5{} STL.mkr Pagel1l Thursday, July 22, 19998:32 PM

APPENDIX

A The Standard Template
Library

The recently adopted C++ Standard requires all i mplementations to provide a
supparting library known as the Sandard Template Library (known simply as the
STL). The STL provides a colledion o data structures (such as lists, stacks,
gueues, and friority queues), and algorithms (such as orting and selection). As
its name suggests, the STL makes heavy use of templates, including advanced
template features that do not work on many current compil ers (and which we
have therefore dected not to discussin thistext). As aresult, at the time of this
writing, there ae no completely corred implementations of the STL, althoughit
is certain that corred implementations will appea. It isinteresting to examine the
STL because it illustrates many of the concepts that have been explored in this
text. We will also seethat even thoughthe data structures pacage developed in
this text has only basic methods, using it is very similar to using a more robust
padkage, such asthe STL.

In this Appendix, we

* describe the organization of the STL, and itsintegration with the rest of
the language

* examineitslists, sets, and maps

» provide aC++ programs that usesthe STL

A.1 Introduction

The STL contains implementations of some of the data structures that have been
described in this text. Specifically, there is a doubly-linked list class with an
asciated iterator, priority queues, and data structures that make use of balanced
search trees. As expected, the functionality of these classes is somewhat diff erent
than the dasses written in this text; however the basic concepts, algorithms, and
running times are the same. The STL does nat provide ahash table data structure
or aunion/find data structure. There is a binary search algorithm and a quicksort
algorithm.

<

A-1

b

STL.mkr Page2 Thursday, July 22, 19998:32 PM

Because the STL is part of the C++ library, it is likely to urdergo extensive
testing and qptimizaion, and have survived use by legions of programmers
aroundthe world. Thus, in general, it will be preferable to useit, rather than pro-
vide an alternate implementation.

Complete amverage of the STL fills atextbook. In this appendix, we restrict
our attention to a small subset that includes the basics of the STL.

A.2 Basic STL Concepts

This ®dion describes the basics of the STL, including the new healer files, the
usi ng directive, containers and iterators, pairs, and function oljeds.

A.2.1 Header Files and The usi ng Directive

Historically, the names of library healer files have ended with the. h suffix. The
new standard mandates that these names are now suffix-free. Thus, the standard
I/0O header fileisnow i ostr eam instead of i ostr eam h. Many implemen-
tations will continue to provide ani ost r eam h header file. However, thisfile
may not be compatible with the STL version. In Visual C++ 5.0, for instance,
you cannot use iostream.h if you use any of the STL header files. Some of
the other healer filesaref st ream sstreamvector, | i st, deque, set,
and map.

The newly adopted standard also adds a new feature cdled the namespace.
Although namespaces are important in their own right, we do not discusstheir
use here. It isimportant to know, however, that the entire STL is defined in the
st d namespace To accessthe STL asif it were in the global namespacewe pro-
vide ausi ng directive, whichinthiscaseis:

usi ng namespace std;

Although there ae other alternatives, which can be found in recent C++
books, thisis the smplest. Figure A.1 illustrates the new i ost r eamheader file
and theusi ng diredive.

A.2.2 Containers

A container represents a group d objects, known as its elements. Some imple-
mentations, such as vectors and lists, are unordered; others, such as sts and
maps are ordered. Some implementations allow dugicates, others do not. All
containers support the following operations.

EB STL.mkr Page 3 Thursday, July 22, 19998:32 PM

bool enpty() const
Returnst r ue if the mntainer contains no elements; f al se otherwise.

iterator begin() const

Returnsani t er at or that can be used to begin traversing all locationsin
the container.

iterator end() const

Returnsani t er at or that represents the “end marker,” or a position past
the last element in the mntainer.

int size() const
Returns the number of elementsin the mntainer.

The most interesting of these methods are those that return an'i t er at or .
The operations that can be performed by ani t er at or are described in Sedion
A.23.

A23 iterator

There ae adualy many typesof i t er at or s. However, we can always court on
$ the following operations being avail able for any iterator type:

itr++

Advancestheiterator i t r to the next location. Both the prefix and postfix
forms are allowable, but the precise return type (whether it is a mnstant refer-
enceor areference) can depend on the type of iterator.

*itr

Returns areferenceto the objed stored at iterator i t r ’slocdion. The refer-
encereturned may or may not be modifiable, depending onthe type of itera-
tor. For instance, theconst _i t er at or, which is used to traverse const

containers, hasan oper at or * that returnsaconst reference, thus disal-
lowing*i t r beingon the left-hand side of an assgnment.

#include<iostreanr
usi ngn anespace s td,

intmain()

{

cout< <" Firstp rogranf'< <e ndl;
returnoO ;

}

Figure A.1 First program using new STL

EB STL.mkr Page4 Thursday, July 22, 19998:32 PM

A-4

/ IP rintt hecontentso fC ontainerc
tenpl ate < cl ass C ont ai ner >
voidprintCollection(c onstC ontainer&c)

{

t ypenanme Container::const_iteratori tr
for(i tr=c .begin() ;i tr! =c.end() ;i tr++)
cout< <*itr< <'\n';

}

Figure A.2 Print the contents of any Container

itrl==itr2
Returnst r ue if iteratorsi t r 1 andi t r 2 refer to the samelocation; f al se
otherwise.

itrl!l=itr2
Returnst r ue if iteratorsi t r 1 andit r 2 refer to adifferent location;
f al se otherwise.

Each container defines sveral iterators. For instance, al i st <i nt > defines
list<int> :iterator and list<int>::const_iterator. (There
are dso reverse iterators, that we do na discuss) Theconst _i t er at or must

$ beusedinstead of ani t er at or if the container is non-modifiable.

As an example, the routine in Figure A.2 prints each element in any con-
tainer, provided that the element has oper at or << defined for it. If the con
tainer is an ordered set, its elements are output in sorted order.

A.2.4 Pairs

Often it is necessary to store apair of objedsin asingle entity. Thisis useful for
returning two things smultaneously. It is also useful for the map class discussed
in Sedion A.5. The STL defines atemplate pai r classwith the following
semantics:

template<class Objectl,c lassObject?2>
classPair
{
p ublic:
Objectlf irst;
Obj ect2s econd;

b

b

STL.mkr Page5 Thursday, July 22, 19998:32 PM

A.2.5 Function Objects

Container algorithms that require an ordering property generally use a default
order (typically the |l ess function, implemented as a cdl to the object’s
oper ator <). The algorithms can generally provide afunction that specifies a
different ordering property. Thisis most useful when the natural orderingis not
exadly what is needed. For instance, we may want to sort avector of strings,
but ignore case distinctions. Or for a simpler example, we may want to sort the
strings by their length.

An exampleis diown in Figure A.3; the function Conp compares drings by
length; thisfunctionis passed as the optional third parameter to sor t intheform
of an dbject. A function object defines an implementation for itsoper at or (),
which is the function cdl operator. We then pass an instance of the function
objed asthe third parameter tosort .

Although this function dbject contains no data members and no constructors,
more general function dbjects are possble. The only requirement is that
oper at or () must be defined. The STL provides numerous template function
objeds including | ess (the default for many container algorithms) and
greater.

classConp

{
public:
b oolo perator() (c onsts tring&l hs,
consts tring&r hs)c onst
{r eturnl hs.length()<r hs.length() ;}
H

voids ortListOf StringsByLength(v ector<string>&a rray)

{
sort(a rray.begin() ,a rray.end() ,C omp())
}

Figure A.3 A sorting algorithm using a function object

A.3 Unordered Sequences: vect or and | i st

Bothavect or andli st can be used to implement an unordered container
(also known as a sequence). The user has predse control over where in the
sequence each element isinserted. The user can accesselements by their position
in the sequence, and search for elements in the sequence. However, depending on
the particular operation, only one of thevect or orli st might be dficient.

&

A-5

b

STL.mkr Page 6 Thursday, July 22, 19998:32 PM

A.3.1 vector vs.list

The STL provides three sequence implementations, but only two are generally
used: an array-based version and a doubly linked-li st based version. The array-
based version can be gpropriate if insertions are performed only at the high end
of the aray, for the reasons discussed in Chapter 3. The STL doublesthe aray if
an insertion at the high-end would exceed capacity. Although this gives good
Big-Oh performance, for large objects that are expensive to construct, alist ver-
sionwould be preferable in order to minimize calls to the constructors.

Insertions and celetions toward the middle of the sequence are inefficient in
the vect or ; on the other hand, direct access by the index is impossble in a
l'ist. If indexing is not needed, the | i st can adways be safely used. The
vect or may dtill be a better choice if insertions occur only at the end and the
objeds being inserted are not overly expensive to construct. Some of the aldi-
tional operations on sequences are:

voi d push_back(const nject & el enent)
Appends el enent at the end o this squence

void push_front(const Cbject & el enent)

Prependsel enent to the front of this ssquence. Not avail ablefor vecto r,
becauseit istoo inefficient. However adeque isavailable that islike a
vect or, but supports double-ended access

bject & front() const

Returns the first element in this ssquence

hj ect & back() const
Returns the last element in this ssquence

void pop_front()

Removes the first element from this sequence Availableonly for |l i st and
deque.

voi d pop_back()

Removes the last element from this squence

iterator insert(iterator pos, const (bject & obj)

Insertsobj prior to the dement in the positionreferred to bypos. Thisoper-
ationtakes constant timefor al i st , but takes time proportiona to the dis-
tancefrom pos tothe end d the sequencefor avect or . Returnsthe position
of the newly inserted item.

void erase(iterator pos)

Removes the abject at the paosition referred to by pos. Elementsin the
sequence aelogically moved asrequired. Thisoperationis constant time for
al i st , but takestime proportional to the distancefrom pos to theend d
the sequencefor avect or.

&

A-6

b

STL.mkr Page 7 Thursday, July 22, 19998:32 PM

A-7

A.3.2 Stacks and Queues

The STL provides asta ck and queue class but these simply use a sequence
container (li st,vector ,or deque), callingthe gpropriate functions. The
gueue does not even use standard names such as enqueue and dequeue. Thus
there’s no compelling reason not to use the sequence mntainers directly.

A4 Sets

Theset isan ordered container. It allows no duplicates.> The underlying imple-
mentation is a balanced seach tree In addition to the usua begi n, end, si ze,
and enpt y, theset provides:

pair<iterator, bool > insert(const Object & el enent)

Addsel enent totheset if itisnot aready present. Thebool component
of thereturn valueist r ue if the set did not already cortain el enent ; oth-
erwiseitisf al se. Thei t er at or component of the return value isthe
location d el enent inthe set.

iterator find(const Object & elenent) const

Returnsani t er at or containing the locaion o el ement in the set, or
end() if el enent isnotin the set.

int erase(const Object & elenent)

Removes el enent from the setif is present. Returns the number of ele-
ments removed (thus, either O o 1).

By default, ordering usesthe | ess<Obj ect > function objed, which itself
isimplemented by cdling oper at or < for the Obj ect . An aternate order-
ing can be spedfied by constructing the set with afunction objed.

A.5 Maps

A map is used to store acolledion d ordered entries that consists of keys and
their values. The map maps keysto values. Keys must be unique, but several keys
can map to the same values.2 Thus values need na be unique. The map uses a
balanced search treeto obtain logarithmic search times.

The map behaves like aset instantiated with a pai r, whose comparison
function refers only to the key. Thus it supports begi n, end, si ze, and
enpt y, but the underlyingiterator is akey,value pair. In other words, for an iter-

L Thenul ti set allows duplicates, but we do not discusstherrul ti set here.
2 Thenul ti map alows duplicate keys, but we do nat discussthemul ti map here.

&

EB STL.mkr Page 8 Thursday, July 22, 19998:32 PM

atoritr,*itr isof typepai r <KeyType, Val ueType>. The map aso sup-
ports i nsert, find, and erase. For insert, one must provide a
pai r <KeyType, Val ueType> abjed. Although f i nd only requires a key,
the iterator it returns references a pai r . Using orly these operations is hardly
worthwhil e, because the syntadic baggage can be excessve.

Fortunately the map has an important extra operation. The aray-indexing
operation is overloaded for maps:

Val ueType & operator[](const KeyType & key)
const Val ueType & operator[](const KeyType & key) const

Returns the value to which this map mapskey. If key isnot mapped then
key becomes mapped to adefault Val ueType generated by applying a
zero-parameter constructor.

This type of syntax is ometimes known as an associative array. Although
we'll see an example of the map shortly, it isworth il lustrating with afew lines of
code. In Figure A4, peopl e mapsastringtoanint.So"Ti ni isinitialy
3, and then 5, which is output by the first print statement. " Bob" is not in the
map prior to the print statement, but the cdl to oper at or [] putsit inthe map
with adefault value of 0. Thus 0 is (perhaps unintentionally) output by the second
print statement. To know if " Bob" wasin the map, we would have needed to cdl
fi nd firgt, and ched to seeif the returned iterator was equal to end() . Oncewe

$ cal find, since we have an iterator i tr, to f i nd the value, we shoud use
i tr->second, to avoid a second search.

A.6 Example: Generating a Concordance

A concordance of afileisalisting that contains al the words in afile, with the
line number on which the word occurs. Using the STL, we can write aprogram
that produces a concordance. We assume that aword is any sequence of conseau-
tive non-white spacecharaders.

#include < map>
usi ngn anespace s td,

intm ain()

{
map<string,int>p eople;
people["Tim]=3 ;p eople["Tin']=5 ;
cout< <" Timsvaluei s"< <people["Tinl']< <endl;
cout< <" Bob'sv aluei s"< <people["Bob"]< <endl;
returnoO;

}

Figure A.4 lllustration of the map. Tim’s value is 5. Bob’s value is 0.

P &

b

b

STL.mkr Page9 Thursday, July 22, 19998:32 PM

#include<iostreanr
#i ncl ude < f streane
#i ncl ude < sstreane
#i ncl ude < map>

#i nclude < string>

#i ncl ude < vect or >
usi ngn anespace s td;

ostream & o perator<<(o stream & o ut,
constp air<string,v ector<int>>&r hs)

{
out< <r hs.first< <" :"< <'\t'< <r hs.second[0] ;
for(i nti=1 vi<r hs. second. si ze() ;i ++)
out< <" ,"< <r hs.second[i] ;
r eturno ut;
}
intmain(i nta rgc,c har* argv[])
{
i f(argc! =2)
{
cerr< <" Usage:"< <argv[0]< <"f ilename"< <e ndl;
returnil;
}
i fstreaminFile(a rgv[l]) ;
i f(! inFile)
{
cerr< <" Cannoto pen"< <argv[l]< <endl;
returnil;
}
t ypedefm ap<string,v ector<int>>w ordmap;
wor dmep ¢ oncor dance;
string o neline;
/ IR eadt hewords;a ddt hemt owordmap
for(i ntl ineNum=1;g etline(i nFile,o neLine) ;| ineNum++)
{
i stringstreamst(o neLine) ;
stringword;
while(s t> >word)
c oncordance[w ord] . push_back(l ineNum);
}
wordmap: :iteratori tr;
f or(i tr=c oncordance.begin() ;i tr! =concordance.end() ; itr++)
cout< <*ijtr< <endl;
returnO ;
}

Figure A.5 Concordance program using the STL

&

A-9

b

STL.mkr Page 10 Thursday, July 22, 199 8:32 PM

The basic ideais to use amap, to map words to a list of lines on which the
word occurs. Thus eat key isword, anditsvalueisalist of line numbers. When
we see aword, we ched to seeif it is aready in the map. If it is, then we simply
add the current line number to the list of lines that corresponds to the word. If it is
not, we ald to the map the word along with alist containing the airrent line num-
ber. After we have read al of the words, we can iterate through the map. This
generates the map entries in key-sorted order, so the words will appea in sorted
order. For ea map entry, we output the word, and then we go throughthe linked
list of line numbers, and output them

A.6.1 STL Version

The mde that uses the STL is gown in Figure A.5. We open afile and create a
map. We can use dther avect or orl i st to storethe line numbers, sincebaoth
support efficient push_back operations. In the f or loop, we repeatedly read
oneline & atime, maintaining the aurrent line number. Thei stri ngst r eamis
used to extract white-space-delimited tokens from the line (it has the same look
and feel as any other stream). The line number is then added to the entry corre-
spondng to word in the concordance map. (When aword is sen for the first
time, the expresson concor dance[wor d] inserts the pair consisting d wor d
and a default vector into the map. Thus the subsequent push_back is sfe.)
At the end o the loop, we use an iterator to gothroughthe map, and print out
each map entry.

The overloaded oper at or << function acaepts a pair; the word is gored in
thefir st data member and the vect or of line numbersin the second data
member. The code treas the first line number as a special case (it is not preceded
by acomma, but is preceded byatab); it is otherwise similar to the code in Figure
A.2. Note that oper at or << assumes that the list of line numbersis not empty,
which is guaranteed by the rest of the code.

A.7 Other STL Features

The STL isapowerful library that can be very useful for many applications. We
have discussed only the bare bones basics. The STL contains many other interest-
ing constructs that we do not discuss

A-10

