
1

1

Introduction to JDBC

Mark Allen Weiss

Copyright 1999

2

Outline of Topics

● Basic principles
● Making your database visible
● Java code

3

Basic Ideas

● Two layers
– The JDBC API

– JDBC Manager Driver API

● JDBC API communicates with manager using
SQL statements.

● Manager communicates with various database
drivers to translate the SQL to into database
queries for the appropriate database.

● Database vendors should supply drivers; as a
database user, you are only concerned with
JDBC API.



2

4

SQL

● The standard database query language.
● JDBC requires support for SQL-92.
● If you know SQL, it is trivial to construct Java

code to access a database.

5

Basic SQL Commands

● SELECT
● UPDATE
● DELETE
● INSERT INTO
● CREATE TABLE

6

SELECT Statements

● Basic Query Components
– SELECT columns

– FROM table

– WHERE criteria
– ORDER BY how to order

– LIMIT number of rows

● FROM is required; others are optional
● columns can be * to list all columns, or comma-

separated list of a subset of columns



3

7

Examples
SELECT * FROM hockey

SELECT name, goals, assists, points FROM hockey
ORDER BY points DESC

SELECT name, goals, assists, points FROM hockey
ORDER BY points DESC LIMIT 40

SELECT * FROM hockey WHERE goals > 20 AND
assists > 20 AND points > 50 ORDER BY points

8

Database URLs

● A database URL looks like
jdbc:subprotocol name:data base url

● Example:
jdbc:odbc:data.csv

jdbc:odbc://data.ticketmaster.com:8888/db1;PWD=secret

● odbc subprotocol is always available.

9

Connecting

● Need a driver manager to be loaded.
● Use Class.forName to load the driver

manager class.
● For odbc, use
Class.forName( "sun.jdbc.odbc.JdbcOdbcDriver" );

● Once class is loaded, use static method
DriverManager.getConnection. Provide
a database URL, and optionally a name and
password. This returns a Connection object.



4

10

Connection Interface

● Allows you to
– create queries

– get database meta-data

– commit or rollback transactions

● Connection not made until later request.
● Important methods:
Statement createStatement( );

PreparedStatement prepareStatement( String sql );

void setAutoCommit( boolean autoCommit );

DatabaseMetaData getMetaData( );

void rollback( );

11

Statements and ResultSets

● Statement is a query that can be sent to the
database.

● Important methods:
ResultSet exectueQuery( String sql );

int executeUpdate( String sql );

● The ResultSet contains an enumation-type
pattern; each item in the enumeration is a row
in the result.

● Can get elements in the current row of the
enumeration using getXXX(int column).
Note: columns begin at 1.

12

Typical Code
...

try {

  Class.forName( "sun.jdbc.odbc.JdbcOdbcDriver" );

  String url = "jdbc:odbc:somedb";

  Connection con = DriverManager.getConnection( url );

  Statement stmt = con.createStatement( );

  String sql = "SELECT Name FROM directory.csv";

  ResultSet r = stmt.executeQuery( sql );

  while( r.next( ) )

    System.out.println( r.getString( 1 ) );

  stmt.close(); // Also closes ResultSet

} catch(Exception e) {

  e.printStackTrace();

}



5

13

Prepared Statements

● Useful for similar-looking repeated queries,
● Connection.prepareStatement gives you

a prepared statement; provide a string with ?
to store the placeholders.

● Use setXXX(whichPlaceHolder,value)
to set the placeholder in the prepared
statement.

● Note that placeholder counting starts at 1.
● After placeholders filled, can call
executeQuery.

14

Summary

● JDBC is an easy-to use interface to databases.
● Hardest part is setting up the databases outside

of Java.


