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Outline of Topics

● Basic pr inciples of inher itance
● Java details

– visibility rules

– methods and dynamic binding

– abstract and final methods and classes

– the super keyword (constructors and chaining)

● Examples of inher itance in everyday Java
– Exceptions

– Abstract window toolkit

● Interfaces, templates, and function objects
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Inheritance

● Allows the creation of new types with
additional properties of the or iginal type.

● When wr iting the code to define the new type,
we should not alter any of the code for the
or iginal type (don't break what already works).

● Inher itance typifies an IS-A relationship.
● Basic mechanism for code reuse.

– Direct reuse: get new classes from old without cut-
and-paste

– Indirect reuse: existing routines work with new
classes automatically
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Polymorphism

● A polymorphic reference type can reference
objects of several different types.

● When operations are applied to the
polymorphic type, the operation appropr iate to
the actual referenced object is automatically
selected.

● Windows example: double clicking on an icon
calls an appropr iate open function, depending
on the type of f ile (word document, html
document, etc.). WindowsFile is the
polymorphic object, and it can encompass
var ious different types of f iles.
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● AbstractWindowsFile could be considered a
class.

● We could have var ious extensions (also classes).

● Some operations in AbstractWindowsFile apply
throughout (e.g. sizeOfFile).

● Some operations apply only to specific files
(such as open and print).

Windows File Example

AbstractWindowsFile

ImageFile

TextFile

gifFile

jpegfile
largeFile
smallFile

Wordfile
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Polymorphic Behavior
Abstra ctWin dowFi l e f;

if ( bl ah )

    f = new MSWor d( " i mage.doc " );

el se

    f = new Note Pad( " ima ge.tx t " );

f. prin t ( );    //  Shou l d c all c orrec t pri nt

System. out. print l n( f . siz e( ) ) ; //  only 1  s i ze

● Polymorphic behavior such as print  will
involve a run-time decision.

● However, size  is the same for any file, and
does not require a run-time decision.
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Coding Effort

● Write the size routine in AbstractWindowFile;
all the der ived classes inher it its
implementation.

● Declare that the print routine is available for
classes in the AbstractWindowFile hierarchy,
but that each class in the hierarchy must
provide a meaningful implementation.
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The extends Clause
public clas s Der i vedCl ass exte nds B aseCl ass

{

}

● New classes are formed via extends. I f nothing
else is done, then
– Deri vedClass  is a new class and can be used

whenever a BaseClass  is needed (but not vice-
versa).

– The data members that compr ise BaseClass  now
compr ise DerivedCl ass .

– All public methods in BaseClass  are inherited
unchanged by Der i vedClass .
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Derived Class Data

● Derived class can add additional data
members.

● I t cannot remove data members.
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Data Layout for Inheritance

● I f we have
class Derived extends Base

{

  private int newData ;

}

inherited
components
(might not
be visible)

Base Derived
Only Base class can
access private Base data.
Only Derived class can
access private Derived data
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Visibility

● pr ivate methods and data in the base class are
not accessible in der ived class. The following
does not work:

cl ass B ase

{

  priva t e i nt x;

    // Othe r stu f f om i tted .

}

cl ass D eriv ed ex t ends Base

{

    // Deri ved h as a data member x,  inhe r ite d, bu t

  publi c in t get X( ) { ret urn x; }      / / t his f ails

}
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Name-Clashed Data Is Kept
Separate Even If Public

clas s Person {

  in t age = 37 ;

  in t getAge( )

    { return a ge; } // A l ways uses  Person::a ge

}

clas s OldPerso n extends Person {

  in t age = 99 ;

  in t setAge( )

    { age = 50 ; }  // Al ways uses OldPerson: : age

  public stati c void mai n( String [ ] args ) {

    OldPerson p = new Ol dPerson( ) ;

    p.setAge( ) ;

    System.out . println( p.getAge( ) );

  }

}
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Derived Class Methods
public clas s Der i ved exte nds B ase

{

    pu blic  void meth od1( )  { yadaYada( ) ; }

    pr i vate void meth od2( )  { }

       }

● public methods: method 1 is now defined for
class Der ived. I f an identical method (same
signature) was defined for Base, it is
overr idden for Deriv ed objects. Behavior is
polymorphic.

● private methods: In C++ if meth od2  was
defined for Base, it is now disabled for
Der ived . In Java this is ill egal.
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Inheritance and Visibility

● Inher itances typifies IS-A relationship.
Everything base can do, der ived can do, plus
possibly more.

● CAN NEVER REDUCE VISIBILTY WHEN
OVERRIDING.

● Cannot overr ide instance method with static
method and vice versa
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protected

● protected members can be accessed in der ived
class

● They can also be accessed by other methods in
any class that is in the same package

● In previous example, if x  was protected, the x
member of Der i ved  would be accessible by
der ived.

● Generally, it's best to avoid protected; use base
class accessors if needed.
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Final Methods and Classes

● A final method cannot be overr idden.
● A final method indicates to readers of the code

that the method is invar iant over the
inheritance hierarchy. Example: the SizeOf
routine for the AbstractWindowsFile.

● Declar ing a method final prevents the der ived
class from erroneously redefining a class
method.

● Declar ing a method final allows the compiler to
perform inline optimization.

● Final classes cannot be extended.
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Dynamic Binding

● Not applied for static methods, pr ivate
methods, or final methods

● Two step algor ithm:
– Compiler deduces signature of appropr iate method

based on static types of parameters

– VM walks path up from dynamic type until it
reaches Object; first class that has the method being
searched for is last overr iding implementation and
is used

– I f no class is found an exception is thrown

● Implements single dispatch
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Abstract Methods and Classes

● An abstract method is a method that cannot be
reasonably defined for a class, but makes sense
for the class' extensions. Example: the
displayFile routine for AbstractWindowsFile.

● Abstract method is a placeholder.
● Any class with an abstract method is an

abstract class.
● An abstract class cannot be instantiated.
● A subclass of an abstract class is abstract

unless it overr ides all abstract methods.
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Example of final and abstract
abstrac t public class Shap e {

    abs t rac t pub l ic d ouble are a( );

    fin al p ublic bool ean l essT han( Shape rhs )  {

        ret urn a r ea( ) < r hs.a r ea( ) ;

    }

    fin al p ublic doub l e ge t Are a( ) {

        ret urn a r ea( ) ;

    }

}

● Derived class must implement ar ea , and may
not overr ide either less Than  or getAre a.
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super
● Used to access member of the immediately

extended from class
● Used to call the parent constructor (syntax is

same as syntax used for this to call class
constructor ).

cl ass A  {

    pub l ic A( in t x, i nt y  )  {  blah 1; }

    pub l ic Strin g toS t ring ( ) { ret urn b l ah2 ; }

}

cl ass B  ext ends A {

    pub l ic B( in t x, i nt y , in t z )

      {  sup er( x , y ) ; bla h3; }

    pub l ic Strin g toS t ring ( )

      {  ret urn s uper. t oStr i ng( )  + blah4 ; }

}
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Polymorphism Example
● A Shape, Ci rcle , and Squar e class:
publ i c abstrac t class S hape

{

  public abstr act doubl e area( ) ;

}

publ i c class C i rcle ext ends Shap e

{

  public Circl e( double  rad )  {  radius = r ad; }

  public Strin g toStrin g( )    (  return “C i rcle: ” + radius; ) ;

  public doubl e area( )         { return  Mat h.PI * r adius * ra dius; }

  pr i vate doub l e radius ;

}

publ i c class S quare ext ends Shap e

{

  public Squar e( double  s )    {  side = s;  }

  public Strin g toStrin g( )    (  return “S i de: ” + side; );

  public doubl e area( )         { return  si de * side ; }

  pr i vate doub l e side;

}
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Can Print Area for a Collection
publ i c class U seShapes

{

  public stati c void ma i n( Strin g[] args )

  {

    Shape[] s = new Sha pe[ 3 ];

    s[ 0 ] = n ew Circle ( 4.0 );

    s[ 1 ] = n ew Square ( 5.0 );

    s[ 2 ] = n ew Circle ( 2.5 );

    printAreas ( s );

  }

  public stati c void pr i ntAreas( Shape[]  ar r )

  {

    f or( int i  = 0; i <  arr.leng t h; i++ )

      if( arr[  i ] != n ull )

        System . out.prin t ln( arr[  i ] + “ ”  + arr[ i  ].area( )  );

  }

}
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Analysis of Example
● ar ea for Shape class used simply as a

placeholder so we can call area  for both
Ci r cle  and Squar e using dynamic binding

● Can add a new class (e.g. Recta ngle )
– without any change to Shape

– without any change to print Areas  (indirect code
reuse)

– only have to wr ite Rectangle , and have it extend
Shape

● in stanc eof  operator not used
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Type Compatibility

● A reference to a base-class type can be used to
access an object of a der ived class.

● Can only select members that make sense for
the static type of a reference.
– May need to down cast

– Cast will be checked at run time for validity



Tuesday, September 05, 2000 Copyright 1996, 1999, 2000 M. A. Weiss 25

Type Compatibility Examples
cl ass B ase

{

  publ i c v oi d f oo( ) { . . . }

}

c l ass D er i ved e xt ends B ase

{

  publ i c v oi d b ar ( ) { . . . }

}

Der i ved d 1 = n ew B ase( ) ;   / / I l l egal

Base b 1 = n ew Der i ved( ) ;   / / L egal

Der i ved d 2 = ( Der i ved) b 1;  / / L egal ; c ast r equi r ed!

d2. bar ( ) ;                  / / L egal

( ( Base) b 1) . bar ( ) ;         / / L egal ; c ast r equi r ed

Base b 3 = n ew Base( ) ;      / / L egal o f c our se

( ( Der i ved) b 3) . bar ( ) ;      / / L egal ; t hr ows a r unt i me e xcept i on

                            / / b ecause d ynami c t ype i s n ot D er i ved
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Immutable Object Pattern

● Can use inher itance to control mutabil ity:
cl ass I mmutableP erson

{

  / / on l y a ccess ors

}

cl ass P erso n ext ends I mmutable Perso n

{

  / / ad ds m utato r s

}

  void prin t Pers ons( I mmutable Perso n[] p  )

  {

    // Of c ourse , can down cast here , but tha t ’s

    // same as  c astin g away co nstne ss in  C++ .

  }
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Objec t  class

● Root of all inher itance
● Defines several useful methods:

– toSt r ing

– equa l s

– getC l ass

● Defines some tr icky stuff
– clon e

– fina l ize

● Thread stuff
– wait , notify , not i fyAll
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Exceptions

● Exceptions are an example of Java's use of
inheritance.

● An exception is thrown for an exceptional
circumstance (bad file, ar ray out of bounds,
etc.).

● Syntax:
th r ow AnyEx cepti onObj ect;

● Only objects that are subclasses of
ja va.la ng.T hrowa ble  may be thrown.

● Semantics are similar to C++; exceptions
propagate back until caught.
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Kinds of Exceptions
● Thr owabl e is the root of all exceptions

● Error is a subclass; represents VM errors such
as OutOfM emoryErro r

● Exception is a subclass; represents non-VM
errors.

● RunTime Exce ption  is a subclass of
Excepti on; represents bugs:
Nul lPoi nter Excep t ion , Ari t hmet i cExc epti on,
Cl assCastEx cepti on, Array I ndex OutOf BoundsExc eptio n.

● Every thing else is a checked exception:
IO Excep t ion .
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Exception Example
public clas s Underflo w ex t ends Thro wable

{

  publ i c Un derfl ow( S t rin g Thr ower )

    { super ( Thr ower ) ; }

}

● Brief Exception Rules:
– Uncaught checked exceptions must be listed in a

throws list.
– Thro wable  provides routines to pr int a message.

– To catch an exception, enclose code in a try block.

– After try block, provide catch statements.

– There is also a finally clause (unlike C++).
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Exception Details

● A try block must have one or more catch blocks
or a finally block or both

● Use the finally block to clean up resources

● Use exceptions only for exceptional occurrences
● Never use exceptions as a cheap goto
● Costly to catch; mostly free if exception is

never thrown
● An exception thrown in a catch or finally block

replaces any active exception; a return value in
the finally block replaces a return value in a try
block.
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Exceptions and Inheritance

● An overr iding method cannot add to the
throws of the method it is overr iding list

● An overr iding method can simplify throws list
with a subset of exceptions

● Legal to have a throws list even if
implementation has no throws clause

● First matching catch block wins; compiler will
detect unreachable or silly catch blocks

● Can catch all exceptions by catching
Throwable, but that’s dangerous.
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Abstract Window Toolkit

Component

Container

PanelWindow

Dialog

FileDialog

Frame

Button
Canvas
CheckBox
Label
List
Scrollbar   

TextArea

TextField

● Makes heavy use of inher itance.
● Details eventually
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Interfaces

● No multiple inher itance in Java; the alternative
is the interface.

● An inter face is an abstract class that defines no
non-abstract methods. The word inter face
replaces abstract class.

● Interface can also contain constants.
public inte r face Draw able

{

           / / au t omat i call y public and a bstr act

  void setC olor( Colo r c ) ;

}
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Using Interfaces

● Class implements an inter face
● No limit on the number of inter faces

implemented
● A class that implements an interface X may be

used wherever it could be used if it extended
class X.

public clas s Rect angl e imp l ements D r awabl e

{

    // Normal Re ctang l e st uff

    // Must then prov i de a n im pleme ntati on o f set Color

    pub l ic void setCo l or( )

      {  bla h; }

}
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Interfaces are Abstract Classes

● Compiler will generate a .class file
● Only public inter faces visible outside of

package, and must be in file of the same name

● Class that implements an inter face satisfies the
IS-A property, and objects of that type satisfy
in stanc eof

● Class that implements inter face must declare
all inter face methods public (why?)

● Class that implements inter face but not all
methods must be declare abstract

● Can extend inter faces (even multiple inter faces)
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Interfaces Cannot Grow

● Once you publish an interface you cannot add
to it in later versions of your code
– breaks any class that already implemented the

interface, because now it must be declared abstract

– same rule for abstract classes: cannot add abstract
methods late in the design

● On the other hand, it is preferable to keep
interfaces small .
– Need some good patterns to combine lots of small

interfaces, rather than wr ite a few large ones
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Main Uses of Interfaces

● Multiple inher itance
● Templates

● Function objects
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Multiple Implementation Inheritance

● Diff icult to do correctly
– Often inher it conflicting implementations

– Need more syntax ; what does super mean?

– Supported in C++, and is very confusing

– C++ experts recommend only multiple inter face
inher itance (inher it functionali ty but not
implementations)

● Multiple implementation inher itance illegal in
Java; can only extend one class.

● Multiple inter face inheritance is legal;
formalizes the advice of C++ experts
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Templates

● Java does not support templates.
● They can be faked using inher itance: use

Obj ect  as the class.
cl ass O bjCe l l

{

    pub l ic Objec t rea d( ) {

        ret urn s t ored Value ;

    }

    pub l ic void write ( Obj ect x ) {

        sto r edVal ue =  x;

    }

    pri vate Obje ct st oredV alue ;

}
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Two Problems
● Buil t-in-type is not an Obj ect , so ObjCel l

cannot store an int, for instance. Solution: use
wrapper classes such as I ntege r , Doubl e,
etc., which are predefined.

● I f an In t eger  is stored in the Obj Cell  m,
then the statement below does not work,
because the method returns an Obj ect , and
an Objec t  is not an Inte ger . Solution
involves a type conversion.

In t ege r x =  m.re ad( ) ;   / / Wr ong!!

In t ege r x =  (Int eger) (m. r ead( ));  / / OK
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Using the ObjCe l l  for ints
cl ass T estO bjCel l {

    sta t ic publi c voi d mai n( S t ring args [ ] ) {

        Obj Cell m = n ew Obj Cel l ( );

        m.w r ite( new  I nteg er( 5 ) ) ;

        Sys t em.o ut.pr i ntln ( "Cell c onten t s a r e "

                            + ( Inte ger)m . rea d( ) ) ;

    }

}

● All wrappers define a toSt r ing  method.
● In t eger  defines an intV alue  method that

returns an in t .

● Wrappers are final classes (so methods are
inlined, with litt le overhead for using them).
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Generic Algs That Require Functions

● Routines like sor ting cannot simply take
Obj ect : how to apply sor t?

● Define an inter face, and algor ithms can work
on objects of the inter face type.

inte r face Comp arable {

  boolean comp areTo( Obj ect other ) ;

}

publ i c class U t ils {

    / / Can sor t Objects t hat imple ment Compa r able inte r face

  public void s tatic sor t ( Compara ble[] arr ) {

    / / sorting  algorithm that  orde r s by test s such as

    i f( arr[i] . compareTo ( arr[j] )  < 0 )

  }

}
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Function Object

● Cannot pass a function as a parameter to a
procedure; can only pass pr imitives and
references

● Object = state plus methods

● Create a stateless object with the method you
want to pass, and send the reference

● Three steps:
– Agreed upon function is placed in an interface

– Class implements the inter face with function def

– Object of that type created; ref to it is passed to the
procedure, which can call function through the ref
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Example: The Library Side
● Define a Compar ato r  inter face (this is

actually now in Java 1.2)
publ i c interfa ce Compara t or {

i nt compa r e( Object  obj1, Obj ect obj2 ) ;

}

● Implement gener ic routine using inter face:
clas s FindMaxD emo {

  public stati c Object f i ndMax( Ob j ect[] a, Comparator cmp  ) {

    i nt maxInd ex = 0;

    f or( int i  = 1; i < a.length; i ++ )

      if( cmp. compare( a [ i ], a[ maxIndex ]  ) > 0 )

        maxInd ex = i;

    r eturn a[ maxIndex ] ;

}

}
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Using the Generic Routine
// R ectangle c l ass; know s nothing about orde r ing

publ i c class R ectangle

{

  public Recta ngle( int l , int w )  {

    l ength = l ; width = w;

  }

  public int g etLength( ) {

    r eturn len gth;

  }

  public int g etWidth( )  {

    r eturn wid t h;

  }

private i nt length;

private i nt width;

}
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Finding Maximum Width Rectangle
clas s OrderRec t ByWidth i mplements Comparator {

  public int c ompare( Ob j ect obj1,  Object ob j 2 ) {

    Rectangle r 1 = (Rect angle) obj 1;

    Rectangle r 2 = (Rect angle) obj 2;

    r eturn( r1 . getWidth( ) - r2.get Width() );

  }

}

clas s Demo {

public st atic void main( Stri ng [] args  ) {

     Object [ ] rects = new Rectan gle[ ] { . . . };

     Object ma x = findMa x( rects, new OrderR ectByWidth ( ) ) );

     Rectangle widest  = ( Rectangle ) max;

       ...

  }

}
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Function Objects In Libraries

● Used everywhere in Java
● Common inter faces:

– java.util .Comparator (Java 1.2)

– java.lang.Runnable

– java.awt.event.ActionL istener

– java.lang.Pr ivilegedAction
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Summary

● Inher itance used:
– good designs

– exceptions

– templates

– function objects

● Can’t do any Java programming without
inheritance


