
9/5/00 1

Inheritance, Exceptions
and Interfaces

Mark Allen Weiss

Copyright 2000

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 2

Outline of Topics

● Basic pr inciples of inher itance
● Java details

– visibility rules

– methods and dynamic binding

– abstract and final methods and classes

– the super keyword (constructors and chaining)

● Examples of inher itance in everyday Java
– Exceptions

– Abstract window toolkit

● Interfaces, templates, and function objects

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 3

Inheritance

● Allows the creation of new types with
additional properties of the or iginal type.

● When wr iting the code to define the new type,
we should not alter any of the code for the
or iginal type (don't break what already works).

● Inher itance typifies an IS-A relationship.
● Basic mechanism for code reuse.

– Direct reuse: get new classes from old without cut-
and-paste

– Indirect reuse: existing routines work with new
classes automatically

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 4

Polymorphism

● A polymorphic reference type can reference
objects of several different types.

● When operations are applied to the
polymorphic type, the operation appropr iate to
the actual referenced object is automatically
selected.

● Windows example: double clicking on an icon
calls an appropr iate open function, depending
on the type of f ile (word document, html
document, etc.). WindowsFile is the
polymorphic object, and it can encompass
var ious different types of f iles.

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 5

● AbstractWindowsFile could be considered a
class.

● We could have var ious extensions (also classes).

● Some operations in AbstractWindowsFile apply
throughout (e.g. sizeOfFile).

● Some operations apply only to specific files
(such as open and print).

Windows File Example

AbstractWindowsFile

ImageFile

TextFile

gifFile

jpegfile
largeFile
smallFile

Wordfile

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 6

Polymorphic Behavior
Abstra ctWin dowFi l e f;

if (bl ah)

 f = new MSWor d(" i mage.doc ");

el se

 f = new Note Pad(" ima ge.tx t ");

f. prin t (); // Shou l d c all c orrec t pri nt

System. out. print l n(f . siz e()) ; // only 1 s i ze

● Polymorphic behavior such as print will
involve a run-time decision.

● However, size is the same for any file, and
does not require a run-time decision.

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 7

Coding Effort

● Write the size routine in AbstractWindowFile;
all the der ived classes inher it its
implementation.

● Declare that the print routine is available for
classes in the AbstractWindowFile hierarchy,
but that each class in the hierarchy must
provide a meaningful implementation.

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 8

The extends Clause
public clas s Der i vedCl ass exte nds B aseCl ass

{

}

● New classes are formed via extends. I f nothing
else is done, then
– Deri vedClass is a new class and can be used

whenever a BaseClass is needed (but not vice-
versa).

– The data members that compr ise BaseClass now
compr ise DerivedCl ass .

– All public methods in BaseClass are inherited
unchanged by Der i vedClass .

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 9

Derived Class Data

● Derived class can add additional data
members.

● I t cannot remove data members.

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 10

Data Layout for Inheritance

● I f we have
class Derived extends Base

{

 private int newData ;

}

inherited
components
(might not
be visible)

Base Derived
Only Base class can
access private Base data.
Only Derived class can
access private Derived data

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 11

Visibility

● pr ivate methods and data in the base class are
not accessible in der ived class. The following
does not work:

cl ass B ase

{

 priva t e i nt x;

 // Othe r stu f f om i tted .

}

cl ass D eriv ed ex t ends Base

{

 // Deri ved h as a data member x, inhe r ite d, bu t

 publi c in t get X() { ret urn x; } / / t his f ails

}

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 12

Name-Clashed Data Is Kept
Separate Even If Public

clas s Person {

 in t age = 37 ;

 in t getAge()

 { return a ge; } // A l ways uses Person::a ge

}

clas s OldPerso n extends Person {

 in t age = 99 ;

 in t setAge()

 { age = 50 ; } // Al ways uses OldPerson: : age

 public stati c void mai n(String [] args) {

 OldPerson p = new Ol dPerson() ;

 p.setAge() ;

 System.out . println(p.getAge());

 }

}

Copyright 1996, 1999, 2000 M. A. Weiss 13

Derived Class Methods
public clas s Der i ved exte nds B ase

{

 pu blic void meth od1() { yadaYada() ; }

 pr i vate void meth od2() { }

 }

● public methods: method 1 is now defined for
class Der ived. I f an identical method (same
signature) was defined for Base, it is
overr idden for Deriv ed objects. Behavior is
polymorphic.

● private methods: In C++ if meth od2 was
defined for Base, it is now disabled for
Der ived . In Java this is ill egal.

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 14

Inheritance and Visibility

● Inher itances typifies IS-A relationship.
Everything base can do, der ived can do, plus
possibly more.

● CAN NEVER REDUCE VISIBILTY WHEN
OVERRIDING.

● Cannot overr ide instance method with static
method and vice versa

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 15

protected

● protected members can be accessed in der ived
class

● They can also be accessed by other methods in
any class that is in the same package

● In previous example, if x was protected, the x
member of Der i ved would be accessible by
der ived.

● Generally, it's best to avoid protected; use base
class accessors if needed.

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 16

Final Methods and Classes

● A final method cannot be overr idden.
● A final method indicates to readers of the code

that the method is invar iant over the
inheritance hierarchy. Example: the SizeOf
routine for the AbstractWindowsFile.

● Declar ing a method final prevents the der ived
class from erroneously redefining a class
method.

● Declar ing a method final allows the compiler to
perform inline optimization.

● Final classes cannot be extended.

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 17

Dynamic Binding

● Not applied for static methods, pr ivate
methods, or final methods

● Two step algor ithm:
– Compiler deduces signature of appropr iate method

based on static types of parameters

– VM walks path up from dynamic type until it
reaches Object; first class that has the method being
searched for is last overr iding implementation and
is used

– I f no class is found an exception is thrown

● Implements single dispatch

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 18

Abstract Methods and Classes

● An abstract method is a method that cannot be
reasonably defined for a class, but makes sense
for the class' extensions. Example: the
displayFile routine for AbstractWindowsFile.

● Abstract method is a placeholder.
● Any class with an abstract method is an

abstract class.
● An abstract class cannot be instantiated.
● A subclass of an abstract class is abstract

unless it overr ides all abstract methods.

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 19

Example of final and abstract
abstrac t public class Shap e {

 abs t rac t pub l ic d ouble are a();

 fin al p ublic bool ean l essT han(Shape rhs) {

 ret urn a r ea() < r hs.a r ea() ;

 }

 fin al p ublic doub l e ge t Are a() {

 ret urn a r ea() ;

 }

}

● Derived class must implement ar ea , and may
not overr ide either less Than or getAre a.

Copyright 1996, 1999, 2000 M. A. Weiss 20

super
● Used to access member of the immediately

extended from class
● Used to call the parent constructor (syntax is

same as syntax used for this to call class
constructor).

cl ass A {

 pub l ic A(in t x, i nt y) { blah 1; }

 pub l ic Strin g toS t ring () { ret urn b l ah2 ; }

}

cl ass B ext ends A {

 pub l ic B(in t x, i nt y , in t z)

 { sup er(x , y) ; bla h3; }

 pub l ic Strin g toS t ring ()

 { ret urn s uper. t oStr i ng() + blah4 ; }

}

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 21

Polymorphism Example
● A Shape, Ci rcle , and Squar e class:
publ i c abstrac t class S hape

{

 public abstr act doubl e area() ;

}

publ i c class C i rcle ext ends Shap e

{

 public Circl e(double rad) { radius = r ad; }

 public Strin g toStrin g() (return “C i rcle: ” + radius;) ;

 public doubl e area() { return Mat h.PI * r adius * ra dius; }

 pr i vate doub l e radius ;

}

publ i c class S quare ext ends Shap e

{

 public Squar e(double s) { side = s; }

 public Strin g toStrin g() (return “S i de: ” + side;);

 public doubl e area() { return si de * side ; }

 pr i vate doub l e side;

}

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 22

Can Print Area for a Collection
publ i c class U seShapes

{

 public stati c void ma i n(Strin g[] args)

 {

 Shape[] s = new Sha pe[3];

 s[0] = n ew Circle (4.0);

 s[1] = n ew Square (5.0);

 s[2] = n ew Circle (2.5);

 printAreas (s);

 }

 public stati c void pr i ntAreas(Shape[] ar r)

 {

 f or(int i = 0; i < arr.leng t h; i++)

 if(arr[i] != n ull)

 System . out.prin t ln(arr[i] + “ ” + arr[i].area());

 }

}

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 23

Analysis of Example
● ar ea for Shape class used simply as a

placeholder so we can call area for both
Ci r cle and Squar e using dynamic binding

● Can add a new class (e.g. Recta ngle)
– without any change to Shape

– without any change to print Areas (indirect code
reuse)

– only have to wr ite Rectangle , and have it extend
Shape

● in stanc eof operator not used

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 24

Type Compatibility

● A reference to a base-class type can be used to
access an object of a der ived class.

● Can only select members that make sense for
the static type of a reference.
– May need to down cast

– Cast will be checked at run time for validity

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 25

Type Compatibility Examples
cl ass B ase

{

 publ i c v oi d f oo() { . . . }

}

c l ass D er i ved e xt ends B ase

{

 publ i c v oi d b ar () { . . . }

}

Der i ved d 1 = n ew B ase() ; / / I l l egal

Base b 1 = n ew Der i ved() ; / / L egal

Der i ved d 2 = (Der i ved) b 1; / / L egal ; c ast r equi r ed!

d2. bar () ; / / L egal

((Base) b 1) . bar () ; / / L egal ; c ast r equi r ed

Base b 3 = n ew Base() ; / / L egal o f c our se

((Der i ved) b 3) . bar () ; / / L egal ; t hr ows a r unt i me e xcept i on

 / / b ecause d ynami c t ype i s n ot D er i ved

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 26

Immutable Object Pattern

● Can use inher itance to control mutabil ity:
cl ass I mmutableP erson

{

 / / on l y a ccess ors

}

cl ass P erso n ext ends I mmutable Perso n

{

 / / ad ds m utato r s

}

 void prin t Pers ons(I mmutable Perso n[] p)

 {

 // Of c ourse , can down cast here , but tha t ’s

 // same as c astin g away co nstne ss in C++ .

 }

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 27

Objec t class

● Root of all inher itance
● Defines several useful methods:

– toSt r ing

– equa l s

– getC l ass

● Defines some tr icky stuff
– clon e

– fina l ize

● Thread stuff
– wait , notify , not i fyAll

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 28

Exceptions

● Exceptions are an example of Java's use of
inheritance.

● An exception is thrown for an exceptional
circumstance (bad file, ar ray out of bounds,
etc.).

● Syntax:
th r ow AnyEx cepti onObj ect;

● Only objects that are subclasses of
ja va.la ng.T hrowa ble may be thrown.

● Semantics are similar to C++; exceptions
propagate back until caught.

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 29

Kinds of Exceptions
● Thr owabl e is the root of all exceptions

● Error is a subclass; represents VM errors such
as OutOfM emoryErro r

● Exception is a subclass; represents non-VM
errors.

● RunTime Exce ption is a subclass of
Excepti on; represents bugs:
Nul lPoi nter Excep t ion , Ari t hmet i cExc epti on,
Cl assCastEx cepti on, Array I ndex OutOf BoundsExc eptio n.

● Every thing else is a checked exception:
IO Excep t ion .

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 30

Exception Example
public clas s Underflo w ex t ends Thro wable

{

 publ i c Un derfl ow(S t rin g Thr ower)

 { super (Thr ower) ; }

}

● Brief Exception Rules:
– Uncaught checked exceptions must be listed in a

throws list.
– Thro wable provides routines to pr int a message.

– To catch an exception, enclose code in a try block.

– After try block, provide catch statements.

– There is also a finally clause (unlike C++).

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 31

Exception Details

● A try block must have one or more catch blocks
or a finally block or both

● Use the finally block to clean up resources

● Use exceptions only for exceptional occurrences
● Never use exceptions as a cheap goto
● Costly to catch; mostly free if exception is

never thrown
● An exception thrown in a catch or finally block

replaces any active exception; a return value in
the finally block replaces a return value in a try
block.

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 32

Exceptions and Inheritance

● An overr iding method cannot add to the
throws of the method it is overr iding list

● An overr iding method can simplify throws list
with a subset of exceptions

● Legal to have a throws list even if
implementation has no throws clause

● First matching catch block wins; compiler will
detect unreachable or silly catch blocks

● Can catch all exceptions by catching
Throwable, but that’s dangerous.

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 33

Abstract Window Toolkit

Component

Container

PanelWindow

Dialog

FileDialog

Frame

Button
Canvas
CheckBox
Label
List
Scrollbar

TextArea

TextField

● Makes heavy use of inher itance.
● Details eventually

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 34

Interfaces

● No multiple inher itance in Java; the alternative
is the interface.

● An inter face is an abstract class that defines no
non-abstract methods. The word inter face
replaces abstract class.

● Interface can also contain constants.
public inte r face Draw able

{

 / / au t omat i call y public and a bstr act

 void setC olor(Colo r c) ;

}

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 35

Using Interfaces

● Class implements an inter face
● No limit on the number of inter faces

implemented
● A class that implements an interface X may be

used wherever it could be used if it extended
class X.

public clas s Rect angl e imp l ements D r awabl e

{

 // Normal Re ctang l e st uff

 // Must then prov i de a n im pleme ntati on o f set Color

 pub l ic void setCo l or()

 { bla h; }

}

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 36

Interfaces are Abstract Classes

● Compiler will generate a .class file
● Only public inter faces visible outside of

package, and must be in file of the same name

● Class that implements an inter face satisfies the
IS-A property, and objects of that type satisfy
in stanc eof

● Class that implements inter face must declare
all inter face methods public (why?)

● Class that implements inter face but not all
methods must be declare abstract

● Can extend inter faces (even multiple inter faces)

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 37

Interfaces Cannot Grow

● Once you publish an interface you cannot add
to it in later versions of your code
– breaks any class that already implemented the

interface, because now it must be declared abstract

– same rule for abstract classes: cannot add abstract
methods late in the design

● On the other hand, it is preferable to keep
interfaces small .
– Need some good patterns to combine lots of small

interfaces, rather than wr ite a few large ones

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 38

Main Uses of Interfaces

● Multiple inher itance
● Templates

● Function objects

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 39

Multiple Implementation Inheritance

● Diff icult to do correctly
– Often inher it conflicting implementations

– Need more syntax ; what does super mean?

– Supported in C++, and is very confusing

– C++ experts recommend only multiple inter face
inher itance (inher it functionali ty but not
implementations)

● Multiple implementation inher itance illegal in
Java; can only extend one class.

● Multiple inter face inheritance is legal;
formalizes the advice of C++ experts

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 40

Templates

● Java does not support templates.
● They can be faked using inher itance: use

Obj ect as the class.
cl ass O bjCe l l

{

 pub l ic Objec t rea d() {

 ret urn s t ored Value ;

 }

 pub l ic void write (Obj ect x) {

 sto r edVal ue = x;

 }

 pri vate Obje ct st oredV alue ;

}

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 41

Two Problems
● Buil t-in-type is not an Obj ect , so ObjCel l

cannot store an int, for instance. Solution: use
wrapper classes such as I ntege r , Doubl e,
etc., which are predefined.

● I f an In t eger is stored in the Obj Cell m,
then the statement below does not work,
because the method returns an Obj ect , and
an Objec t is not an Inte ger . Solution
involves a type conversion.

In t ege r x = m.re ad() ; / / Wr ong!!

In t ege r x = (Int eger) (m. r ead()); / / OK

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 42

Using the ObjCe l l for ints
cl ass T estO bjCel l {

 sta t ic publi c voi d mai n(S t ring args []) {

 Obj Cell m = n ew Obj Cel l ();

 m.w r ite(new I nteg er(5)) ;

 Sys t em.o ut.pr i ntln ("Cell c onten t s a r e "

 + (Inte ger)m . rea d()) ;

 }

}

● All wrappers define a toSt r ing method.
● In t eger defines an intV alue method that

returns an in t .

● Wrappers are final classes (so methods are
inlined, with litt le overhead for using them).

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 43

Generic Algs That Require Functions

● Routines like sor ting cannot simply take
Obj ect : how to apply sor t?

● Define an inter face, and algor ithms can work
on objects of the inter face type.

inte r face Comp arable {

 boolean comp areTo(Obj ect other) ;

}

publ i c class U t ils {

 / / Can sor t Objects t hat imple ment Compa r able inte r face

 public void s tatic sor t (Compara ble[] arr) {

 / / sorting algorithm that orde r s by test s such as

 i f(arr[i] . compareTo (arr[j]) < 0)

 }

}

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 44

Function Object

● Cannot pass a function as a parameter to a
procedure; can only pass pr imitives and
references

● Object = state plus methods

● Create a stateless object with the method you
want to pass, and send the reference

● Three steps:
– Agreed upon function is placed in an interface

– Class implements the inter face with function def

– Object of that type created; ref to it is passed to the
procedure, which can call function through the ref

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 45

Example: The Library Side
● Define a Compar ato r inter face (this is

actually now in Java 1.2)
publ i c interfa ce Compara t or {

i nt compa r e(Object obj1, Obj ect obj2) ;

}

● Implement gener ic routine using inter face:
clas s FindMaxD emo {

 public stati c Object f i ndMax(Ob j ect[] a, Comparator cmp) {

 i nt maxInd ex = 0;

 f or(int i = 1; i < a.length; i ++)

 if(cmp. compare(a [i], a[maxIndex]) > 0)

 maxInd ex = i;

 r eturn a[maxIndex] ;

}

}

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 46

Using the Generic Routine
// R ectangle c l ass; know s nothing about orde r ing

publ i c class R ectangle

{

 public Recta ngle(int l , int w) {

 l ength = l ; width = w;

 }

 public int g etLength() {

 r eturn len gth;

 }

 public int g etWidth() {

 r eturn wid t h;

 }

private i nt length;

private i nt width;

}

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 47

Finding Maximum Width Rectangle
clas s OrderRec t ByWidth i mplements Comparator {

 public int c ompare(Ob j ect obj1, Object ob j 2) {

 Rectangle r 1 = (Rect angle) obj 1;

 Rectangle r 2 = (Rect angle) obj 2;

 r eturn(r1 . getWidth() - r2.get Width());

 }

}

clas s Demo {

public st atic void main(Stri ng [] args) {

 Object [] rects = new Rectan gle[] { . . . };

 Object ma x = findMa x(rects, new OrderR ectByWidth ()));

 Rectangle widest = (Rectangle) max;

 ...

 }

}

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 48

Function Objects In Libraries

● Used everywhere in Java
● Common inter faces:

– java.util .Comparator (Java 1.2)

– java.lang.Runnable

– java.awt.event.ActionL istener

– java.lang.Pr ivilegedAction

Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 49

Summary

● Inher itance used:
– good designs

– exceptions

– templates

– function objects

● Can’t do any Java programming without
inheritance

