
COP 3337

Programming II

Examination 3

Name:

SAMPLE

This exam has 4 additional pages with 4 questions.

1. [25 pts] Consider the following code:

class A

{

abstract public void foo();

}

class B extends A

{

public B()

{ this(""); }

public B(String bm)

{ bmsg = bm; }

public String foo()

{ return bmsg; }

private String bmsg;

}

class C extends B

{

public C(String bm, String cm)

{ super(bm); cmsg = cm; }

public C()

{ this("", ""); }

public String foo()

{ return cmsg + super.foo(); }

private String cmsg;

}

(a) The compiler is complaining about the implementation of class A. What is the problem
and the fix?

(b) Assuming class A is repaired, which of the following lines of code are legal?

A obj = new A();

A obj = new B();

A obj = new C();

B obj = new C();

C obj = new B();

(c) What is the output of the following code?

A [] items = { new B("foo"), new C("foo", "bar"));

System.out.println(items[0].foo() + items[1].foo());

1

2. [25 pts] Answer each part TRUE or FALSE

(a) All methods in an abstract class must be abstract.

(b) An abstract class may provide constructors.

(c) An abstract class can declare instance data.

(d) An abstract class can extend another abstract class.

(e) An abstract class can extend a non-abstract class.

(f) An interface is an abstract class.

(g) An interface can declare instance data.

(h) Any method in an interface must be public.

(i) All methods in an interface must be abstract.

(j) An interface can have no methods at all.

(k) An interface can extend another interface.

(l) An interface can declare constructors.

(m) A class may extend more than one class.

(n) A class may implement more than one interface.

(o) A class may extend one class and implement one interface.

(p) An interface may implement some of its methods.

(q) Methods in an interface may provide a throws list.

(r) All methods in an interface must have a void return type.

(s) Throwable is an interface.

(t) Object is an abstract class.

2

3. [25 pts] Consider the following four classes: WalkupTicket, AdvanceTicket, StudentAdvanceTicket,
and Ticket, which interact as follows:

• A WalkupTicket has a seat number and price method that returns a double, but I am
not telling you the exact price because you do not have to implement WalkupTicket
on this exam.

• A AdvanceTicket has a set number and a price method that returns a double,
but I am not telling you what the double is because you do not have to implement
AdvanceTicket on this exam.

• A StudentAdvanceTicket IS-A AdvanceTicket. If the AdvanceTicket’s pricemethod
returns d, then the StudentAdvanced’s price method returns d/2. Needless to say,
if the AdvanceTicket’s price method changes to return a different price, then the
StudentAdvanced’s price method will automatically be aware of this.

• A Ticket has a seat number. Also, a WalkupTicket IS-A Ticket and a AdvanceTicket
IS-A Ticket. Tickets are not intended to be constructed directly by the client (but
of course, a Ticket still has a constructor).

For this question, do the following (You do not have to provide any functionality beyond
the specifications above.):

(a) The four classes above form an inheritance hierarchy. Draw the hierarchy.

(b) Implement Ticket.

(c) Implement StudentAdvanceTicket.

(d) Implement the following method:

// Return total price of all tickets

public static double totalPrice(Ticket [] arr)

{

3

4. [25 pts] Method contains takes an array of integers and returns true if there exists any
item in the array that satisfies a specified condition.

For instance, in the following code fragment:

int [] input = { 100, 37, 49 };

boolean result1 = contains(input, new Prime())

boolean result2 = contains(input, new PerfectSquare())

boolean result3 = contains(input, new Negative())

The intended result is that result1 is true because 37 is a prime number, result2 is true
because both 100 and 49 are perfect squares, and result3 is false because there are no
negative numbers in the array.

Implement the following components:

(a) An interface that will be used to specify the second parameter to contains.

(b) The contains method (which is a static method).

(c) The class Negative.

4

