
9/26/00 1

Inner Classes

Mark Allen Weiss

Copyright 2000

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 2

Outline

● History of inner classes
● Nested (static inner) classes

● The instance inner class and iterator pattern
● Inner classes inside of functions
● Anonymous inner classes

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 3

History Lesson

● Java design removes fr inge C++ features
● C++ has nested classes to hide types:
class List
{

 ...

 private:

 class Node

 {

 public:

 int data;

 Node *next;

 Node(int d = 0, Node *n = NULL)

 : data(d), next(n) { }

 };

};

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 4

Java 1.0

● No nested classes in Java 1.0
● C++ nesting style achieved with packages

– Can make Node class package pr ivate

● Speculation was that nested classes would
needlessly complicate language

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 5

Java 1.1

● In Java 1.1, nested classes were added
● Needed especially to implement patterns

associated with AWT event handling

● Also useful for several other patterns
● Designers went crazy and added lots of features

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 6

What’s Added

● Nested classes (static inner classes), mimic C++
style of nesting a type inside of type

● Inner classes (new in Java), allows classes
inside of classes and implies an association of
objects of the inner class with an object of the
outer class

● Classes inside of functions
● Classes inside of expressions
● Classes with no names

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 7

Language Changes Required

● Added lots of syntax for inner classes
– lots of syntax rules for corner cases and sill y code

● In addition to direct inner class syntax, added
some new syntax as a result
– final local var iables

– final parameters

– instance initializers

● Java 1.1 compiler generates code for inner
classes that can be run on a Java 1.0 VM

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 8

Terminology

● Use terms outer and inner class to refer to the
two classes

● Nested classes are (static) inner classes

● Can have classes inside of classes inside of
classes if we want

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 9

Visibility Rules

● Inner classes are members of the outer class
– can be declared with any visibili ty

– can see all members of the outer class

– is in same package as outer class: implies that outer
class can access non-pr ivate inner class members

– class name is
● Inner (from outer class)
● Outer.Inner (if visible, from rest of wor ld)

● Typical pattern:
– declare inner class pr ivate

– declare inner class members public or package
visible

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 10

Linked List
● Hide the Node class inside of MyList class
public class MyList

{

 private Node front = null;

 ...

 private static class Node

 {

 Object data;

 Node next;

 Node(Object d, Node n)

 { data = d; next = n; }

 }

}

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 11

Public Nested Class
● Occasionally nested class is public

– Done just for convenience
– Example is
java.io.ObjectInputStream.GetField

● Convention of lower case for package and
upper case for classes makes it easy to see what
class and package are

● I f nested class has public constructor , can
create with

 Outer.Inner in = new Outer.Inner(...);

– Often created via factory method instead

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 12

Access of Outer Class Members

● Static inner class objects can
– access static members of the outer class

– access instance members of the outer class only
through a reference to the outer class

– rules similar to what static methods can access

● I f inner and outer class have name clash
– closest class name wins

– access outer member explicitly with Outer .member
or Inner.member

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 13

Instance Inner Class Motivation
● Consider container /iterator interaction
package pack;

public class MyContainer

{

 Object[] items;

 public Iterator iterator()

 { return new MyContainerIterator(this); }

 ...

}

class MyContainerIterator implements Iterator

{

 private int current = 0;

 private MyContainer container;

 public MyContainerIterator(MyContainer c)

 { container = c; }

 public boolean hasNext()

 { return current < container.items.length; }

 ...

}

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 14

Using The Container/Iterator
import pack.MyContainer;

public class Demo {

 public static void main(String[] args) {

 MyContainer c = new MyContainer();

 ... // populate c via adds

 Iterator itr1 = c.iterator();

 Iterator itr2 = c.iterator();

 while(itr1.hasNext())

 System.out.println(itr1.next());

 }

}

c

itr1
container =
current = 3

items: 13, 76, 12

itr2
container =
current = 0

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 15

Observations
● items arr ay in MyContainer is not pr ivate
● MyContainerIterator is really part of
MyContainer

● MyContainerIterator is package visible;
pr ivate would be better ; only use interface

● Following the container reference in
MyContainerIterator is a litt le sloppy

● Every instance of MyContainerIterator is
associated with exactly one MyContainer

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 16

Revised With Inner Classes
package pack;

public class MyContainer

{

 private Object[] items;

 public Iterator iterator()

 { return new MyContainerIterator(); }

 ...

 private class MyContainerIterator implements Iterator

 {

 private int current = 0;

 public MyContainerIterator()

 { }

 public boolean hasNext()

 { return current < items.length; }

 ...

 }

}

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 17

Benefits
● items arr ay is now pr ivate
● MyContainerIterator is now pr ivate
● Code is cleaner because container reference

has myster iously vanished and it appears we
can access outer class members directly

● But what happened to that reference?

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 18

Implicit Outer Reference

● Instance inner class objects always have an
implicit reference to the outer class object that
caused its creation
– Name is Outer .this

– Can be omitted if no conflict with inner name

c

itr1
MyContainer.this =
current = 3

items: 13, 76, 12

itr2
MyContainer.this =
current = 0

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 19

Consequences of Implicit Outer Ref

● Garbage collector will not reclaim an outer
object if an inner object is around

● I f an inner instance class is public enough, the
following would not work:

MyContainer.MyContainerIterator obj =

 new MyContainer.MyContainerIterator();

– even though constructor appears to exist

– no way to initialize outer reference in this code

● Cannot create inner instance class from
static outer class method:

 // Cannot do this inside static method of MyContainer

MyContainerIterator obj = new MyContainerIterator();

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 20

Inner Classes Complicate Things

● Previous slide il lustrates problem
– Need syntax to create inner class from outside outer

class

– Have to be able to propagate a reference to some
outer object

– Code is stupid
● Case 1: inner class should have been pr ivate and this

wouldn’ t be an issue
● Case 2: use an instance method

– But language designers need a rule for all cases

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 21

The Ugly Solutions
● Outer r eference invokes new as if it were a

method:
MyCollection c = new MyCollection();

 ...

MyCollection.MyCollectionIterator = c.new MyCollectionIterator();

● Similar nonsense for extending an inner
instance class:

class Stupid extends Inner.Outer // Inner.Outer is instance inner class

{

 public Stupid(Outer obj)

 {

 obj.super();

 ...

 }

}

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 22

Inner Classes With Factory Classes

● I f factory objects can never be created, inner
classes and methods must of course be static:

public interface Foo { ... }

public class FooFactory

{

 private static FooImpl { ... }

 private static FooProxy { ... }

 public static Foo allocateFoo()

 { return new FooProxy(new FooImpl()); }

 private FooFactory() { } // No FooFactory objects

}

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 23

Inner Classes

● Can be static (of course)
● Can be final (not legal to extend)

● Can be abstract
● Can be inter faces
● Can define static final fields but no other statics

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 24

Interfaces and Inner Classes

● Same Outer.Inner used
● Inner inter faces of a class are legal

● Inner inter faces are always implicitly static
● Inner classes of an inter face are legal
● Inner classes of an inter face are always

implicitly static

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 25

Inner Class Files

● Compiler :
– generates a unique class file for each inner class.

– Generally uses Outer$Inner .class as the class file

– Internally generates a hidden implicit reference to
outer class

– Generates package pr ivate wrappers to access each
accessed pr ivate member of the outer class

● names such as access$001 (convention changed in Java 1.3)
● can invoke with reflection
● VM can verify that method only invoked from outer class,

but doesn’ t r ight now

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 26

Classes Inside of Methods

● Can declare classes inside of methods
● Cannot use static

– class is static if method is static

– class is instance if method is instance

● Cannot use pr ivate
– meaningless; class is not visible outside of the

function

● Can also access the parameters of the enclosing
method and local var iables that are in scope
– var iables must be final

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 27

Final Local Variables

● Added in Java 1.1
● Value cannot change (for references, only value

of reference can’t change; object state can)

● Can only be initialized once (parameters
already are); compiler does usual flow analysis

● Final var iables (pr imitives and references) not
reclaimed by GC until all anonymous inner
objects in the method are reclaimed.
– Implies that these var iables are not on the stack

– So not all local var iables are on the stack

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 28

Anonymous Inner Classes

● Can create a class with no name
● Class implements an inter face or extends an

existing class

● Brutal syntax
● Useful for implementing shor t function objects

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 29

Original Example From Interfaces
Module With Function Object

class OrderRectByWidth implements Comparator {

 public int compare(Object obj1, Object obj2) {

 Rectangle r1 = (Rectangle) obj1;

 Rectangle r2 = (Rectangle) obj2;

 return(r1.getWidth() - r2.getWidth());

 }

}

class Demo {

 public static void main(String [] args) {

 Object [] rects = new Rectangle[] { ... };

 Object max = findMax(rects, new OrderRectByWidth()));

 Rectangle widest = (Rectangle) max;

 ...

 }

}

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 30

With Static Inner Class
class Demo {

 private static class OrderRectByWidth implements Comparator {

 public int compare(Object obj1, Object obj2) {

 Rectangle r1 = (Rectangle) obj1;

 Rectangle r2 = (Rectangle) obj2;

 return(r1.getWidth() - r2.getWidth());

 }

 }

 public static void main(String [] args) {

 Object [] rects = new Rectangle[] { ... };

 Object max = findMax(rects, new OrderRectByWidth()));

 Rectangle widest = (Rectangle) max;

 ...

 }

}

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 31

With Class Inside Of Method
class Demo {

 public static void main(String [] args) {

 Object [] rects = new Rectangle[] { ... };

 class OrderRectByWidth implements Comparator {

 public int compare(Object obj1, Object obj2) {

 Rectangle r1 = (Rectangle) obj1;

 Rectangle r2 = (Rectangle) obj2;

 return(r1.getWidth() - r2.getWidth());

 }

 }

 Object max = findMax(rects, new OrderRectByWidth()));

 Rectangle widest = (Rectangle) max;

 ...

 }

}

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 32

With Anonymous Inner Class
class Demo {

 public static void main(String [] args) {

 Object [] rects = new Rectangle[] { ... };

 Object max = findMax(rects, new Comparator() {

 public int compare(Object obj1, Object obj2) {

 Rectangle r1 = (Rectangle) obj1;

 Rectangle r2 = (Rectangle) obj2;

 return(r1.getWidth() - r2.getWidth());

 }

 }

));

 Rectangle widest = (Rectangle) max;

 ...

 }

}

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 33

Anonymous Inner Class Hints

● Classic signature wil l have lots of parentheses,
semicolons, braces at the end
– very hard to type

● Write the class outside first.
● After the () after the call to new, add some

blank lines
● Replace new Implementation with new
Interface

● Cut and paste the class declaration after the ()
that follow the call to new, and indent a li ttle

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 34

Anonymous Class Design

● Useful for class that adds one short function
● Adding lots of stuff defeats readability

● Useful for accessing local var iables that would
be impossible without inner classes

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 35

Anonymous Class Names

● Compiler uses Outer$1.class, Outer$2.class
● Inner class declared in method gets

Outer1Inner.class

● Can access inner classes -- even anonymous
ones with reflection and Class.forName

● However, hard to know how compiler has
numbered classes

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 36

Anonymous Class Initialization

● QUESTION: I f an anonymous class is a class,
how do you wr ite its constructor?
– Constructor has same name as the class

● ANSWER: You can’t . So the language
designers invented the initializer block
– modeled to look like a static initializer block

– almost never worth using, but more language
complications

– implies that you can only call a constructor defined
in class that anonymous class extends or zero-
parameter constructor if implementing an inter face

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 37

Inner Class Patterns

● Static inner class is pr ivate with public/package
data

● Inner class is pr ivate (possibly static), with
public/package data and implements a public
interface. Outer class has factory method that
returns inner class instances using the inter face
type

● Both patterns used in linked lists and other
data structures

● Other pattern is to use anonymous inner classes
for function objects

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 38

Class Relationships

● Nested (static inner) relates TYPES
– inner class type related to outer class type

● (Instance) Inner relates OBJECTS
– Objects of the inner class type always associated

with exactly one object of the outer type

Tuesday, September 26, 2000 Copyright 2000, M. A. Weiss 39

Summary

● The speculation was correct: adding inner
classes complicates the language

● Static inner classes (nested classes) just like
C++ nested classes

● Instance inner class objects always have
reference to outer object

● Inner classes generally pr ivate, so syntax ok
● Classes inside of functions can access final local

var iables and can even have no name

● Use anonymous classes judiciously

