
9/5/00 1

The Collections API

Mark Allen Weiss
Copyr ight 2000

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 2

Lecture Objectives

● To see some bad design (Java 1.1)
● To see a better design (Java 1.2)
● To learn how to use the Collections package in

Java 1.2.
● To illustrate features of Java that help (and

hur t) the design of the Collections API.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 3

The Collections API in Java 1.1

● Basically four classes plus one inter face:
– Vector (resizeable gener ic ar ray)
– Stack

– Hashtable (map of keys and values)

– Properties (map of keys and values that are
Str ings)

– Enumeration (a sloppy iterator pattern)

● Pathetic Design
– Stack IS-A Vector?

– Properties IS-A Hashtable?

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 4

The Collections API In Java 1.2
● Deprecates the Java 1.1 stuff
● Contains new data structures including linked

list, queue, set, and map.

● Contains gener ic algor ithms including sor ting.
● Mostly in java.util.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 5

Outline

● Provide an overview of the Collections API
● Discuss the basic suppor ting inter faces.

● Discuss the new basic data structures.
● I llustrate a sample program that generates a

“ concordance” (sorted listing of words with
line numbers).

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 6

Overview of Collections API

● Much better than data structures in Java 1.1.
● Defines a new iteration mechanism (the
Iterator); makes the Enumeration semi-
deprecated.

● Inher itance-based (of course)
● Still incomplete. Though intended to be much

smaller than STL, much is missing.
● Not thread-safe.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 7

Basic Supporting Interfaces

● There are some new suppor ting inter faces. The
four most important are:
– Collection

– Iterator

– Comparable

– Comparator

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 8

Colle ction Interface

● Represents a group of objects (its elements)
● Different implementations place restr ictions

(such as allowing/disallowing duplicates,
maintaining the collection in sor ted order)

● Basic operations:
boolean contains(Object element)

boolean isEmpty()

int size()

Iterator iterator()

● To design your own implementation of a
Collection, extend
AbstractCollection.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 9

More On Collection

● All collections, by convention, have two
constructors:
– Construct empty

– Construct with a set of references that reference
objects in any other collection

● AbstractCollection is an abstract class
that implements many of the “gener ic”
methods in the Collection inter face.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 10

Itera t or Interface

● Provides three methods that are used to access
any Collection.

boolean hasNext()

Object next()

void remove()

● hasNext returns true if the iteration has
more items. next returns the next item and
advances the iterator . remove removes the last
accessed item (can’t be called twice in a row).

● Off icially prefer red over Enumeration.

● Not a great iterator pattern because advancing
and accessing current item are combined.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 11

Example
● Output the contents of any Collection.

 static void printCollection(Collection C)
 {
 Iterator itr = C.iterator();
 while(itr.hasNext())
 System.out.println(itr.next());
 }

● I f the under lying collection is sor ted, the output
will be sorted.

● Not bidirectional (but other iterators are).
● There are no public concrete iterators!!

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 12

How Do You Get An Iterator?
● Each Collection class defines a concrete

class that implements the Iterator inter face
– ArrayList could define ArrayListIterator
– TreeSet could define TreeSetIterator

● The iterator() method creates an instance
of the appropr iate concrete class and returns it.

● Static type of the return is Iterator.
● Dynamic type is the concrete Iterator.

● Could make the concrete implementation of
Iterator package-visible and hide it.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 13

Compar able Interface

● Defined in java.lang. Has one method:
int compareTo(Object rhs)

throws ClassCastException

● Same semantics as String. String
implements Comparable, as do the pr imitive
wrapper classes (e.g. Integer).

● I f you have a Comparable class in your code,
you may have a conflict in Java 1.2.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 14

Compar ator Interface

● Has one method:
int compares(Object lhs, Object rhs)

● Compares two objects, with return value that is
like compareTo.

● Use to overr ide the default (or non-existent
order ing) for collections that are sor ted.

● Similar to the function object in STL.
● Predefined constant function object is
Collections.REVERSE_ORDER.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 15

Example of Comparato r

● Sorting str ings by length. Need to provide a
compar ison object.

final class Comp implements Comparator
{
 public int compare(Object lhs, Object rhs)
 { return ((String)lhs).length() -
 ((String)rhs).length(); }
}
 // In some other class
 static void sortListOfStringsByLength(List L)
 {
 Collections.sort(L, new Comp());
 }

● Note: latest version uses stable mergesor t.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 16

Why Java Needs Templates

● Although function object in previous example
looks almost the same as C++ STL code, the
compar ison cannot be inlined.

● Result: sor ting simple things is relatively
expensive because each compar ison has the
overhead of a method call . Similar to problems
with qsort in C.

● Lots of parameterized type proposals are under
consideration for Java, but none seem to solve
this problem.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 17

Data Structures

● Several data structures
– List, with list iterator

– Stack and Queue

– Set

– Map

● Not thread-safe.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 18

List

● Ordered collection (also known as sequence).
Position in the list matters and can be specified
by an integer index (0 is first position).
Elements are not necessar ily sor ted.

● List is an inter face. I t is implemented by
ArrayList, LinkedList (also Vector).

● Watch out for java.awt.List conflict.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 19

Array List and Vect or

● Useful if you need to access by position, because
you can do direct indexing.

● Inser tions and deletions are expensive, except
at high-end.

● Inser tion at the end of an ArrayList causes
an expansion if full with a guarantee of eff icient
performance.

● ArrayList is preferred over Vector.
● Vector is retrofitted to implement List

interface. Useful if thread-safety is needed.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 20

Linke dList methods

● Implements a doubly-linked List.

● Lots of methods. Here are some:
void addFirst()

void addLast()

Object getFirst()

Object getLast()

Object removeFirst()

Object removeLast()

void clear()

ListIterator listIterator(int index)

● Can implement stack and queue operations.
● Access with get and set suppor ted but

obviously horrendously slow.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 21

List (Continued)

● ListIterator is an interface that supports
bi-directional iteration. Also (optionally)
supports add (insert a new element pr ior to the
next element in the iteration) and remove
(removes last accessed element)

● Stack class from Java 1.1 is still here, but is
synchronized and could be slow.

● There is no class named Queue.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 22

Using The List Interface Type

● I f only ArrayList or LinkedList
operations you are using are defined in List
interface, should declare the reference using
the List inter face.
– Makes code more flexible
– Can change implementation from ArrayList to
LinkedList later

– Same idea of preferr ing Reader/Writer as
reference types

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 23

Optional Methods

● Star ting in Java 1.2, inter faces can specify that
some of its methods are “optional.”

● Implementor will throw
UnsupportedOperationException if it
does not want to implement an optional
method. This is a runtime exception.

● Purely a convention; no language rule involved.
● Useful if you are

– lazy; or

– implementing immutable containers

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 24

More On Optional Methods

● Convention is that inter face wil l document that
the method might not be suppor ted.

● Caller is expected to check documentation of
class that implements the inter face to see if
method is suppor ted.

● I f caller doesn’t do that, and calls the method
anyway, will get an exception. Clear ly this is
considered a programming error , so it is a
runtime exception.

● Optional methods are somewhat controversial.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 25

Sets
● Set is an inter face that extends Collection.

Duplicates are not allowed. Methods are:
boolean add(Object element)

boolean remove(Object element)

● HashSet is an eff icient implementation.
– Uses hashCode. Recall that the hashCode of two

objects must return the same value if the two objects
are considered equal. Otherwise, object won’ t be
found in a HashSet.

● TreeSet is a sorted-order (red-black tree
version). Uses natural item order, or can be
constructed with a Comparator.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 26

Maps
● Map is an inter face that extends Collection

and stores elements that consists of key, value
pairs. Keys must be unique. Methods are:

Object put(Object key, Object value)
Object get(Object key)
Object containsKey(Object key)
Object remove(Object key)

● HashMap and TreeMap implement Map. The
latter keeps keys in sor ted order .

● keys and values may be null.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 27

Getting a Collection from a Map

● A collection of keys, values, or key/value pairs
can be extracted from the map. An iterator can
then traverse the collection.

Set keySet()

Collection values()

Set entrySet()

● Each key/value entry is of the type
Map.Entry. Use getKey and getValue on
the Map.Entry object.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 28

Concordance Example

● Read file containing words (several to a line).
● Output each unique word, and a list of line

number on which it occurs.
● Basic algor ithm: Use a TreeMap: map words

to a linked list of lines. When the TreeMap is
iterated, words come out in sorted order.

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 29

Concordance Code Part I
import java.util.*;
import java.io.*;
class Concordance
{
 public static void main(String [] args)
 {
 try
 {
 BufferedReader inFile = new BufferedReader(
 new FileReader(args[0]));
 Map wordMap = new TreeMap();
 String oneLine;

 // Read the words; add them to wordMap
 for(int lineNum = 1;
 (oneLine = inFile.readLine()) != null;
 lineNum++)
 {
 StringTokenizer st = new StringTokenizer(oneLine);

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 30

Concordance Code: Part II
 while(st.hasMoreTokens())
 {
 String word = st.nextToken();
 List lines = (List) wordMap.get(word);
 if(lines == null)
 {
 lines = new LinkedList();
 wordMap.put(word, lines);
 }
 lines.add(new Integer(lineNum));
 }
 }
 // Go through the word map
 Iterator itr = wordMap.entrySet().iterator();
 while(itr.hasNext())
 printEntry((Map.Entry) itr.next());
 }
 catch(IOException e)
 { e.printStackTrace(); }
 }

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 31

Concordance Code: Part III
 public static void printEntry(Map.Entry entry)
 {
 // Print the word
 System.out.println(entry.getKey() + ":");

 // Now print the line numbers
 Iterator itr = ((List)(entry.getValue())).iterator();

 System.out.print("\t" + itr.next());
 while(itr.hasNext())
 System.out.print(", " + itr.next());
 System.out.println();
 }
}

Tuesday, September 05, 2000 Copyright 1996, 1999, M. A. Weiss 32

Summary

● Collections API has some power, but is still a
“ work in progress.”

● Needs:
– Prior ity Queue

– Eff icient synchronized algor ithms

● Even so, it’ s easy to use, and probably better
than you could casually do yourself.

