% InheritanceAndLateBinding.mkr Page 169 Friday, August 6, 1999 183 PM

Chapter 4

Inheritance

As mentioned in Chapter 2, an important goal of object-oriented programmingis
code reuse. Just as engineers use cmponents over and over in their designs, pro-
grammers shoud be ale to reuse objects rather than repeatedly reimplementing
them. In Chapter 3 we saw one mecdhanism for reuse provided by C++, the tem-
plate. Templates are appropriate if the basic functionality of the ade istype inde-
% pendent. The other mechanism for code reuse is inheritance. Inheritance al ows
us to extend the functionality of an olject; in other words, we can create new
types with restricted (or extended) properties of the original type. Inheritance

goes along way toward our goal for code reuse.

In this chapter, we will see

» General principles of inheritance and the related objed-oriented concept
of paymorphism

» How inheritance isimplemented in C++

» How acollection of classes can be derived from asingle astrad class

* How run-time binding decisions, rather than compile time linking deci-

sions, can be made for these dasses

P

InheritanceAndLateBinding.mkr Page 170 Friday, August 6, 1999 183 PM

Inheritance

In an IS-A relation-
ship, we say the
derived class is a
(variation of the)

base class.

In a HAS-A relation-

ship, we say the
derived class has a

(instance of the)

base class. Compo-

sition is used to
model HAS-A rela-

tionships.

4.1 What is Inheritance?

Inheritance is the fundamental objed-oriented principle that is used to reuse code
among related classes. Inheritance models the IS-A relationship. In an IS-A rela
tionship, we say the derived classis a (variation d the) base dass For example, a
Circle IS-‘A Shape anda Car IS-A Vehicle. However, an Ellipse IS-NOT-A Cir-
cle. Inheritance relationships form hierarchies. For instance, we an extend Car
to ather classes, since aForeignCar IS-A Car (and pays tariffs) and a Domestic-

Car IS-A Car (and dees not pay tariffs), and so on.

Another type of relationship is a HASA (or IS-COMPOSED-OF) relation-
ship. Thistype of relationship does not passess the properties that would be natu-
ral in an inheritance hierarchy. An example of aHAS-A relationship isthat a ca
HAS-A steering wheel. Generally, HAS-A relationships should not be modeled
by inheritance. Instead, they should use the technique of composition, in which

the cmponents are simply made private data fields.

The C++ language itself makes some use of inheritance in implementing its

classlibraries. Two examples are exceptions and fil es:

» Exceptions. C++ defines, in <st dexcept >, the class
except i on.There ae severa kinds of exceptions, including
bad al | oc andbad_cast . Figure4.1illustrates some of the dassesin
theexcept i on hierarchy. We will explain the diagram shortly. Each of
the clasesisaseparate class but for all of them, thewhat method can be

used to return a (primitive) string that details an error message.

<

P

InheritanceAndLateBinding.mkr Page 171 Friday, August 6, 1999 183 PM

What is Inheritance?

* |/O. Aswe seein Figure 4.2, the streans hierarchy (i st r eam
i fstream etc.) usesinheritance. The streams hierarchy is also more

complex that what is shown.

In addition, systems such as Visual C++ and Borland CBuilder provide class
libraries that can be used to design graphical user interfaces (GUIs). These, librar-
ies, which define components such as buttons, choice-lists, text-areas, and win-

dows, (al in different flavors), make heavy use of inheritance

In all cases, the inheritance models an IS-A relationship. A button IS-A com-
porent. A bad_cast IS-A exceptio n.Anif stream IS-Aistrea m(but
not vice-versal). Because of the |S-A relationship, the fundamental property of
inheritance guarantees that any methodthat can be performed byistre amcan
also beperformed by i f stream andani f st r eamobject can aways be refer-
enced byani st r eamreference Note that the reverse is not true. Thisiswhy I/

O operations are dways writtenintermsof i st r eamandost r eam

InheritanceAndLateBinding.mkr Page 172 Friday, August 6, 1999 183 PM

Inheritance

range_error

runti me_error

.

underfl ow_error

bad_cast
/ -

exception

‘\‘\ bad_al I oc
- i nval i d_argunent

logic_error

\ domai n_error

Figure 4.1 Part of the except i on hierarchy

i stringstream

i stream
e
i fstream
fstream
) -
) i ostream
1os ‘\
stringstream
\ ostringstream
ostream -
of stream
Figure 4.2 Part of the streams hierarchy

As asemnd example, sincewhat isamethodavailablein the excepti on

class if we need to catch exceptions defined in Figure 4.1 using acatch han-

% InheritanceAndLateBinding.mkr Page 173 Friday, August 6, 1999 183 PM

What is Inheritance? 173

dier, we can aways writel:

catch(c onste xception&e){c out< < e.what()< < endl;}

If e referencesabad_cast objed, the cdl to e. what () makes snse. Thisis
becaise an exc ept i on objed suppats the what method, and abad_ca st

IS-A exceptio n, meaningthat it suppats at least as much as exc ept i on.
Depending on the drcumstances of the dass hierarchy, the what method could
be invariant or it could be specialized for each dfferent class When amethod is
invariant over a hierarchy, meaning it always has the same functionality for all
classs in the hierarchy, we avoid having to rewrite an implementation of a dass

method.

1. Exceptions are handled by try/catch blocks. An ill ustration of the syntax isin Figure 4.7 on page 183.
Code that might throw the exception is placed in atry block. The exception is handled in a cdch block.
Sincethe exception objed is passed into the catch block, any public methods defined for the exception

objed can be used onit and any public data defined in the exception objed can be examined.

P &

P

InheritanceAndLateBinding.mkr Page 174 Friday, August 6, 1999 183 PM

Inheritance

A polymorphic vari-
able can reference
objects of several
different types.
When operations
are applied to the
polymorphic vari-
able, the operation
appropriate to the
referenced object
is automatically

selected.

Inheritance allows
us to derive classes
from a base class
without disturbing
the implementation

of the base class.

The call to what also ill ustrates an important object-oriented principle
known as polymorphism. A reference variable that is polymorphic can reference
objects of several different types. When operations are applied to the reference,
the operation that is appropriate to the actual referenced object is automatically
seleded. The same is true for pointer variables (remember that a reference really
is a pointer). In the case of an exc ept i on reference, a run-time dedsionis
made: thewhat methodfor the objed that e adually references at run-timeisthe
onethat isused. Thisisknown as dynamic binding or late binding. Unfortunately,
although dyramic binding is the preferred behavior, it is not the default in C++.

Thislanguage flaw leads to complications.

In inheritance, we have abase class from which cther classes are derived.
The base dass is the class on which the inheritance is based. A derived class
inherits all the properties of a base class, meaning that all puldic methods avail-
able to the base dassbecome public methods, with identical implementations for
the derived class. It can then add data members and additional methods and
change the meaning o the inherited methods. Each derived classis a cmmpletely
new class However, the base dassis completely unaffeded by any changes that
are made in the derived class Thus, in designing the derived class it isimposs-
ble to bre& the base dass This gredly simplifies the task of software mainte-

nance.

InheritanceAndLateBinding.mkr Page 175 Friday, August 6, 1999 183 PM

P

What is Inheritance? 175

A derived class is type compatible with its base dass, meaning that a refer-
ence variable of the base dass type may reference an dojed of the derived class
but not vice versa (and similarly for pointers). Sibling classes (that is, classes

derived from a common clasg are not type compatible.

Asmentioned ealier, the use of inheritancetypically generates a hierarchy of
classes. Figure 4.1 illustrated a small part of the exce ption hierarchy. Notice
that range_error isindirectly, rather than directly, derived from
except i on. Thisfad istransparent to the user of the dasses because IS-A rela
tionships are transitive. In other words, if X ISA YandY ISA Z then X ISA
Z. Theexcept i on hierarchy illustrates the typica design issues of factoring out
commonaliti es into base classes and then spedalizing in the derived classes. In

this hierarchy, we say that the derived classis a subclass of the base dassand the

base dassis a superclass of the derived class These relationships are transitive.

The arowsin the hierarchy diagrams reflect the modern convention o point-
ing toward the top (or root) of the hierarchy. The stream hierarchy ill ustrates
some fancier design dedsions. Among other things, commonality among
is t re amand ostr eamis fadored out and placel ini os. Also, i ost r eam

inherits from both i st r eamand ost r eam illustrating multiple inheritance.

The next few sedions examine some of the followingisaes:

» What isthe syntax used to derive anew classfrom an existing base dass?
* How does this affed public or private status?

» How do we specialize amethod?

Each derived class
is a completely new
class that nonethe-
less has some com-
patibility with the
class from which it

was derived.

If X IS-A'Y, then Xis
asubclass of Y and
Y is a superclass of
X. These relation-

ships are transitive.

P

InheritanceAndLateBinding.mkr Page 176 Friday, August 6, 1999 183 PM

Inheritance

Public inheritance
models an IS-A rela-

tionship.

* How do we fador out common diff erences into an abstract class and then

create ahierarchy?
» How do we specify that dynamic binding should be used?

» Canwe and should we derive anew classfrom more than ore dass(multi-

pleinheritance)?

4.2 Inheritance Basics

Recall that a derived class inherits all the properties of a base dass It can then
add data members, disable functions, alter functions, and add new functions.
Each derived classis a mmpletely new class. A typicd layout for inheritanceis
shown in Figure 4.3. C++ tokens are set in boldface. The form of inheritance
described here and used almost exclusively throughout the text is public inheri-
tance. Note caefully that the word publ i ¢ after the cwlon online 1 signifies
public inheritance. Without it, we have private inheritance, which is nat what we
want, because only puHic inheritance models an IS-A relationship. Let us briefly

describe aderived class

» Generdly all dataisprivate, so wejust add additional datamembersinthe

derived classby spedfying them in the private sedion.

% InheritanceAndLateBinding.mkr Page 177 Friday, August 6, 1999 183 PM

Inheritance Basics 177

* Any base dassmember functionsthat are not specified inthe derived class The derived class

are inherited unchanged, with the following exceptions: constructor, inherits all member

) functions from the
destructor, copy constructor, and oper at or =. For those the typicd
base class. It may

defaults apply, with theinherited portion considered asamember. Thusby accept them, disal-
default a apy constructor is applied to theinherited pation (consideredas low them, or rede-
asingle entity) and then member by member. We will be more spedficin e them.

Additionally, it can
Sedion 4.2.6.

define new func-

* Any base classmember functionthat is declared in the derived class pri- ons.

vate sedion is disabled in the derived class?®
» Any base classmember functionthat is declared in the derived class pub-
lic sedion requires an overriding definition that will be goplied to objeds

of the derived class.

» Additional member functions can be added in the derived class

2. Thisisbad style, becaiseit violates the IS-A relationship: The derived class can ho longer do everything

that the base dass can.

P

InheritanceAndLateBinding.mkr Page 178 Friday, August 6, 1999 183 PM

Inheritance

A protected class
member is private to
every class except a

derived class.

1 class Derived: publicBase
2 {
3 /1A nymenberst hata renotl istedarei nheritedu nchanged
4 /e xceptf orc onstructor,d estructor,
5 //c opyc onstructor,a ndo perator=
6 publi c:
7 /1C onstructors,a ndd estructorsi fd efaultsarenotg ood
8 /1B asemenberswhosed efinitionsaret oc hangei nDerived
9 /1A dditionalp ublicmenberf unctions
10 private:
11 /1A dditionald atamenbers(generallyp rivate)
12 /1A dditionalp rivatemenberf unctions
13 /1B asemenberst hats houldb edisabledi nDerived
14 };
Figure 4.3 General layout of public inheritance

42.1 Visibility Rules

We know that any member that is dedared with private visibility is accessible
only to methods of the dass. Thus any private members in the base dass are not

accessble to the derived class

Occasionally we want the derived classto have acessto the base dassmem-
bers. There are several options. Thefirst isto use public acces However, public
accessallows aacessto ather classesin additionto derived classes. We could use
afriend declaration, but thisis also poa design and would require friend dedara-

tion for each derived class

If we want to allow access to orly derived classes, we can make members
proteded. A protected class member is private to every classexcept a derived
class Dedaring data members as protected or public violates the spirit of encap-
sulation and information hiding and is generally dore only as a matter of pro-
gramming expediency. Typically, a better alternative is to write acessor and

mutator methods. However, if a protected dedaration allows you to avoid convo-

<

InheritanceAndLateBinding.mkr Page 179 Friday, August 6, 1999 183 PM

Inheritance Basics

luted code, then it is not unreasonable to use it. In this text, proteded data mem-
bers are used for predsely this reason. Using protected methods is also donein
thistext. This allows a derived classto inherit an internal method withou making

it accessible outside the dasshierarchy. Figure 4.4 shows the visibility of mem-

bersin certain situations.

Public inheritance situation Public Protected Private

Base class member function accessing M Yes Yes Yes
Derived class member function accessing M Yes Yes No
mai n, accessing B.M Yes No No
mai n, accessing D.M Yes No No
Derived class member function accessing B.M Yes No No

B is an object of the base class; D is an object of the publicly derived class; M is a mem-

ber of the base class.

Figure 4.4 Access rules that depend on what M ’s visibility is in the base
class

P

InheritanceAndLateBinding.mkr Page 180 Friday, August 6, 1999 183 PM

m Inheritance

If no constructor is
written, then asingle
zero-parameter
default constructor
is generated that
calls the base class
zero-parameter con-
structor for the
inherited portion,
and then applies the
default initialization
for any additional

data fields.

A base-class initial-
izer is used to call
the base class con-

structor.

4272 The Constructor and Base Class Initialization

Eadh derived class $iould defineits constructors. If no constructor iswritten, then
asingle zeo-parameter default constructor is generated. This constructor will cdl
the base classzero-parameter constructor for the inherited pation and then apply

the default initialization for any additional data members.

Constructing a derived classobjed by first constructing the inherited partion
is dandard pradice. In fad, it is done by default, even if an explicit derived class
constructor is given. Thisis natural because the encapsulation viewpaint tells us
that the inherited pation is asingle aitity, and the base dass constructor tells us
how to initialize this sngle entity.

Base dass constructors can be explicitly caled by its namein the initializer

list. Thus the default constructor for aderived classisin redity

publicD erived():B ase()

{
}

cl ass U nderfl owException:p ublicu nderflow error

1
2 {

3 publi c:

4 Under f | owException(c onsts tring&msg=" ")
5 ;e xception(msg.c_str()){}

6

b

Figure 4.5 Constructor for new exception class Under f | ow; uses

base class initializer list

The base dass initializer can be called with parameters that match a base
class constructor. As an example, Figure 4.5 illustrates a class
Under fl owExc ept io n that could be used when implementing data struc-

tures. Under f lo wExcepti on is thrown when an attempt is made to extract

<

% InheritanceAndLateBinding.mkr Page 181 Friday, August 6, 1999 183 PM

Inheritance Basics m

from an empty data structure. An Under f | owExcept i on object isconstructed
by providing an optional string. Sincethe underf | ow_err or class spedfica
tion requires a primitive string, we need to use an initializer list. The
Underfl owExceptio n objed adds no data members, so the cnstruction
method is smply to construct the inherited portion using the

under f | ow_error constructor.

If the base dassinitializer is not provided, then an automatic cdl to the base
classconstructor with no parameters is generated. If there is no such base dass
constructor, then a compil er error results. Thus, thisis a cae where initializer

lists might be mandatory.

% 4.2.3 Adding Members

A derived classinherits from its base dassthe behavior of the base dass This
means that all methods defined for the base dassare now defined for the derived
class. In this sedion we examine the consequences of adding extra methods and

data members.

Our vect or classin Sedion 3.4.2 throws an exception if an ou-of-bounds
index is detected. It makes no attempt to be fancy, and passes back no informa-
tion except the fact that an error has occurred. Let us look at an aternative that
could have been used (note that except i on and <st dexcept > are relatively
new language alditions, which is why we have dected not to use them in the
remainder of the text). The dternative stores information about what went wrong

inside the exception objed. It provides accessors to get thisinformation. How-

P &

P

InheritanceAndLateBinding.mkr Page 182 Friday, August 6, 1999 1683 PM

Inheritance

ever, it still 1IS-A exception , meaningthat is can be used any place that an
except i on can be used. The new classis $own in Figure 4.6.

Badl ndex has one constructor, and three methods (in addition to defaults
for copying and destruction that we ignare for now). The constructor accepts two
parameters. It initializes the inherited except i on portion using a zero-parame-
ter constructor. It then uses the two parameters to store the index that caused the

error and the size of the vector. Presumably, thevect or has code such as:

II'S eeFigure3 .14
Ob ect&o perator[](i nti ndex)

{
if(i ndex<0O| |i ndex>=currentSize)
t hrow Badl ndex(index,s ize()) ;
returnob jects[i ndex] ;
}

Thethreemethods available for Badl ndex areget | ndex, get Si ze, and

what . The behavior of what isunchanged from the except i on class

1 //E xanpleofad erivedc lasst hata ddsn ew menbers.
2
3 classBadlndex:p ublice xception
4 {
5 publi c:
6 Badl ndex(i nti dx,i nts z)
7 ci ndex(i dx) ,s ize(s z){}
8
9 intg etlndex()c onst
10 {r eturni ndex;}
11 intg etSize()c onst
12 {r eturnsize;}
13
14 private:
15 inti ndex;
16 ints ize;
17 };
Figure 4.6 Badl ndex class, derived from excepti on

% InheritanceAndLateBinding.mkr Page 183 Friday, August 6, 1999 183 PM

Inheritance Basics

1 //U set heBadl ndexe xception.
2 intm ain()

3 {

4 NewVector<int>v (1 0) ;

5

6 try

7 {

8 for(i nti=0 i< =v.size() ;i ++) /1o ff-by-one
9 v[i]=0 ;

10 }

11 catch(c onstB adlndex &e)

12 {

13 cout< <e.what()< <" ,i ndex="< <e.getlndex()
14 <<" ,s ize="< <e.getSize()< <endl;

15 }

16

17 returnoO;

18 }

Figure 4.7 Using the Badl ndex class

Besides the new functionality, Badl ndex hastwo data membersin addition
% to the data members that are inherited from excepti on. What data was inher-
ited from exc ept io n? The answer is, we do not know (unlesswe look at the
class design), and if the inherited data is private, it is inaccessible. Notice, how-
ever, that we do na nedl this knowledge. Furthermore, our design works regard-
lessof the underlying deta representation in exc epti on. Thus changes to the
private implementation of except i on will nat require any changesto Badl n-
dex.
Figure 4.7 shows how the Badl ndex classcould be used. Notice that since
aBadlndex IS-A exception , atline 11 we oould catch it using an

except i on reference.3 We could apply thewhat methodto get someinforma-

3. Even though the Badindex objed isan automatic variable in operator|] , it can be caught by refer-

ence becaise thrown objeds are guaranteed longer lifetime than normal function arguments.

P &

% InheritanceAndLateBinding.mkr Page 184 Friday, August 6, 1999 183 PM

m Inheritance

tion. However, we could na apply the getindex and getSize methods,

because those methods are not defined for al excepti on objeds.

Because the predefined except i on classis areaent language aldition, the

online code has a collection d exceptionsrooted at classDSExcept i on.

4.2.4 Overriding a Method
The derived class Methods in the base dassare overridden in the derived classby simply providing

method musthave 4 gerjved class method with the same signature. The derived class method must

the same or compat-
have the same or compatible return type (the notion of a cmpatible return typeis
ible return type and

new, andis discussed in Sedion 4.4.4.)

signature.
Partial overriding Sometimes the derived class method wants to invoke the base dass method
% involves calling a Typicdly, thisis known as partial overriding. That is, we want to dowhat the

base class method)])) _
base dassdoes, plus a little more, rather than doing something entirely different.
by using the scope

operator Callsto a base dass method can be acomplished by wsing the scope operator.

Hereisan example:

% InheritanceAndLateBinding.mkr Page 185 Friday, August 6, 1999 183 PM

Inheritance Basics m

cl ass Workaholic :p ublicWorker

{
public:
voidd oWwrk()
{
Worker::dowrk() ;/ [/Workl ik eaW orker
dri nkCoff ee() ; /1T akea break
Worker::dowrk() ;/ /Workl ik eaW orkerso nemore
}
b

425 Static and Dynamic Binding
Figure 4.8 ill ustrates that there is no problem in declaring Worker and in static binding, the

Wor kahol i ¢ objects in the same scope because the compiler can deducewhich ~ 9ecision on which

function to use to
doWor k method to apply. wisaWor ker andwh isaWbr kaholi c, sothe

resolve an overload

determination o which doWor k isused in thetwo cdlsat line 6 is computable at

is made at compile

compiletime. We cdl this static binding or static overloading. time.

On the other hand, the mde in Figure 4.9 is more complicated. If x is zero,
we use a plain Worker class; otherwise, we use aWbrkaholi c¢. Recall that
since aWork aholi ¢ IS-A Work er, aWor kahol i ¢ can be accesd bya
pointer to a Worker . Any method that we might call for Work er will have a
meaning for Wr kahol i ¢ objeds. We seethen that public inheritance aitomat-
icaly defines atype mnversion from a pointer to a derived classto a pointer to
the base dass. Thus we can declare that wptr is a pointer to the base dass
Wa ker and then dynamicaly allocate either aWor ker or Wor kaholi ¢

objed for it to point at. When we get to line 9, which doWor k gets called?

P

InheritanceAndLateBinding.mkr Page 186 Friday, August 6, 1999 183 PM

m Inheritance

If amember func-
tionis declared to be
virtual, dynamic
binding is used. The
decision on which
function to use to
resolve an overload
is made at run time,
if it cannot be deter-
mined at compile

time.

In general, if a func-
tion is redefined in a
derived class, it
should be declared
virtual in the base

class.

The dedsion of which doWbrk to use can be made & compile time or at run
time. If the decision is made at compil e time (static binding), then we must use
VWor ker 'sdoWor k because that is the type of *wpt r at compile time. If wpt r
isadually pointing at the Wor kahol i c, thisis the wrong dedsion. Because the
type of objed that wpt r isadually panting at can orly be determined orcethe
program has run, this decision must be made & run time. This is known as
dynamic binding. Aswe discussed earlier in this chapter, thisisalmost aways the

preferred course of adion.

However a run-time decision incurs sme run-time overhead because it
requires that the program maintain extrainformation and that the compiler gener-
ate mde to perform the test. This overhead was once thought to be significant,
and thus although aher languages, such as Smalltalk and Objecive C, use

dynamic binding by default, C++ does nat.

1 constV ectorSize=2 0;
2 Wor kerw ;
3 Wor kahol i cw h;
4
5 wh. doWor k()
6 w. doWwor k() ;w h.dowsrk() ;
Figure 4.8 Wor ker and Work ahol i ¢ classes with calls to doWbr k

that are done automatically and correctly

Instead, the C++ programmer must ask for it by spedfying that the function
isvirtual. A virtual function will use dynamic binding if a cmpile-time binding
dedsionisimpossible to deduce. A nonvirtual function will always use static
binding. The default, as we implied above, is that functions are non-virtual. This

is unfortunate because we now know that the overhead is relatively minor.

<

% InheritanceAndLateBinding.mkr Page 187 Friday, August 6, 1999 183 PM

Inheritance Basics

Virtualness is inherited, so it can be indicated in the base class. Thusif the
base dassdedaresthat afunctionisvirtual (in its dedaration), then the dedsion
can be made & run time; otherwise, it is made & compile time. For example, in
the exception class, the what methodis virtual. The derived classes require

no further adion to have dynamic binding apply for what methodcdls.

Consequently, for the example in Figure 4.9, the answer depends entirely on
whether or not doWork was declared virtual in the Worker class (or higher in
the hierarchy). Note caefully that if doWork is not virtual in the Wa ker class
(or higher in the hierarchy), but is later made virtual in Workah olic , then
acaesses through panters and references to VWor ker will still use static binding.
To make arun-time dedsion, we would have to placethe keyword vi rtu al at
the start of the doWor k dedaration in the Wor ker classinterface(the rest of the

classis omitted for brevity):

cl ass Wor ker

{
public:
vi rtualv oid doWrk()

Wor ker * wptr;
cin>>x;
if(x! =0)
wptr=n ew Workaholic() ;
el se
wptr=n ewWorker() ;

© oo N O~ WDNPRE

wpt r - >doWor k() ; / /W hatd oest hi smean?

Figure 4.9 Wor ker and WOrk ahol i ¢ objects accessed though a
pointer to a Wa ker ; which version of doWbr K is used
depends on whether doWbr K is declared virtual in Wao ker

P &

P

InheritanceAndLateBinding.mkr Page 188 Friday, August 6, 1999 183 PM

Inheritance

The public/private
status of the default
constructor, copy
constructor, and
copy assignment
operator, like all
other members is

inherited.

As agenerd rule, if afunctionis overridden in a derived class, it should be
dedared vi r t ual inthe base dassto ensurethat the mrred functionis sleded
when a pointer to an oljed is used. An important exception is discussd in Sec-
tion4.2.7.

To summarize Static bindingisused by dfault, and dynamic bindingis used
for virtual functionsif the binding cannot be resolved at compile time. However,
arun-time decisionis only needed when an olject is acessed through a pointer

or referenceto abase dass

4.2.6 The Default Constructor, Copy Constructor, Copy
Assignment Operator, and Destructor

There are two issues surrounding the default constructor, copy constructor, and
copy assgnment operator: first, if we do nothing, are these operators private or
public? Second, if they are public, what are their semantics?

We assume public inheritance. We also assume that these functions were
public in the base dass What happens if they are completely omitted from the
derived class? We know that they will be public, but what will their semantics be?
We know that for classes there ae defaults for the simple constructor, the apy
constructor and the copy assgnment operator. Specificdly, the default isto apply
the gpropriate operation to ead member in the dass Thusif a wpy assgnment
operator is not spedfied in a dass, we have seen that it is defined as a member-
by-member copy. The same rules apply to inherited classes. This means, for

instance, that

% InheritanceAndLateBinding.mkr Page 189 Friday, August 6, 1999 183 PM

Inheritance Basics m

const Badl ndex & operator=(constB adindex&r hs) ;
sinceit is not explicitly defined, isimplemented by a Gl to oper at or = for the If a default destruc-
ba% daSS tor, copy construc-

tor, or copy

What is true for any member function isin effect true for these operators _
assignment opera-

when it comes to visibility. Thus, if operat or= isdisabled bybeing placed in o is pubiicly inher-

the private sedion in the base dass then it is still disabled. The same holds true ited but not defined

_ . inthe derived class,
for the cpy constructor and default constructor. The reasoning, however, is e derved class

then by default the
dlightly different. oper at or= isin effed disabled becaise apublic default

operator is applied
oper at or = is generated. However, by default opera t or = isapplied to the 15 each member.
inherited portion and then member by member. Since oper ator= for the base
classis disabled, the first step becomesillegal. Thus placing default constructors,
% copy constructors, and oper ator = in the private section of the base classhas

the dfed of disabling them in the derived class(even thoughtecdhnically they are

public in the derived class.

4.2.7 Constructors and Destructors: Virtual or not Vir-
tual?

The short answer to the question o whether constructors and destructors sioud Constructors are

be virtual or not is that constructors are never virtual, and destructors should "ever virtual.
always be made virtual if they are being used in a base dassand should be non

virtual otherwise. Let us explain the reasoning.

P

InheritanceAndLateBinding.mkr Page 190 Friday, August 6, 1999 183 PM

m Inheritance

In an inheritance
hierarchy the
destructor is always

virtual.

For constructorsavi rt ual label is meaningless We can always determine
at compile time what we are @nstructing. For destructors we need vi rtu al to
ensure that the destructor for the adual objed is cdled. Otherwise, if the derived
classconsists of some alditional members that have dynamically allocated mem-
ory, that memory will not be freed by the base dass destructor. In a sense the
destructor isno dfferent than any other member function. For example, in Figure
4.10 suppose that the base dasscontains st ri ngsnanel and name2. Auto-
maticaly, its destructor will call the destructors for these strings, so we ae
tempted to accept the default. In the derived classwe have an additional st ri ng
newNane. Automatically, its destructor cdls newNane’s destructor, and then

the base dassdestructor. So it appeas that everything works.

However, if the destructor for the base dassis used for an oljed of the
derived class only those items that are inherited are destroyed. The destructor for
the additional data member newName cannat posdbly be cdled becaise the

destructor for the base dassis obliviousto newNane’s existence.

Thus even if the default destructor seemsto work, it does not if thereisinher-
itance. The base dass constructor shoud always be made virtual, and if it isa
trivial destructor, it should be written anyway, with a virtual dedaration and
empty body. When the destructor isvirtual, we are certain that a runtime dedsion
will be used to choose the destructor that is appropriate to the objed being

del et ed.

For a concrete example, Figure 4.11 shows the classinterfacefor ex cep-

<

% InheritanceAndLateBinding.mkr Page 191 Friday, August 6, 1999 183 PM

Inheritance Basics m

t i on. Notice how the destructor is virtual.

namel

Base Class name?2
_ " namel = |

Derived Class name2
" newName = |

Figure 4.10 Calling the base class destructor does not free memory asso-
ciated with newName

1 //1 nterfacef orc lasse xceptioni n<exception>
2
3 classe xception
4 {
5 public:
6 exception() ;
% 7 exception(c onste xception&r hs) ;
8
9 virtual~ exception() ;
10
11 conste xception&o perator=(c onste xception&r hs) ;
12
13 virtualc onstc har*w hat() ;
14
15 private:
16 /1i npl ementation-defined
17 };

Figure 4.11 Class interface for except i on

428 Abstract Methods and Classes

So far we have seen that some methods are invariant over a hierarchy and that
other methods can have their meaning changed over the hierarchy. A third poss-
bility is that the method is meaningful for the derived classes and an implementa-
tion must be provided for the derived classes; however, that implementationis not

meaningful for the base dass In this case, we can declare that the base class

P &

P

InheritanceAndLateBinding.mkr Page 192 Friday, August 6, 1999 1683 PM

Inheritance

An abstract method
has no meaningful
definition and is
thus always defined

in the derived class.

method is abstract.

An abstract method is a method that declares functionality that al derived
class objects must eventually implement. In other words, it says what these
objects can da However, it does not provide a default implementation. Instead,

each object must provide its own implementation.

A classthat has at least one abstrad method is an abstract class. Sincethe
behavior of an abstrad classis not completely defined, abstrad classes can never
be instantiated. When a derived classfail sto override an abstract method with an
implementation, the method remains abstrad in the derived class As aresult, the
derived classremains abstrad, and the compiler will report an error if an attempt

to instantiate the éstraa derived classis made.

An exampleis an abstrad classShape, which isused in alarger example
later in this chapter. Specific shapes, such as Ci r cl e and Rect angle , are
derived from Shape. We can then derive aSquare asaspeda Rectangle

Figure 4.12 shows the classhierarchy that results.

The Shape classcan have data members that are commonto al classs. Ina
more extensive example, this could include the coordinates of the objed’s
extremities. It dedares and provides a definition for methods, such as
posit i onOf, that are independent of the actual type of object; posi tion O
would be an invariant method. It also dedares methods that apply for each pertic-
ular type of object. Some of these methods make no sense for the astract class

Shape. For instance, it is difficult to compute the aeaof an abstrad objed; the

<

P

InheritanceAndLateBinding.mkr Page 193 Friday, August 6, 1999 183 PM

Inheritance Basics

ar ea method would be an abstrad method.

As mentioned ealier, the existence of at |east one abstrad method makes the
base dassabstrad and disallows creation of it. Thusa Shape object cannat itself
be aeaed; only the derived objects can. However, asusual, aShape can point to
or reference any concrete derived dbjed, such asa Circle or Rect angle .

Thus

Shape *a,* b;
a=ne wCircle(3.0) ; /1L egal
b=ne wShape("c ircle") ;/ /1 Ilegal

Figure 4.13 shows the &stract class Shape. At line 30, we declare a
string that stores the type of shape. Thisis used orly for the derived classes.
The member is private, so the derived classes do not have direct accessto it. The

rest of the dass pedfiesa wlledion of methods.

The constructor never actually gets cdled diredly because Shape isan
abstract class We neal aconstructor, however, so that the derived classcan cdl it
to initialize the private members. The Shape constructor sets the internal nane
data member. Notice the virtual destructor, in according with the discussionin
Sedion 4.2.7.

Line 21 o Figure 4.13 declares the abstrad methodare a. A methodis
dedared abstrad by spedfying that it isvir t ual , and supplying = 0 inthe
interfacein placeof an implementation. Because of the syntax, abstrad methods
are dso known as pure virtual functionsin C++. Aswith all virtual methods, a

run-time dedsion will seled the appropriate ar ea in aderived class ar ea isan

<

193

A class with at least
one abstract
method must be an

abstract class.

An abstract class
object can never be
constructed. How-
ever, we still pro-
vide a constructor
that can be called

by derived classes.

Abstract methods
are also known as
pure virtual func-

tions in C++.

% InheritanceAndLateBinding.mkr Page 194 Friday, August 6, 1999 183 PM

m Inheritance

abstract method because there is no meaningful default that could be spedfied to

apply for an inherited classthat chase not to define its own.

@ Rectangle

Square

Figure 4.12 The hierarchy of shapes used in an inheritance example

% InheritanceAndLateBinding.mkr Page 195 Friday, August 6, 1999 183 PM

Inheritance Basics m

1 //A bstractb asec lassf ors hapes
2 /1
3 //C ONSTRUCTION:i snota |Ilowed;S hapei sa bstract
g ;;* *****************PUBLICOPERATI O\IS**********************
6 //d oublearea() -->Returnt hearea(abstract)
7 /b oolo perator<(r hs) -->Conpare2S hapeo bjectsbyarea
8 //v oidprint(out=c out) -->Standardprintm ethod
9
10 #include<iostreanp
11 #include<string>
12 usingn amespaces td;
13
14 cl ass S hape
15 {
16 public:
17 Shape(c onsts tring&s hapeNane=" "):n ane(s hapeNane)
18 {1
19 vi rtual ~ Shape(){}
20
21 virtuald oublearea()c onst=0 ;
22
23 boolo perator<(c onstS hapeé&r hs)c onst
24 {r eturnarea()<r hs.area() ;}
25
% 26 virtualv oidprint(o stream&out)c onst
27 {o ut< <name<<"o farea"< <area() ;}
28
29 private:
30 stringn ane;
31 };

Figure 4.13 Abstract base class Shape

The mmparison method shown at lines 23 to 24 is not abstract becaise it can
be meaningfully applied for al derived classs. In fad, its definition is invariant
throughaut the hierarchy of shapes, so we have not made it virtual.

The print method, shown at lines 26 and 27, prints out the name of the
shape and its area. Althoughit appeasto be invariant now, we makeit virtual just

in case we change our mind later on. oper at or << iswrittenin Figure 4.14.

% InheritanceAndLateBinding.mkr Page 196 Friday, August 6, 1999 183 PM

m Inheritance

/1O utputr outinef orS hape
ostreamé&o perator<<(o stream&out,c onstS hape&r hs)

1
2
3 {

4 rhs.print(o ut) ;
5 returno ut;

6

}

Figure 4.14 Output routine for Shape that includes its name and area

Before continuing, let us sImmarizethe threetypes of member functions:

Static binding is 1. Nonvirtual functions. Overloadingisresolved at compiletime. To
used for a nonvir- ensure mnsistency when pdntersto ojeds are used, we generally use a

tual function when)) o)]]
nonvirtual method only when the functionis invariant over the inheri-
the function is

oo tance hierarchy (that is, when the methodis never redefined). The excep-
invariant over the
inheritance hierar- tionto thisrule is that constructors are dways nonvirtual, as mentioned

% chy. in Sedion 4.2.7.

2. Virtual functions. Overloading is resolved at run time. The base dass
provides a default implementation that may be overridden by the
derived classes. Destructors should be virtual, as mentioned in Sedion

4.2.7.

3. Purevirtual functions. Overloadingisresolved at runtime. The base
classprovides no implementation and is abstrad. The asence of a
default requires either that the derived classes provide an implementa-
tion or that the derived classes themselves be abstract.

4.3 Example: Expanding the Shape Class

This dionimplements the derived Shape classes and shows how they are used

% InheritanceAndLateBinding.mkr Page 197 Friday, August 6, 1999 183 PM

Example: Expanding the Shape Class

in a polymorphic manner. The following problem is used:

SORTING SHAPES
READ N SHAPES (CIRCLES, SQUARES, OR RECTANGLES) AND OUTPUT
THEM SORTED BY AREA.
The implementation d the derived classes, shown in Figure 4.15, is com-
pletely straightforward and illustrates almost nothing that we have not already
see. The only new item is that Squar e is derived from Recta ngle , which

itself is derived from Shape. This derivation is dore exadly like dl the others.

In implementing these dasses, we must do the following:

1. Provide anew constructor.

2. Examine each virtual functionto deade if we ae willing to accept its
defaults. For each virtual function whose defaults we do not like, we

must write anew definition.
3. Write adefinitionfor ead pure virtual function.

4. Write aditional member functionsif appropriate.

For ead class we provide asimple anstructor that all ows initiali zation with
basic dimensions (radius for circles, side lengths for redangles and squares). We
first initialize the inherited pation by cdling the base classinitializer. Each class
isrequired to provide an ar ea method because Shape has dedared that it isan
abstract method If the ar ea method is not provided for some dassthen an error
will be deteded at compiletime. Thisis becauseif animplementation of ar ea is
missing, a derived class will itself be dstrad. Note that Square iswillingto

inherit the ar ea methodfrom the Rect angl e, so it does nat provide aredefini-

P &

P

InheritanceAndLateBinding.mkr Page 198 Friday, August 6, 1999 183 PM

Inheritance

tion. Note aso that its name internally is now aredangle.

© o0 ~NO UL WNPE

AR DWWWWWWWRWWWNNRNNNNNNNNRRPRPRERRERERPPRE
NRPOOONONRWNPRPROOXIVIOANRWNRPOO®OMNO®OUTONWNERO

//Circle,S quare,R ectanglec | assi nterfaces;

/1 allb asedo nS hape

/1

/1 C ONSTRUCTION:w ith(a)n oi nitializero r(b)r adius(for

/1l circle),s idel ength(fors quare),l engthandwidth

/1 (forr ectangle)

//* *****************PUBLICOPERATIO\ls**********************
//d oublearea() -->| nplenentsS hapepurevirtuala rea

constd oubleP =3 .1415927;

classCircle:p ublics$S hape

{
publi c:
Circle(d oubler ad=0 .0)
:S hape(" circle") ,r adius(r ad){}
doublearea()c onst
{r eturnPIl*r adius*r adius;}
private:
doubl e r adi us;
b
classRectangle:p ublicShape
{
publi c:
Rectangl e(d oublel en=0 .0,d oublewid=0 .0)
:S hape(" rectangle") ,I ength(l en) ,width(wid){}
doublearea()c onst
{r eturnl ength*w idth;}
private:
doubl el engt h;
doubl e wi dt h;
b
classSquare:p ublicRectangle
{
publi c:
Square(d oubleside=0 .0)
‘R ectangle(s ide,s ide){}
b

Figure 415 Complete Ci r cl e, Rect angl e, and Square classes

% InheritanceAndLateBinding.mkr Page 199 Friday, August 6, 1999 183 PM

Example: Expanding the Shape Class m

Now that we have written the dasses, we ae ready to solvethe origina prob- we can only declare
lem. What we would like to do is declare an array of Shapes. But we cannat 78/ of pointers to

base classes
declare one Shape, much less an array of them. There are two reasons for this.
because the size of

First, Shape is an abstrad base dass so a Shape objed does not exist. Even if .
the base class is

Shape was nat abstrad, which would bethe caseif it defined an ar ea function, usually smaller than

we still could not reasonably declare an array of Shapes. This is because the 1@ size of the

derived class. It can
basic Shape has one data member, Circle adds a second data member,
never be larger.
Rect angl e adds athird data member, and so on The basic Shape isnat large
enouch to hold all of the posshble derived types. Consequently, we need an array
of pointers to Shape. Figure 4.16 attempts this approach; however, it does not
quite work because we get in trouble at the sorting stage.
We examinethelogic in Figure 4.16 and show how to correct the deficiency.
First we rea the objeds. At line 17 we ae adually reading a charader and then
the dimensions of some shape, creaing a shape, and finally assgning a pointer to

point at the newly creaed shape. Figure 4.17 shows a bare bones implementation.

So far so good

P

InheritanceAndLateBinding.mkr Page 200 Friday, August 6, 1999 183 PM

200

Inheritance

#incl ude < i ostreanp
#i ncl ude < vect or>
usi ngn anespace s td;

//main:r eads hapesa ndo utputi ncreasingordero fa rea.
/IE rrorc hecksomttedf orb revity.

7 intm ain()

©
—~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 }

i ntn untShapes;
ci n > >n unShapes;
vector<Shape* >array(n unShapes) ; / /A rrayo fS hape*

/IR eadt hes hapes
for(i nti=0 ;i<n unBhapes;i ++)
{
cout< <" Enteras hape:" ;
cin>>array[i] ;

}

insertionSort(a rray) ;
cout< <" Sortedbyi ncreasingsize:"< <endl;
for(i ntj=0 ;j<n unBhapes;j ++)

cout< <* array[j]< <endl;

returnoO ;

Figure 4.16 mai n routine to read shapes and output them in increasing

order of area

% InheritanceAndLateBinding.mkr Page 201 Friday, August 6, 1999 183 PM

Example: Expanding the Shape Class

1 //CreateanappropriateShapeo bjectb asedoni nput.

2 //T heusert ypes' ¢c'," s',or' r't oi ndicatet hes hape
3 //a ndt henprovidesd inensionswhenp ronpted.

4 /|/Az ero-radiuscirclei sr eturnedf ora nyerror.

5 istream&o perator>>(i stream&i n,S hape*&s)

6 {
7 charc h;
8 doubled 1,d 2;
9
10 in.get(c h) ; / IF irstc haracterr epresentss hape
11 switch(c h)
12 {
13 case' c':
14 in>>d1;
15 s=n ewCircle(d 1) ;
16 break;
17
18 case' r':
19 in>>d1>>d2;
20 s=n ewRectangle(d 1,d 2) ;
21 break;
22
23 case' s':
24 in>>d1;
25 s=n ewSquare(d 1) ;
% 26 br eak;
27
28 case' \n':
29 returni n>>s;
30
31 def aul t:
32 cerr< <" Neededoneofc ,r ,0rs "< <endl;
33 s=n ewCircle; / IR adiusi sO
34 br eak;
35 }
36
37 returni n;
38 }

Figure 4.17 Simple input routine for reading a pointer to a Shape

Wethen cdl in sertio nSort to sort the shapes. Recdl that we dready
haveai nserti onSort templatefrom Section 3.3. Sincear r ay isan array of
pointersto shapes, we exped that it will work aslong aswe provide a mparison

routine with the dedaration

P

InheritanceAndLateBinding.mkr Page 202 Friday, August 6, 1999 1683 PM

202 Inheritance

If a class is instanti-
ated with pointer
types, shallow oper-

ations are used.

intop erator<(co nstS hape *| hs,c onst Shape*r hs);

Unfortunately, that does not work. i nserti onSort usestheoper at or < that
already exists for pointers. That operator compares the aldresses being pointed
at, which guarantees that the array will be unaltered (because afi] is aways

stored at alower addressthana[j] ifi <j).

1 structP trToShape

2 {

3 Shape * ptr;

4

5 boolo perator<(c onstP trToShapeé&r hs)c onst
6 {r eturn* ptr<* rhs.ptr;}

7

8 constS hape&o perator*()c onst

9 {r eturn* ptr;}

10 };

12 //main:r eads hapesa ndo utputi ncreasingordero fa rea.
13 //E rrorc hecksonmttedf orb revity.
14 intm ain()

15 {

16 i ntn unShapes;

17 cout< <" Entern unbero fs hapes:" ;

18 ci n > >n unShapes;

19

20 /IR eadt hes hapes

21 vect or <Pt r ToShape>a rray(n unShapes) ;
22

23 for(i nti=0 ;i<n unBhapes;i ++)
24 {

25 cout< <" Enteras hape(c,r ,0 rsw ithdinmensions):" ;
26 cin>>array[i] .ptr;

27 }

28

29 insertionSort(a rray) ;

30 cout< <" Sortedbyi ncreasingsize:"< <endl;
31 for(i ntj=0 ;j<n unBhapes;j ++)
32 cout< <* array[j]< <endl;

33

34 for(i ntk=0 ;k<n unBShapes;k ++)
35 deletearray[k] .ptr;

36

37 returnO;

38 }

Figure 4.18 mai n routine reads shapes and outputs them in increasing
order of area

<

P

InheritanceAndLateBinding.mkr Page 203 Friday, August 6, 1999 183 PM

Tricky C++ Details 203

To make this work, we neal to define anew classthat hides the fact that the
objeds we are storing and sorting are pointers. Thisis shown in Figure 4.18. The
PtrToSha pe object stores the pointer to a Shape and pgrovides a comparison
function that compares Shapes rathers than panters. It does this by dereferenc-
ing both pointers and cdling the Shape oper at or < on the resulting Shape
objeds. Note that we make excessve lculations to compute aeas. Avoiding
thisis left as Exercise 4.13. Note also that in general, we must call del ete to

redaim the memory consumed by the Shape objeds.

The Pt r ToShape class also overloads the unary * operator, so that a
Pt r ToShape objed looks just like apointer to a Shape. We cetainly can add
more membersto hideinformation better, but we prefer to keep things as short as
possble. The idea of wrapping a pointer inside aclassis a common design pat-

tern. Welook at this recurring theme in Sedion 5.3.

4.4 Tricky C++ Details

Inheritance in C++ has numerous subtle points. Some of these ae discussed in

this ®dion.

44.1 Static Binding of Parameters

Dynamic binding means that the member function that is appropriate for the
objed being operated onis used. However, it does not mean that the absol ute best
match is performed for al parameters. Spedfically, in C++, the parametersto a

method are dways deduced statically, at compile time.

<

Deep comparison
semantics can be
obtained by design-
ing aclass to store

the pointer.

In C++, the parame-
ters to a method are
always deduced
statically, at compile

time.

P

InheritanceAndLateBinding.mkr Page 204 Friday, August 6, 1999 183 PM

204

Inheritance

For a concrete example, consider the ade in Figure 4.19. In the whi chFoo
method, acdl ismadeto fo 0. But which f oo is called? We exped the answer to

depend onthe runtimetypes of ar g1 andar g2.

Because parameters are always matched at compil e time, it does not matter

what type ar g2 isadually referencing. Thef oo that is matched will be

virtualv oid foo(c onst Base&Xx) ; /IM ETHOD AorC

Theonly issueiswhether the Base or Der i ved versionisused That isthe deci-

sionthat is made & runtime, when the objed that arg 1 referencesis known.

Static binding has important ramifications. Consider the foll owing situation

in which we overload the output operator for both a base dassand derived class

ostream&o perator<<(o stream&out,c onstB ase& x) ;
ostream&o perator<<(o stream&out,c onstD erived &Xx)

Suppose we now try to cdl the output function.

Base* b=n ewDeri ved,;
cout< <* pb<<e ndl;

Because parameters are statically deduced, output is done (unfortunately) using

theoper at or << that takes aBase parameter.

% InheritanceAndLateBinding.mkr Page 205 Friday, August 6, 1999 183 PM

Tricky C++ Details 205

1 classDerived; / Il nconpletedeclaration
2
3 classB ase
4 {
5 public:
6 virtualv oidf oo(c onstB ase &x) / I M ETHOD A
7 virtualv oidf oo(c onstD erived&x) / I M ETHOD B
8 };
9
10 classDerived:p ublicB ase
11 {
12 public:
13 virtualv oidf oo(c onstB ase&x) ; / /M ETHOD C
14 virtualv oidf oo(c onstD erived&x) / I M ETHOD D
15 };
16
17 voi dwhi chFoo(B ase&a rgl,B ase&a rg2)
18 {
19 argl.foo(a rg2) ;
20 }
Figure 4.19 lllustration of static binding for parameters

However, recdl that we have been recommending the gproach of having the
classdefineapr i nt method, and then implementing operato r << by cdling
the print method. If we do this, we only need to write opera t or << for the

base dass

ostream&o perator<<(o stream&out, constB ase& x)

{

out.print(x); [lpr inti sdeducedatr unti me
returno ut;

Now the base classand derived class each provide their own version of the
print method. oper ator<< iscalled for al Base and Derived objects.

However, when that happens, the cll to pri nt uses dynamic binding!

P

InheritanceAndLateBinding.mkr Page 206 Friday, August 6, 1999 183 PM

206 Inheritance

It is unsafe to
change the default
value in a derived

class.

442 Default Parameters

Default parameters are statically bound, meaning that they are deduced at com-
pile time. It is unsafe to change the default value in a derived class because this

can crede an inconsistency with virtual functions, which are boundat run time.

443 Derived Class Methods Hide Base Class Methods

C++ has an annoying feature ill ustrated by the example in Figure 4.20. In the
code, we have abase dassand a derived class The base dassdedares afunction
named bar , with zero parameters. The derived classadds afunction remed bar ,

with one parameter.

Int est, we illustrate the various cdl s that can be made. At line 15, we
attempt to call the zeo-parameter bar through aBase reference We exped this
to work and it does. Notice that the actual object being acted upon could be a
Der i ved objed. The next line @temptsto call the one-parameter bar througha
Bas e reference. Sincethisis not defined for Base objeds, it must fail, and
indeed, the line does nat compile. The one-parameter bar must be cdl ed through
aDeri ved reference as shown online 17.

So far dl isgood. Now comes the unexpeded pert. If we @l the zeo-param-
eter bar with aDer i ved reference, the code does naot compile. This is unex-
peded, sincethe code at line 15 compiles, andaDer i ved IS-A Base.

What has happened appeas to be alanguage flaw. When a method is
declared in a derived class it hides all methods of the same name in the base

class Thus bar isnolonger accessble through aDer i ved reference, even

<

% InheritanceAndLateBinding.mkr Page 207 Friday, August 6, 1999 183 PM

Tricky C++ Details

thoughit would be accsesble through aBase reference

Base &tm p=a rg3; tnp.bar() ; /1L egal!

There ae two ways around this. Onceway isto override the zeo-parameter
bar in Deri ved, with an implementation that calls the Base class version. In

other words, in Der i ved, add:

voidbar() {B ase::bar() ;} /1 InclassDeri ved

The other method is newer and does not work on all compilers. Introducethe base

classmember function into the derived class sope with ausi ng dedaration:

1 classB ase
2 {
3 publi c:
4 virtualv oidbar() ; / 1M ETHOD A
% 5}
6
7 classDerived:p ublicB ase
8 {
9 public:
10 virtualv oidbar(i ntx) ; / I'M ETHOD B
1 };
12
13 voidt est(B ase&a rgl,D erived&a rg2,D erived&a rg3)
14 {
15 argl. bar() ; //C onpiles,a se xpected.
16 argl.bar(4) ; /1D oesn otc onpile,a se xpected.
17 arg2.bar(4) ; /1C onpiles,a se xpected.
18 arg3. bar() ; //D oesn otc onpile.N ote xpect ed.
19 }
Figure 4.20 lllustration of hiding
usi ng B ase: b ar; /1 InclassDeri ved

The most important reason you should be aware of this rule is that many
compilers will issue a warning when you hide amember function. Since asigna-

ture includes whether or not afunction is an accesr, if the base dassfunctionis

P &

P

InheritanceAndLateBinding.mkr Page 208 Friday, August 6, 1999 183 PM

208 Inheritance

If the original return
type is a pointer (or
reference) to B, the
new return type may
be a pointer (or ref-
erence) to D, pro-
vided D is a publicly

derived class of B.

an accessor (a cnstant member function), and the derived class function is not,
you have usually made an error, and thisis how the compiler might let you knov

about it. Pay attention to these warnings.

444 Compatible Return Types for Overridden Methods

Return types present an important difficulty. Consider the following operator,

defined in abase dass

virtualc onstB ase &0 perator++() ;

The derived classinheritsit,

const Base &0 per ator++()

but that is not really what we want. If we have areturn typein the derived class it
ought to be aconstant reference to the derived type and nad the base type. Thus
theoper at or ++ that isinherited is not the one we want. We would like instead

to override oper at or ++ with:

const Derived& operator++();

Recadl that overriding afunction means writing a new function with the same
signature. Under original C++ rules, the return type of the new and overridden
function had to match exactly.

Under the new rules, the return type may be relaxed. By this we mean that if
the original return typeis apointer (or reference) to B, the new return type may be
apointer (or reference) to D, provided D isapublicly derived class of B. This cor-

responds to our normal expedation of 1S-A relationships.

<

P

InheritanceAndLateBinding.mkr Page 209 Friday, August 6, 1999 183 PM

Tricky C++ Details

445 Private Inheritance

Private inheritance means that even public members of the base dassare hidden.
Seamslikeasilly ideg doesn'tit? Infact it is, if we ae talking about implement-
ing an IS-A relationship. Private inheritanceis thus generally used to implement a

HAS-A relationship (that is, a derived classD has or uses a base dassB).

In many cases we can get by without using inheritance: We can make an
objea of class B a member of classD and, if necessary, make D afriend d B.
This is known as composition. Composition is the preferred mechanism, but
occasionadly private inheritanceis more expedient or slightly faster (because it
avoids alayer of function cals). For the most part, it is best to avoid private
inheritance unlessit grealy simplifies sme coding logic or can be justified on
performance grounds. However, in Sedion 53.3, we will see a appropriate and

typical use of private inheritance.

It isimportant to remember that by default, private inheritance is used. If the
keyword publi ¢ was omitted online 3 of Figure 4.6, we would have private
inheritance. In that case the public member functions of except i on would still
be inherited, but they would be private members of BadInd ex and they could
not be cdled by wsers of Badl ndex. Thusthe what methodwould na be visi-
ble. The type cmmpatibility of base classand derived classpointers and references
described earlier does not apply for norpublic inheritance. Thus, in the following

code, aBadl ndex exception would not be caight:

Private inheritance
means that even

public members of
the base class are

hidden.

Composition is pre-
ferred to private
inheritance. In com-
position, we say
that class B is com-
posed of class A

(and other objects).

The default is private
inheritance but it

should be avoided.

P

InheritanceAndLateBinding.mkr Page 210 Friday, August 6, 1999 1683 PM

210 Inheritance

Friendship is not

inherited.

catch(c onste xception&e){c out< <e. what()< < endl;}

446 Friends

Arefriends of a dass 4ill friendsin aderived class? The answer is no. For exam-
ple, suppose F isafriend d class B, and D isderived from B. Suppose D has nort
public member M. Then in class D, F does not have accessto M. However, the
inherited portion of B isaacessibleto F in class D. Figure 4.21 summarizes the
results. D can declare that F is also afriend, in which case dl of D’s members

would be visible.

4.4.7 Call by Value and Polymorphism Do Not Mix

Consider the foll owing statement, assume that Badl ndex is publicly inherited

fromexcept i on, and suppose that it has overridden the what method:

catch(e xception e){c out <<e.what() <<endl;}

Notice that e is passed using call by value. Now suppose aBadInde x
exception has been thrown. Which what method gets cdled? The answer is not

what we want.

Public inheritance situation Public Protected Private
F accessing B.MB Yes Yes Yes
F accessing D.MD Yes No No
F accessing D.MB Yes Yes Yes

B is an object of the base class; D is an object of the publicly derived class; MB is a
member of the base class. MD is a member of the derived class. F is a friend of the
base class (but not the derived class)

Figure 4.21 Friendship is not inherited

<

InheritanceAndLateBinding.mkr Page 211 Friday, August 6, 1999 1683 PM

P

Multiple Inheritance

When we use cdl by value, the actual argument is always copied into the for-
mal parameter. This means that the Badl ndex objed is copied into e. Thisis
doneby using e’soper at or =, which meansthat only theexcept i on compo-
nent of Badl ndex iscopied. (Thisisknown as dicing.) In any event, the type of
e isexc eption , and so it isthe exc eption class' what method that is

called, andit is acting on atrimmed portion of the Badl ndex objed. The moral

of the story: palymorphism and cal by value do not mix.

4.5

All the inheritance examples sen so far derived one classfrom a single base

Multiple Inheritance

class In multiple inheritance a dass may be derived from more than ore base
class Asan example, inthei ost r eamlibrary, ani ost r eam(which allows
both reading and writing) is derived from both an istream and an ostream .
As a second example, a university has several classes of people, including: stu-
dents and employees. But some people ae both students and employees. The
Stud entE npl oyee classcould be derived from both the St udent class and
the Emg oy ee class; each of those dasses could be derived from the éstrad

base dassUni ver si t yPer son.

In multiple inheritance the new class inherits members from all of its base
classes. This leads to some immediate problems that the user will need to watch

out for:

e SupposeUni ver sit yPer son hasclassmembersnane andssn. Then

<

Slicing is the loss of
inherited data mem-
bers when a derived
class object is cop-
ied into a base class

object.

Multiple inheritance
is used to derive a
class from several
base classes. We do
not use multiple
inheritance in this

book.

P

InheritanceAndLateBinding.mkr Page 212 Friday, August 6, 1999 1683 PM

212

Inheritance

these are inherited by St udent and Enpl oyee. However, since
St udent Enpl oyee inherits the data members from both St udent
and Enpl oyee, we will get two copies of nameand ssn unlesswe use

virtual inheritance, asin the following:

class Student: wvirtualp ublicUniversity Person{ ...}
cl ass Enployee:v irtualp ublicUniversity Person{ ... }
cl ass Student Enpl oyee:p wublicStudent,

publ i c E npl oyee {...}

e What if St udent and Enpl oyee have member functions that are aug-
mented to Enpl oyee but have the same signatures? For instance, the
credit function, not givenin Uni ver si t yPer son, isadded to
St udent to mean the number of credits for which a student is currently
registered. For employees the function returns the number of vacdion

days dill left. Consider the following:

Uni ver sityPerson *p=n ew St udent Enpl oyee;

cout <<p->Student::credits() ; /10 K

cout <<p ->Enpl oyee::credits () ; /10 K

cout <<p->credit s() ; /1A mb guous

» Suppose Univ er si t yPer son definesavirtual member functionf , and
St udent redefinesit. However, Enpl oyee and St udent Enpl oyee
do nahing. Then, for p defined in the previous example, isp- >f ()
ambiguouws? In the example above, the answer is no because
Uni ver si t yPer son isavirtual base dasswith resped to St udent ;
consequently, St udent : : f () is sid to dominate

Uni ver si tyPerson: : f() ,andthereisnoambiguity. Therewould

<

P

InheritanceAndLateBinding.mkr Page 213 Friday, August 6, 1999 1683 PM

be an ambiguity if we did not use virtual inheritance for St udent .

Does all this make your head spin? Most of these problems tend to suggest
that multiple inheritance is a tricky feature that requires careful analysis before
use. Generally spe&ing, multiple inheritanceis nat needed nealy as often as we
might susped, but when it is needed it is extremely important. Although the rules
for multiple inheritance ae arefully defined in the language standard, it is also
an unfortunate fad that many compil ers have bugs associated with this feaure
(espedally in conjunction with athers).

We will not use multiple inheritance in this text. The most common (and
safe) way to use multiple inheritanceisto inherit only from classes that define no
data members and noimplementations. Such classes spedfy protocols only, and
most of the anbiguity problems described above go away. A popular program-
ming language, Java, formalizes this into a spedal class cdled, interestingly
enough, the interface. Java does not all ow arbitrary multiple inheritance, but does

allow multiple interfaces, and the result seems to be very clean code.

You shoud avoid general use of multiple inheritancein C++ until you are
extremely comfortable with simple inheritance and virtual functions; many
objed-oriented languages (such as Smalltalk, Objed Pascal, Objective C, and

Ada) do rot support multiple inheritance, so youcan live without it.

Summary

Inheritance is a powerful feature that allows the reuse of code. However, make

<

Summary

P

InheritanceAndLateBinding.mkr Page 214 Friday, August 6, 1999 183 PM

214

Inheritance

sure that functions applied to objeds creaed at runtime through the new operator
are boundat runtime. This feaure is known as dynamic binding, and the use of
virtual functions is required to ensure that run-time decisions are made. Reread
this chapter as often as necessary to make sure you understand the distinction
between nonvrtual functions (in which the same definition applies throughaut
the inheritance hierarchy, and thus compile-time dedsions are wrred), virtual
functions (in which the default provided in the base class can be overwritten in
the derived class; run-time dedsions are made if needed), and pue virtual func-

tions (which have no default definition).

In this chapter we dso saw the programming techniques of wrapping a vari-
ableinside aclass(Figure 4.18), and mentioned the occasional usefulnessof pri-
vate inheritance. These ae two examples of design patterns: techniques that we
seeover and over again. The next chapter discusses some cmmon design pat-

terns.

Objects of the Game

abstract base class A classwith at least one pure virtual function. (193)

abstract method A method that has no meaningful definition andisthus
always defined in the derived class (192)

base class The classon which the inheritanceis based. (174)

composition Preferred medhanism to private inheritance when an IS-A rela-

tionship does not hald. In composition, we say that an object

<

InheritanceAndLateBinding.mkr Page 215 Friday, August 6, 1999 1683 PM

Objects of the Game

of class B is composed of an object of classA (and aher
objects). (209)

derived class A completely new classthat nonethelesshas sme compatibil-
ity with the dassfrom which it was derived. (174)

dynamic binding A run-time dedsion to apply the method corresponding to
the acdual referenced oljed. Used when amember functionis
dedared to be virtual and the corred method canna be deter-
mined at compil e time. (186)

HAS-A relationship A relationship in which the derived classhas a (prop-
erty of the) base class (170)

inheritance The processwhereby we may derive a classfrom a base dass
without disturbing the implementation of the base dass Also
allowsthe design dof classhierarchies, such asexcepti on.
(174)

| S-A relationship A relationshup in which the derived classisa(variation of
the) base dass (170)

multipleinheritance The processof deriving a dass from several base
classs. (211)

nonvirtual functions Used when the functionisinvariant over the inheri-
tance hierarchy. Static bindingis used for nonvirtua func-
tions. (196)

partial overriding The at of augmenting a base dass method to perform

additional, but not entirely diff erent, tasks. (184)

<

% InheritanceAndLateBinding.mkr Page 216 Friday, August 6, 1999 183 PM

216 Inheritance

polymor phism The aility of areference or pointer variable to reference or
point to ojeds of severa different types. When aperations
are gplied to the variable, the operationthat isappropriate to
the actual referenced objed is automaticdly selected. (174)

private inheritance The processoccasionaly used to implement aHAS-A
relationship. Even public members of the base classare hid-
den. (209)

protected class member Accessble by the derived classbut private to
everyone else. (178)

public inheritance The processby which all public members of the base
classremain public in the derived class Public inheritance
models an |S-A relationship. (176)

purevirtual function An abstrad method. (193)

dlicing Thelossof inherited data when a derived classobjed is copied into a
base dassobjed. (211)

static binding/overloading The dedsion onwhich functionto useis made &
compile time. (185)

virtual functions A functionfor which dynamic binding is used. It should be

used if the functionis redefined in the inheritance hierarchy.
(186)

Common Errors

1. Inheritanceisprivate by default. A common error isto omit the keyword

publ i c that is needed to spedfy public inheritance.

P &

% InheritanceAndLateBinding.mkr Page 217 Friday, August 6, 1999 183 PM

Common Errors

2. If abase dassmember function isredefined in a derived class it should
be made virtual. Otherwise, the wrong function could be cdled when
accessed through a pointer or reference.

3. Baseclassdestructors shoud be declared as virtua functions. Other-
wise, the wrong destructor may get cdled in some cases.

4. Constructors ould never be dedared virtual.

5. Objeds of an abstrad base classcannot be instantiated.

6. If the derived classfail s to implement any inherited pure virtual func-
tion, then the derived classhecomes abstraa and cannot be instantiated,
even if it makes no attempts to use the undefined pure virtual function.

% 7. Never redefine adefault parameter for avirtual function. Default param-
eters are bound at compile time, and this can creae an inconsistency
with virtual functionsthat are bourd at runtime.

8. To accessabase dassmember, the scope resolution must be used. Oth-
erwise, the scopeisthe current class

9. Friendship isnot inherited.

10. Inaderived class the inherited base classmembers can orly be initial-
ized as an aggregate in a @wnstructor’sinitializer list. If these members
are pubic or protected, they may later be read or assgned to individu-
aly.

11 A commonerror isto declare avirtual destructor in an abstract base

classbut nat provide an implementation (vi rt ual ~Base() or

P &

% InheritanceAndLateBinding.mkr Page 218 Friday, August 6, 1999 183 PM

218 Inheritance

vi rt ual ~Base() =0). Both are wrongbecause the derived class
destructor needsto cdl the base dassdestructor. If there is nothing to

do, then use{} asthe definition.

12. If aconstructor dedarationis provided in the base dass provide the def-

inition, too, for the same reason that we saw in the destructor case.

13. Thereturn typein aderived classcanna be redefined to be diff erent
from the base dassunlessthey are both pointer or both referencetypes,

and the new return type is type-compatible with the original.

14. If the base dass has a constant member function F and the derived class
attempts to define anonconstant member function F with an otherwise
identicd signature, the compil er will warn that the derived F hides the
base F. Heed the warning and find a workaround

On the Internet

Threesdf-contained files plus a set of exception clases are available..

Except.h Contains the exception hierarchy.

Shape.cpp The Shape example.

StaticBinding.cppContains the ade in Figure 4.19 ill ustrating that parame-
ters are staticdly bound.

Hiding.cpp Cortainsthe codein Figure 4.20illustrating how methods are
hidden.

% InheritanceAndLateBinding.mkr Page 219 Friday, August 6, 1999 183 PM

Exercises

1 classB ase

2 {

3 publi c:

4 intb Public;

5 protect ed:

6 intb Protect;

7 private:

8 intb Private;

9 };

10

11 classDerived:p ublicB ase

12 {

13 public:

14 intd Public;

15 private:

16 intd Private;

17 };

18

19 intm ain()

20 {

21 Baseb ;

22 Derivedd ;

23

24 cout< <b .bPublic<<''< <b.bProtect< <''< <b.bPrivate

25 <<''< <d.dPublic<<''< <d.dPrivate<<' \n';
% 26

27 returnoO ;

28 }

Figure 4.22 Program to test visibility in Exercise 4.5

Exercises @

In Short
4.1. Explain the rules for when to use virtual and nonvirtual functions.
4.2. What members of an inherited classcan be used in the derived class?

What members become public for users of the derived class?

4.3. What is the default type of inheritance?
44, What is private inheritance?What is composition?
4.5. Consider the program in Figure 4.22:

P &

P

InheritanceAndLateBinding.mkr Page 220 Friday, August 6, 1999 1683 PM

220

Inheritance

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

a. Which accesss areillegal?

b. Make nai n afriend of classBase. Which accesss areillegal ?

c. Make mai n afriend o both Base and Der iv ed. Which accesses
areillegal?

d. Write athreeparameter constructor for Base. Then write a five-
parameter constructor for Der i ved.

e. The dassDer i ved consists of five integers. Which are accesble

tothe dassDer i ved?

f. The classDeri ved is pased a Base objed. Which of the Base

object members can the Der i ved classaccess?
Explain polymorphism.
Explain dynamic binding andwhen it is used.
What is a pure virtua function?
When should a constructor be virtual ?
When should a destructor be virtual ?

What is meant by parameters being staticdly bound?

In Practice

For the Shape example, modify r eadShape and mai n by throwing
and caching an exception (instead of creding a drcle of radius zero)

when an input error is deteded.

<

P

InheritanceAndLateBinding.mkr Page 221 Friday, August 6, 1999 1683 PM

Programming Projects

4.13. Rewrite the Shape hierarchy to store the aea & a data member, and
have it computed by the @nstructor. Make ar ea anorvirtual function
that returns only the value of this data member.

4.14. Add the ooncept of a position to the Shape hierarchy by including
coordinates as data members. Then add a di sta nce member func-
tion.

4.15. Write an abstrad base dass for Date and its derived class
Gregori anDat e.

4.16. Implement the taxpayer hierarchy described that consists of a
TaxPayer abstract class and the norabstract classs Si ngl ePayer
and Mar ri edPayer.

References

The usual suspeds give more information oninheritance. | particularly like [5],

from which the guidelines for use of virtual, pure virtual, and nornvirtual functions

appeas. You might also want to chedk out Stroustrup’s book [6], which explains

the design d C++. The Shape classistaken from [7].

The foll owing bools describe the general principles of object-oriented soft-

ware development [1], [2] [3], and [4].

1. G. Booch, Object-Oriented Design and Analysis with Applications (Second

References

P

InheritanceAndLateBinding.mkr Page 222 Friday, August 6, 1999 1683 PM

222

Inheritance

Edition), Benjamin/Cummings, Redwood City, Calif. (1994).

. D. de Champeaux, D. Lea, and P. Faure, Object-Oriented System Devel op-

ment, Addison-Wesley, Reading, Mass (1993).

. |. Jaombson, M. Christerson, P. Jonsson, and G. Overgaard, Object-Oriented

Software Engineering: A Use Case Driven Approach (revised fourth print-

ing), Addison-Wesley, Realing, Mass (1992).

. B. Meyer, Object-Oriented Software Construction, Prentice-Hall, Engle-

wood Cliffs, NJ (1988).

. S. Meyers, Effective C++, 2d ed., Addison-Wesley, Reading, MA, 19928.

. B. Stroustrup, The Design and Evolution of C++, Addison-Wesley, Read-

ing, MA, 1994.

. M. A. Weiss, Efficient C Programming: A Practical Approach, Prentice-

Hall, EnglewoodCliffs, NJ, 19%.

