abstract class Shape. At line 30, we declare a
st r i ng that stores the type of shape. This is used only for the derived classes.
The member is private, so the derived classes do not have direct access to it. The
rest of the class specifies a collection of methods.

The constructor never actually gets called directly because Shape is an
abstract class. We need a constructor, however, so that the derived class can call i t
to initialize the private members. The Shape constructor sets the internal name
data member. Notice the virtual destructor, in according with the discussion in
Section 4.2.7.B : + - 1 � 4 - @ * - . 7 / +

� 1 * � 5 + 7 û � 7) � � +
' o � � l " � ! o � � o $ d �

! " # $ % 2 � ÿ � � ;

Line 21 of Figure 4.13 declares the abstract method ar ea. A method is
declared abstract by specifying that it is vi r t ual , and supplying = 0 in the
interface in place of an implementation. Because of the syntax, abstract methods
are also known as pure virtual functions in C++. As with all virtual methods, a
run-time decision will select the appropriate ar ea in a derived class. ar ea is an
abstract method because there is no meaningful default that could be specified to
apply for an inherited class that chose not to define its own.

H I J K L M N O P a � W X W Y X S R S Z W [U V] W R � X] �] X ¹ Y _ R _ Y _ W X S Y T R _ Z X X Î R b � � X

Square

Rectangle

Shape

Circle

InheritanceAndLateBinding.mkr Page 184 Wednesday, October 20, 1999 1:01 AM

^ _ W X S Y T R _ Z X q R] Y Z] E ê ¾

w
/ / A bst r act b ase c l ass f or s hapesx
/ /y
/ / C ONSTRUCTI ON: i s n ot a l l owed; S hape i s a bst r ac tz
/ /{
/ / * * * * * * * * * * * * * * * * * * PUBLI C OPERATI ONS* *|
/ / d oubl e a r ea() - - > R et ur n t he a r ea (abst r act)}
/ / b ool o per at or < (r hs) - - > C ompar e 2 S hape o bj ec t s b y a r ea~
/ / v oi d p r i nt (o ut = c out) - - > S t andar d p r i nt m et hod�

w �
#i ncl ude < i os t r eam>w w
#i ncl ude < st r i ng>w x
usi ng n amespace s t d;w y

w z
c l ass S hapew {
{w |
 publ i c:w }
 Shape(c onst s t r i ng & s hapeName = " ") : n ame(s hapeName)w ~
 { }w �
 v i r t ual ~ Shape() { }x �

x w
 v i r t ual d oubl e a r ea() c onst = 0 ;x x

x y
 bool o per at or < (c onst S hape & r hs) c onstx z
 { r et ur n a r ea() < r hs. ar ea() ; }x {

x |
 v i r t ual v oi d p r i nt (o st r eam & o ut) c onstx }
 { o ut < < n ame < < " o f a r ea " < < a r ea() ; }x ~

x �
 pr i vat e:y �
 s t r i ng n ame;y w
} ;

H I J K L M N O P � ¸ �] T S R Z T � R] X Z � R]]
Shape

The comparison method shown at lines 23 to 24 is not abstract because it can
be meaningfully applied for all derived classes. In fact, its definition is invariant
throughout the hierarchy of shapes, so we have not made it virtual.

The pr i nt method, shown at lines 26 and 27, prints out the name of the
shape and its area. Although it appears to be invariant now, we make it virtual just
in case we change our mind later on. oper at or << is written in Figure 4.14.

w
/ / O ut put r out i ne f or S hapex
ost r eam & o per at or << (o s t r eam & o ut , c onst S hape & r hs)y
{z
 r hs . pr i nt (o ut) ;{
 r et ur n o ut ;|
}

H I J K L M N O P N � � T � � T S U � T Y _ X V U S
Shape

T W R T Y _ Z � � ¹ X] Y T] _ R b X R _ ¹ R S X R

InheritanceAndLateBinding.mkr Page 185 Wednesday, October 20, 1999 1:01 AM

E ê ß

Before continuing, let us summarize the three types of member functions:C - � - 2 4 : 2 � / 2 � i 2 +
? + * / 8 7 1 � � 7 � 3 2 1 0
- ? � 5 8 ? � 4 - 2 7 �) . * �
- . * 8 ? � 4 - 2 7 � 2 + 2 � 0
3 � 1 2 � � - 7 3 * 1 - . * 2 � 0
. * 1 2 - � � 4 * . 2 * 1 � 1 4 . , ;

1. Nonvirtual functions. Overloading is resolved at compile time. To
ensure consistency when pointers to objects are used, we generally
use a nonvirtual method only when the function is invariant over
the inheritance hierarchy (that is, when the method is never rede-
fined).The exception to this rule is that constructors are always
nonvirtual, as mentioned in Section 4.2.7.

2. Virtual functions. Overloading is resolved at run time. The base
class provides a default implementation that may be overridden by
the derived classes. Destructors should be virtual, as mentioned in
Section 4.2.7.

3. Pure virtual functions. Overloading is resolved at run time. The
base class provides no implementation and is abstract. The
absence of a default requires either that the derived classes provide
an implementation or that the derived classes themselves be
abstract.

� � � � 	 �
 � � �
 � 	 � � � � � � �
 � �
Shape � � � � �

This section implements the derived Shape classes and shows how they are used
in a polymorphic manner. The following problem is used:

� � � � � � � � � � � � �
� � � � ! " � # � ! $ % & ' % (� !) ! * + � ' � !) , ' ' � % - � . / (� ! 0 � . � , + - # + - - " � 1! , ' - � � 2 3 � ' � � 4
The implementation of the derived classes, shown in Figure 4.15, is com-

pletely straightforward and il lustrates almost nothing that we have not already
seen. The only new item is that Squar e is derived from Rect angl e, which
itself is derived from Shape. This derivation is done exactly like all the others.
In implementing these classes, we must do the following:

1. Provide a new constructor.
2. Examine each virtual function to decide if we are wil ling to accept

its defaults. For each virtual function whose defaults we do not
like, we must write a new definition.

3. Write a definition for each pure virtual function.
4. Write additional member functions if appropriate.

For each class, we provide a simple constructor that allows initialization with
basic dimensions (radius for circles, side lengths for rectangles and squares). We
first initialize the inherited portion by call ing the base class initializer. Each class
is required to provide an ar ea method because Shape has declared that it is an

InheritanceAndLateBinding.mkr Page 186 Wednesday, October 20, 1999 1:01 AM

5 Î R b � � X 6 5 Î � R _ ¹ Y _ é T W X
Shape

Í � R]] E ê F

abstract method. If the ar ea method is not provided for some class then an error
wil l be detected at compile time. This is because if an implementation of ar ea is
missing, a derived class will it self be abstract. Note that Squar e is wil ling to
inherit the ar ea method from the Rect angl e, so it does not provide a redefini-
tion. Note also that its name internally is now a rectangle.

w
/ / C i r c l e, S quar e, R ect angl e c l ass i nt er f aces;x
/ / a l l b ased o n S hapey
/ /z
/ / C ONSTRUCTI ON: w i t h (a) n o i ni t i al i zer o r (b) r adi us (f or{
/ / c i r c l e) , s i de l engt h (f or s quar e) , l engt h a nd w i dt h|
/ / (f or r ec t angl e)}
/ / * * * * * * * * * * * * * * * * * * PUBLI C OPERATI ONS* *~
/ / d oubl e a r ea() - - > I mpl ement s S hape p ur e v i r t ual a r ea�

w �
const d oubl e P I = 3 . 1415927;w w

w x
c l ass C i r c l e : p ubl i c S hapew y
{w z
 publ i c:w {
 Ci r c l e(d oubl e r ad = 0 . 0)w |
 : S hape(" c i r c l e") , r adi us(r ad) { }w }
 doubl e a r ea() c onstw ~
 { r et ur n P I * r adi us * r adi us ; }w �

x �
 pr i vat e:x w
 doubl e r adi us ;x x
} ;x y

x z
c l ass R ect angl e : p ubl i c S hapex {
{x |
 publ i c:x }
 Rect angl e(d oubl e l en = 0 . 0, d oubl e w i d = 0 . 0)x ~
 : S hape(" r ec t angl e") , l engt h(l en) , w i dt h(w i d) { }x �
 doubl e a r ea() c onsty �
 { r et ur n l engt h * w i dt h; }y w

y x
 pr i vat e:y y
 doubl e l engt h;y z
 doubl e w i dt h;y {
} ;y |

y }
c l ass S quar e : p ubl i c R ect angl ey ~
{y �
 publ i c:z �
 Squar e(d oubl e s i de = 0 . 0)z w
 : R ect angl e(s i de, s i de) { }z x
} ;

H I J K L M N O P Ì Í U b � � X T X
Circle

æ
Rectangle

æ R _ ¹
Square

Z � R]] X]

InheritanceAndLateBinding.mkr Page 187 Wednesday, October 20, 1999 1:01 AM

E ê ê

f * 4 � � 7 � 5 , / * 0
4 5 � 1 * � 1 1 � , + 7 8
D 7 2 � - * 1 + - 7 : � + *
4 5 � + + * + : * 4 � ? + * - . *
+ 2 Ë * 7 8 - . * : � + *
4 5 � + + 2 + ? + ? � 5 5 ,
+ @ � 5 5 * 1 - . � � - . *
+ 2 Ë * 7 8 - . * / * 1 2 3 * /
4 5 � + + ; � - 4 � � � * 3 * 1: * 5 � 1 i * 1 ;

Now that we have written the classes, we are ready to solve the original prob-
lem. What we would like to do is declare an array of Shapes. But we cannot
declare one Shape, much less an array of them. There are two reasons for this.
First, Shape is an abstract base class, so a Shape object does not exist. Even if
Shape was not abstract, which would be the case if it defined an area function, we
still could not reasonably declare an array of Shapes. This is because the basic
Shape has one data member, Circle adds a second data member, Rectangle adds a
third data member, and so on. The basic Shape is not large enough to hold all of
the possible derived types. Consequently, we need an array of pointers to Shape.
Figure 4.16 attempts this approach; however, it does not quite work because we
get in trouble at the sorting stage.

We examine the logic in Figure 4.16 and show how to correct the deficiency.
First we read the objects. At line 17 we are actually reading a character and then
the dimensions of some shape, creating a shape, and finally assigning a pointer to
point at the newly created shape. Figure 4.17 shows a bare bones implementation.
So far so good.

w
#i ncl ude < i os t r eam>x
#i ncl ude < vect or >y
usi ng n amespace s t d;z

{
/ / m ai n: r ead s hapes a nd o ut put i ncr eas i ng o r der o f a r ea.|
/ / E r r or c hecks o mi t t ed f or b r evi t y .}
i nt m ai n()~
{�
 i nt n umShapes;w �
 c i n > > n umShapes;w w
 vect or <Shape * > a r r ay(n umShapes) ; / / A r r ay o f S hape *w x

w y
 / / R ead t he s hapesw z
 f or (i nt i = 0 ; i < n umShapes; i ++)w {
 {w |
 cout < < " Ent er a s hape: " ;w }
 c i n > > a r r ay[i] ;w ~
 }w �

x �
 i nser t i onSor t (a r r ay) ;x w

x x
 cout < < " Sor t ed b y i ncr easi ng s i ze: " < < e ndl ;x y
 f or (i nt j = 0 ; j < n umShapes; j ++)x z
 cout < < * ar r ay[j] < < e ndl ;x {

x |
 r et ur n 0 ;x }
}

H I J K L M N O P å
mai n

S U � T Y _ X T U S X R ¹] W R � X] R _ ¹ U � T � � T T W X b Y _ Y _ Z S X R] Y _ é
U S ¹ X S U V R S X R

InheritanceAndLateBinding.mkr Page 188 Wednesday, October 20, 1999 1:01 AM

5 Î R b � � X 6 5 Î � R _ ¹ Y _ é T W X
Shape

Í � R]] E ê ï

w
/ / C r eat e a n a ppr opr i at e S hape o bj ect b ased o n i nput .x
/ / T he u ser t ypes ' c ' , ' s ' , o r ' r ' t o i ndi cat e t he s hapey
/ / a nd t hen p r ovi des d i mens i ons w hen p r ompt ed.z
/ / A z er o- r adi us c i r c l e i s r et ur ned f or a ny e r r or .{
i s t r eam & o per at or >>(i st r eam & i n, S hape * & s)|
{}
 char c h;~
 doubl e d 1, d 2;�

w �
 i n. get (c h) ; / / F i r st c har act er r epr esent s s hapew w
 swi t ch(c h)w x
 {w y
 case ' c ' :w z
 i n > > d 1;w {
 s = n ew Ci r c l e(d 1) ;w |
 br eak;w }

w ~
 case ' r ' :w �
 i n > > d 1 > > d 2;x �
 s = n ew Rect angl e(d 1, d 2) ;x w
 br eak;x x

x y
 case ' s ' :x z
 i n > > d 1;x {
 s = n ew S quar e(d 1) ;x |
 br eak;x }

x ~
 case ' \ n' :x �
 r et ur n i n > > s ;y �

y w
 def aul t :y x
 cer r < < " Needed o ne o f c , r , o r s " < < e ndl ;y y
 s = n ew Ci r c l e; / / R adi us i s 0y z
 br eak;y {
 }y |

y }
 r et ur n i n;y ~
}

H I J K L M N O P ç 7 Y b � � X Y _ � � T S U � T Y _ X V U S S X R ¹ Y _ é R � U Y _ T X S T U R
Shape

We then call insertionSort to sort the shapes. Recall that we already have a
insertionSort template from Section 3.3. Since array is an array of pointers to
shapes, we expect that it will work as long as we provide a comparison routine
with the declaration

i nt op er at or <(co nst S hape * l hs, c onst S hape * r hs) ;

InheritanceAndLateBinding.mkr Page 189 Wednesday, October 20, 1999 1:01 AM

E ï G

� 8 � 4 5 � + + 2 + 2 � + - � � - 2 0
� - * /) 2 - . D 7 2 � - * 1- , D * + (+ . � 5 5 7) 7 D * 1 0
� - 2 7 � + � 1 * ? + * / ;

Unfortunately, that does not work. insertionSort uses the oper ato r < that
already exists for pointers. That operator compares the addresses being pointed
at, which guarantees that the array will be unaltered (because a[i] is always stored
at a lower address than a[j] if i<j).

w
st r uc t P t r ToShapex
{y
 Shape * pt r ;z

{
 bool o per at or < (c onst P t r ToShape & r hs) c onst|
 { r et ur n * pt r < * r hs. pt r ; }}

~
 const S hape & o per at or * () c onst�
 { r et ur n * pt r ; }w �
} ;w w

w x
/ / m ai n: r ead s hapes a nd o ut put i ncr eas i ng o r der o f a r ea.w y
/ / E r r or c hecks o mi t t ed f or b r evi t y .w z
i nt m ai n()w {
{w |
 i nt n umShapes;w }
 cout < < " Ent er n umber o f s hapes: " ;w ~
 c i n > > n umShapes;w �

x �
 / / R ead t he s hapesx w
 vect or <Pt r ToShape> a r r ay(n umShapes) ;x x

x y
 f or (i nt i = 0 ; i < n umShapes; i ++)x z
 {x {
 cout < < " Ent er a s hape (c , r , o r s w i t h d i mensi ons) : " ;x |
 c i n > > a r r ay[i] . pt r ;x }
 }x ~

x �
 i nser t i onSor t (a r r ay) ;y �
 cout < < " Sor t ed b y i ncr easi ng s i ze: " < < e ndl ;y w
 f or (i nt j = 0 ; j < n umShapes; j ++)y x
 cout < < * ar r ay[j] < < e ndl ;y y

y z
 f or (i nt k = 0 ; k < n umShapes; k ++)y {
 del et e a r r ay[k] . pt r ;y |

y }
 r et ur n 0 ;y ~
}

H I J K L M N O P ó
mai n

S U � T Y _ X S X R ¹]] W R � X] R _ ¹ U � T � � T] T W X b Y _ Y _ Z S X R] Y _ é U S ¹ X S
U V R S X R

InheritanceAndLateBinding.mkr Page 190 Wednesday, October 20, 1999 1:01 AM

� S Y Z 8 [Í 9 9 : X T R Y �] E ï E

; * * D 4 7 @ D � 1 2 + 7 �
+ * @ � � - 2 4 + 4 � � : *
7 : - � 2 � * / : , / * 0
+ 2 i � 2 � i � 4 5 � + + - 7+ - 7 1 * - . * D 7 2 � - * 1 ;

To make this work, we need to define a new class that hides the fact that the
objects we are storing and sorting are pointers. This is shown in Figure 4.18. The
PtrToShape object stores the pointer to a Shape and provides a comparison func-
tion that compares Shapes rathers than pointers. It does this by dereferencing
both pointers and calling the Shape oper at or < on the resulting Shape
objects. Note that we make excessive calculations to compute areas. Avoiding
this is left as Exercise 4.13. Note also that in general, we must call del et e to
reclaim the memory consumed by the Shape objects.

The Pt r ToShape class also overloads the unary * operator, so that a
PtrToShape object looks just like a pointer to a Shape. We certainly can add more
members to hide information better, but we prefer to keep things as short as pos-
sible. The idea of wrapping a pointer inside a class is a common design pattern.
We look at this recurring theme in Section 5.3.

� � � < � � � = > � ? ? @ �
 � � � �

Inheritance in C++ has numerous subtle points. Some of these are discussed in
this section.

� � � � � ñ � Æ � � Å È � Ã Ç � Ã â Â ÷ A Æ Ä Æ ä � � � Ä �

� � ÿ � � (- . * D � 1 � @ * 0
- * 1 + - 7 � @ * - . 7 /
� 1 * � 5) � , + / * 0
/ ? 4 * / + - � - 2 4 � 5 5 , (� -
4 7 @ D 2 5 * - 2 @ * ;

Dynamic binding means that the member function that is appropriate for the
object being operated on is used. However, it does not mean that the absolute best
match is performed for all parameters. Specificall y, in C++, the parameters to a
method are always deduced statically, at compile time.

For a concrete example, consider the code in Figure 4.19. In the whi chFoo
method, a call i s made to f oo. But which f oo is called? We expect the answer to
depend on the runtime types of ar g1 and ar g2.

Because parameters are always matched at compile time, it does not matter
what type ar g2 is actually referencing. The f oo that is matched will be

 vi r t ual v oi d f oo(c onst Base & x); / / M ETHOD A o r C

The only issue is whether the Base or Der i ved version is used That is the deci-
sion that is made at runtime, when the object that ar g1 references is known.

Static binding has important ramifications. Consider the following situation
in which we overload the output operator for both a base class and derived class.

ost r eam & o per ato r << (o st re am & o ut , const B ase & x) ;
ost r eam & o per ato r << (o st re am & o ut , const D er i ved & x) ;

Suppose we now try to call the output function.

InheritanceAndLateBinding.mkr Page 191 Wednesday, October 20, 1999 1:01 AM

E ï g

 Base * b = n ew Der i ved;
 cout < < * b << e ndl ;

Because parameters are staticall y deduced, output is done (unfortunately) using
the oper at or << that takes a Base parameter.

w
c l ass D er i ved; / / I ncompl et e d ecl ar at i onx

y
c l ass B asez
{{
 publ i c:|
 v i r t ual v oi d f oo(c onst B ase & x) ; / / M ETHOD A}
 v i r t ual v oi d f oo(c onst D er i ved & x) ; / / M ETHOD B~
} ;�

w �
c l ass D er i ved : p ubl i c B asew w
{w x
 publ i c:w y
 v i r t ual v oi d f oo(c onst B ase & x) ; / / M ETHOD Cw z
 v i r t ual v oi d f oo(c onst D er i ved & x) ; / / M ETHOD Dw {
} ;w |

w }
voi d w hi chFoo(B ase & a r g1, B ase & a r g2)w ~
{w �
 ar g1. f oo(a r g2) ;x �
}

H I J K L M N O P ô ^ � � �] T S R T Y U _ U V] T R T Y Z � Y _ ¹ Y _ é V U S � R S R b X T X S]

However, recall that we have been recommending the approach of having the
class define a pr i nt method, and then implementing oper at or << by calling
the pr i nt method. If we do this, we only need to write oper at or << for the
base class:

ost r eam & o per ato r << (o st re am & o ut , c onst B ase & x)
{
 out . pr i nt (x) ; / / pr i nt i s d educed a t r un ti me
 re t ur n o ut ;
}

Now the base class and derived class each provide their own version of the
pr i nt method. oper at or << is called for all Base and Der i ved objects.
However, when that happens, the call to pr i nt uses dynamic binding!

InheritanceAndLateBinding.mkr Page 192 Wednesday, October 20, 1999 1:01 AM

� S Y Z 8 [Í 9 9 : X T R Y �] E ï r

� � � � � ò � ÷ Æ � � � A Æ Ä Æ ä � � � Ä �

� - 2 + ? � + � 8 * - 74 . � � i * - . * / * 8 � ? 5 -
3 � 5 ? * 2 � � / * 1 2 3 * /
4 5 � + + ;

Default parameters are staticall y bound, meaning that they are deduced at com-
pile time. It is unsafe to change the default value in a derived class because this
can create an inconsistency with virtual functions, which are bound at run time.

� � � � à ò � Ä � ì � Ç Á � Æ � � ã � � À Â Ç � B � Ç � È Æ � � Á � Æ � � ã � � À Â Ç �

C++ has an annoying feature ill ustrated by the example in Figure 4.20. In the
code, we have a base class and a derived class. The base class declares a function
named bar , with zero parameters. The derived class adds a function named bar ,
with one parameter.

In t est , we illustrate the various calls that can be made. At line 15, we
attempt to call the zero-parameter bar through a Base reference. We expect this
to work and it does. Notice that the actual object being acted upon could be a
Der i ved object. The next line attempts to call the one-parameter bar through a
Base reference. Since this is not defined for Base objects, it must fail, and
indeed, the line does not compile. The one-parameter bar must be called through
a Der i ved reference, as shown on line 17.

So far all is good. Now comes the unexpected part. If we call the zero-param-
eter bar with a Der i ved reference, the code does not compile. This is unex-
pected, since the code at line 15 compiles, and a Der i ved IS-A Base.

What has happened appears to be a language flaw. When a method is
declared in a derived class, it hides all methods of the same name in the base
class. Thus bar is no longer accessible through a Der i ved reference, even
though it would be accessible through a Base reference:

 Base & tm p = a r g3; t mp. bar () ; / / L egal !

There are two ways around this. Once way is to override the zero-parameter
bar in Der i ved, with an implementation that calls the Base class version. In
other words, in Der i ved, add:

 vo i d b ar () { B ase: : bar() ; } / / I n c l ass D eri ved

The other method is newer and does not work on all compilers. Introduce the base
class member function into the derived class scope with a usi ng declaration:

InheritanceAndLateBinding.mkr Page 193 Wednesday, October 20, 1999 1:01 AM

E ï v

w
c l ass B asex
{y
 publ i c:z
 v i r t ual v oi d b ar () ; / / M ETHOD A{
} ;|

}
c l ass D er i ved : p ubl i c B ase~
{�
 publ i c:w �
 v i r t ual v oi d b ar (i nt x) ; / / M ETHOD Bw w
} ;w x

w y
voi d t est (B ase & a r g1, D er i ved & a r g2, D er i ved & a r g3)w z
{w {
 ar g1. bar () ; / / C ompi l es , a s e xpect ed.w |
 ar g1. bar (4) ; / / D oes n ot c ompi l e, a s e xpect ed.w }
 ar g2. bar (4) ; / / C ompi l es , a s e xpect ed.w ~
 ar g3. bar () ; / / D oes n ot c ompi l e. N ot e xpect ed.w �
}

H I J K L M N O a � ^ � � �] T S R T Y U _ U V W Y ¹ Y _ é

 us i ng B ase: :b ar ; / / In c l ass D eri ved

The most important reason you should be aware of this rule is that many
compilers wil l issue a warning when you hide a member function. Since a signa-
ture includes whether or not a function is an accessor, if the base class function is
an accessor (a constant member function), and the derived class function is not,
you have usually made an error, and this is how the compiler might let you know
about it. Pay attention to these warnings.

� � � � � Á Â ä ù Æ � � � � � � � � � Ä Ã ¿ � ù � � ÷ Â Ä ë ì � Ä Ä � Ç Ç � Ã ã � � À Â Ç �

Return types present an important diff iculty. Consider the following operator,
defined in a base class:

vi r t ual c onst B ase & o per ato r ++() ;

The derived class inherits it,

const Base & o per at or ++() ;

but that is not really what we want. If we have a return type in the derived class, it
ought to be a constant reference to the derived type and not the base type. Thus
the operator++ that is inherited is not the one we want. We would like instead to
override oper at or ++ with:

InheritanceAndLateBinding.mkr Page 194 Wednesday, October 20, 1999 1:01 AM

� S Y Z 8 [Í 9 9 : X T R Y �] E ï ¾

const Der i ved & oper at or ++() ;

� 8 - . * 7 1 2 i 2 � � 5 1 * - ? 1 �
- , D * 2 + � D 7 2 � - * 1 6 7 1
1 * 8 * 1 * � 4 * 9 - 7 C (- . *
� *) 1 * - ? 1 � - , D *
@ � , : * � D 7 2 � - * 16 7 1 1 * 8 * 1 * � 4 * 9 - 7 D (
D 1 7 3 2 / * / D 2 + � D ? : 0
5 2 4 5 , / * 1 2 3 * / 4 5 � + +
7 8 C ;

Recall that overriding a function means writing a new function with the same
signature. Under original C++ rules, the return type of the new and overridden
function had to match exactly.

Under the new rules, the return type may be relaxed. By this we mean that if
the original return type is a pointer (or reference) to B, the new return type may be
a pointer (or reference) to D, provided D is a publicly derived class of B. This cor-
responds to our normal expectation of IS-A relationships.

� � � � ð A Ä � ì Æ � � É Ã À � Ä � � Æ Ã Å �

í � " l ! � " $ & � � " ! $ d �
@ * � � + - . � - * 3 * �
D ? : 5 2 4 @ * @ : * 1 + 7 8- . * : � + * 4 5 � + + � 1 *
. 2 / / * � ;

Private inheritance means that even public members of the base class are hidden.
Seems like a silly idea, doesn’ t it? In fact it is, if we are talking about implement-
ing an IS-A relationship. Private inheritance is thus generally used to implement a
HAS-A relationship (that is, a derived class D has or uses a base class B).

= # > ' # % " ! " # $ 2 + D 1 * 0
8 * 1 1 * / - 7 D 1 2 3 � - * 2 � 0
. * 1 2 - � � 4 * ; � � 4 7 @ 0
D 7 + 2 - 2 7 � () * + � ,
- . � - 4 5 � + + C 2 + 4 7 @ 0
D 7 + * / 7 8 4 5 � + + �
6 � � / 7 - . * 1 7 : e * 4 - + 9 ;

In many cases we can get by without using inheritance: We can make an
object of class B a member of class D and, if necessary, make D a friend of B.
This is known as composition. Composition is the preferred mechanism, but
occasionally private inheritance is more expedient or slightly faster (because it
avoids a layer of function calls). For the most part, it is best to avoid private
inheritance unless it greatly simplifies some coding logic or can be justified on
performance grounds. However, in Section 5.3.3, we will see an appropriate and
typical use of private inheritance. p . * / * 8 � ? 5 - 2 + D 1 2 0

3 � - * 2 � . * 1 2 - � � 4 *
: ? - 2 - + . 7 ? 5 / : *
� 3 7 2 / * / ;

It is important to remember that by default, private inheritance is used. If the
keyword publ i c was omitted on line 3 of Figure 4.6, we would have private
inheritance. In that case the public member functions of except i on would stil l
be inherited, but they would be private members of BadI ndex and they could
not be called by users of BadI ndex . Thus the what method would not be visi-
ble. The type compatibil ity of base class and derived class pointers and references
described earlier does not apply for nonpublic inheritance. Thus, in the following
code, a BadI ndex exception would not be caught:

cat ch(c onst e xcept i on & e) { c out < < e. what () < < endl ; }

� � � � ö E Ä � � Ã Ç �

F 1 2 * � / + . 2 D 2 + � 7 - 2 � 0
. * 1 2 - * / ;Are friends of a class still friends in a derived class? The answer is no. For exam-

ple, suppose F is a friend of class B, and D is derived from B. Suppose D has non-
public member M. Then in class D, F does not have access to M. However, the
inherited portion of B is accessible to F in class D. Figure 4.21 summarizes the
results. D can declare that F is also a friend, in which case all of D’ s members
would be visible.

InheritanceAndLateBinding.mkr Page 195 Wednesday, October 20, 1999 1:01 AM

E ï ß

� � � � ü Á Æ � � � � � Æ � � � Æ Ã Ç A Â � � ä Â Ä ù À � � ä ò Â G Â � ã � H

Consider the following statement, assume that BadI ndex is publi cly inherited
from except i on, and suppose that it has overridden the what method:

cat ch(e xcept i on e) { c out << e . what () << e ndl ; }

Notice that e is passed using call by value. Now suppose a BadI ndex
exception has been thrown. Which what method gets called? The answer is not
what we want.

� � " d " $ î 2 + - . * 5 7 + + 7 8
2 � . * 1 2 - * / / � - �
@ * @ : * 1 +) . * � �
/ * 1 2 3 * / 4 5 � + + 7 : e * 4 -
2 + 4 7 D 2 * / 2 � - 7 �
: � + * 4 5 � + + 7 : e * 4 - ;

When we use call by value, the actual argument is always copied into the for-
mal parameter. This means that the BadI ndex object is copied into e. This is
done by using e’ s oper at or =, which means that only the except i on compo-
nent of BadI ndex is copied. (This is known as slicing.) In any event, the type of
e is except i on, and so it is the except i on class’ what method that is
called, and it is acting on a trimmed portion of the BadI ndex object. The moral
of the story: polymorphism and call by value do not mix.

� � I J K �
 � � � � � � � � � �
 � � � �

L o � ! " ' � � " $ & � � " �
! $ d � 2 + ? + * / - 7 / * 0

1 2 3 * � 4 5 � + + 8 1 7 @+ * 3 * 1 � 5 : � + *
4 5 � + + * + ; f * / 7 � 7 -
? + * @ ? 5 - 2 D 5 * 2 � . * 1 2 0
- � � 4 * 2 � - . 2 + : 7 7 û ;

All the inheritance examples seen so far derived one class from a single base
class. In multiple inheritance a class may be derived from more than one base
class. As an example, in the iostream li brary, an iostream (which all ows both
reading and writing) is derived from both an istream and an ostream. As a second
example, a university has several classes of people, including: students and
employees. But some people are both students and employees. The StudentEm-
ployee class could be derived from both the Student class and the Employee
class; each of those classes could be derived from the abstract base class Univer-
sityPerson.

� � � � � � � � � � � � ¡ � � � ¢ � � ¡ � £ � � � � � � � � � £ � � � ¤ � � � ¥ ¡ �
M § ª ª © ¨ ¨ ³ ± µ Ö Þ ¶ Ö · © ¨ · © ¨ · © ¨

M § ª ª © ¨ ¨ ³ ± µ Ø Þ ¶ Ø · © ¨ Ô ´ Ô ´
M § ª ª © ¨ ¨ ³ ± µ Ø × ¶ Ö · © ¨ · © ¨ · © ¨

Ö ³ ¨ § ± ´ ­ Ù © ª ² ´ ¯ ² Ú © ­ § ¨ © ª « § ¨ ¨ Û Ø ³ ¨ § ± ´ ­ Ù © ª ² ´ ¯ ² Ú © Ü ° ­ « ³ ª « Ý Ó © ® ³ Ò © Ó ª « § ¨ ¨ Û ¶ Ö ³ ¨
§ ¬ © ¬ ­ © ® ´ ¯ ² Ú © ­ § ¨ © ª « § ¨ ¨ Þ ¶ Ø ³ ¨ § ¬ © ¬ ­ © ® ´ ¯ ² Ú © Ó © ® ³ Ò © Ó ª « § ¨ ¨ Þ M ³ ¨ § ¯ ® ³ © ± Ó ´ ¯

² Ú © ­ § ¨ © ª « § ¨ ¨ N ­ ° ² ± ´ ² ² Ú © Ó © ® ³ Ò © Ó ª « § ¨ ¨ O
H I J K L M N O a P P S Y X _ ¹] W Y � Y] _ U T Y _ W X S Y T X ¹

InheritanceAndLateBinding.mkr Page 196 Wednesday, October 20, 1999 1:01 AM

Q � � T Y � � X ^ _ W X S Y T R _ Z X E ï F

In multiple inheritance the new class inherits members from all of its base
classes. This leads to some immediate problems that the user will need to watch
out for:

• Suppose UniversityPerson has class members name and ssn. Then these
are inherited by Student and Employee. However, since StudentEmployee
inherits the data members from both Student and Employee, we will get
two copies of name and ssn unless we use virtual inheritance, as in the fol-
lowing:

cl ass St udent : v i r t ual p ubl i c U ni ver si t yPer son { . .. }
c l ass Empl oyee :v i r t ual p ubl i c U ni ver si t yPer son { . .. }
c l ass St udent Empl oyee : p ubl i c S t udent,
 publ i c E mpl oyee { . . . }

• What if Student and Employee have member functions that are augmented
to Employee but have the same signatures? For instance, the credit func-
tion, not given in UniversityPerson, is added to Student to mean the num-
ber of credits for which a student is currently registered. For employees
the function returns the number of vacation days still l eft. Consider the
following:

Uni ver s i t yPer son * p = n ew St udent Empl oyee;
cout << p - >St udent : : cr edi t s() ; / / OK
cout << p - >Empl oyee: : cr edi ts () ; / / OK
cout << p - >cr edit s() ; / / Ambi guous

• Suppose UniversityPerson defines a virtual member function f, and Stu-
dent redefines it. However, Employee and StudentEmployee do nothing.
Then, for p defined in the previous example, is p->f() ambiguous? In the
example above, the answer is no because UniversityPerson is a virtual
base class with respect to Student; consequently, Student::f() is said to
dominate UniversityPerson::f(), and there is no ambiguity. There would
be an ambiguity if we did not use virtual inheritance for Student.

Does all this make your head spin? Most of these problems tend to suggest
that multiple inheritance is a tricky feature that requires careful analysis before
use. Generally speaking, multiple inheritance is not needed nearly as often as we
might suspect, but when it is needed it is extremely important. Although the rules
for multiple inheritance are carefully defined in the language standard, it is also
an unfortunate fact that many compilers have bugs associated with this feature
(especially in conjunction with others).

We will not use multiple inheritance in this text. The most common (and
safe) way to use multiple inheritance is to inherit only from classes that define no
data members and no implementations. Such classes specify protocols only, and
most of the ambiguity problems described above go away. A popular program-

InheritanceAndLateBinding.mkr Page 197 Wednesday, October 20, 1999 1:01 AM

E ï ê

ming language, Java, formalizes this into a special class called, interestingly
enough, the interface. Java does not allow arbitrary multiple inheritance, but does
allow multiple interfaces, and the result seems to be very clean code.

You should avoid general use of multiple inheritance in C++ until you are
extremely comfortable with simple inheritance and virtual functions; many
object-oriented languages (such as Small talk, Object Pascal, Objective C, and
Ada) do not support multiple inheritance, so you can live without it.

ñ � ä ä Æ Ä �

Inheritance is a powerful feature that allows the reuse of code. However, make
sure that functions applied to objects created at run time through the new operator
are bound at run time. This feature is known as dynamic binding, and the use of
virtual functions is required to ensure that run-time decisions are made. Reread
this chapter as often as necessary to make sure you understand the distinction
between nonvirtual functions (in which the same definition applies throughout
the inheritance hierarchy, and thus compile-time decisions are correct), virtual
functions (in which the default provided in the base class can be overwritten in
the derived class; run-time decisions are made if needed), and pure virtual func-
tions (which have no default definition).

In this chapter we also saw the programming techniques of wrapping a vari-
able inside a class (Figure 4.18), and mentioned the occasional usefulness of pri-
vate inheritance. These are two examples of design patterns: techniques that we
see over and over again. The next chapter discusses some common design pat-
terns.

ë � R � Å � � Â ÷ � À � S Æ ä �

abstract base class A class with at least one pure virtual function. (184)
abstract method A method that has no meaningful definition and is thus

always defined in the derived class. (183)
base class The class on which the inheritance is based. (172)
composition Preferred mechanism to private inheritance when an IS-A rela-

tionship does not hold. In composition, we say that an object of class B is
composed of an object of class A (and other objects). (195)

derived class A completely new class that nonetheless has some compatibility
with the class from which it was derived. (172)

dynamic binding A run-time decision to apply the method corresponding to
the actual referenced object. Used when a member function is declared to
be virtual and the correct method cannot be determined at compile time.
(179)

HAS-A relationship A relationship in which the derived class has a (property
of the) base class. (169)

InheritanceAndLateBinding.mkr Page 198 Wednesday, October 20, 1999 1:01 AM

Í U b b U _ 5 S S U S] E ï ï

inheritance The process whereby we may derive a class from a base class
without disturbing the implementation of the base class. Also allows the
design of class hierarchies, such as except i on. (172)

IS-A relationship A relationshup in which the derived class is a (variation of
the) base class. (169)

multiple inheritance The process of deriving a class from several base
classes. (196)

nonvirtual functions Used when the function is invariant over the inheritance
hierarchy. Static binding is used for nonvirtual functions. (186)

partial overriding The act of augmenting a base class method to perform
additional, but not entirely different, tasks. (178)

polymorphism The abili ty of a reference or pointer variable to reference or
point to objects of several different types. When operations are applied to
the variable, the operation that is appropriate to the actual referenced
object is automatically selected. (171)

private inheritance The process occasionally used to implement a HAS-A
relationship. Even public members of the base class are hidden. (195)

protected class member Accessible by the derived class but private to every-
one else. (174)

public inheritance The process by which all public members of the base class
remain public in the derived class. Public inheritance models an IS-A rela-
tionship. (173)

pure virtual function An abstract method. (184)
slicing The loss of inherited data when a derived class object is copied into a

base class object. (196)
static binding/overloading The decision on which function to use is made at

compile time. (179)
virtual functions A function for which dynamic binding is used. It should be

used if the function is redefined in the inheritance hierarchy.
(179)

Á Â ä ä Â Ã T Ä Ä Â Ä �

1. Inheritance is private by default. A common error is to omit the
keyword public that is needed to specify public inheritance.

2. If a base class member function is redefined in a derived class, it
should be made virtual. Otherwise, the wrong function could be
called when accessed through a pointer or reference.

3. Base class destructors should be declared as virtual functions. Oth-
erwise, the wrong destructor may get called in some cases.

4. Constructors should never be declared virtual.
5. Objects of an abstract base class cannot be instantiated.

InheritanceAndLateBinding.mkr Page 199 Wednesday, October 20, 1999 1:01 AM

g G G

6. If the derived class fails to implement any inherited pure virtual
function, then the derived class becomes abstract and cannot be
instantiated, even if it makes no attempts to use the undefined pure
virtual function.

7. Never redefine a default parameter for a virtual function. Default
parameters are bound at compile time, and this can create an
inconsistency with virtual functions that are bound at run time.

8. To access a base class member, the scope resolution must be used.
Otherwise, the scope is the current class.

9. Friendship is not inherited.
10. In a derived class, the inherited base class members can only be

initialized as an aggregate in a constructor’s initializer list. If these
members are public or protected, they may later be read or
assigned to individually.

11. A common error is to declare a virtual destructor in an abstract
base class but not provide an implementation (virtual~Base() or
virtual~Base()=0). Both are wrong because the derived class
destructor needs to call the base class destructor. If there is nothing
to do, then use {} as the definition.

12. If a constructor declaration is provided in the base class, provide
the definition, too, for the same reason that we saw in the destruc-
tor case.

13. The return type in a derived class cannot be redefined to be differ-
ent from the base class unless they are both pointer or both refer-
ence types, and the new return type is type-compatible with the
original.

14. If the base class has a constant member function F and the derived
class attempts to define a nonconstant member function F with an
otherwise identical signature, the compiler will warn that the
derived F hides the base F. Heed the warning and find a
workaround.

ë Ã � À � É Ã � � Ä Ã � �

Three self-contained files plus a set of exception classes are available..

Except.h Contains the exception hierarchy.
Shape.cpp The Shape example.
StaticBinding.cpp Contains the code in Figure 4.19 il lustrating that

parameters are statically bound.
Hiding.cpp Contains the code in Figure 4.20 il lustrating how

methods are hidden.

InheritanceAndLateBinding.mkr Page 200 Wednesday, October 20, 1999 1:01 AM

