
1

1

Introduction to Native Calls

Mark Allen Weiss

Copyright 1999

2

Outline of Topics

● What Is A Native Call
● Native Call Pros and Cons
● General Setup
● Accessing methods and fields of an object
● Accessing static methods and fields of a class

● Str ings
● Arr ays
● Exceptions
● Invocation API

3

What Is A Native Method

● A native method is code written in another
language (usually C) and called from a Java
program.

● Generally you cannot use your own native
methods in applets.

● The JNI (Java Native Inter face) specifies a
communication protocol.

2

4

Why Use Native Methods

● You already have lots of tr icky code already
wr itten and debugged in another language (for
instance, numer ical analysis librar ies). You'd
rather not rewr ite it in Java.

● You need access to system devices. At some
point, par ts of the Java I /O library make native
calls.

● You think Java might be too slow (probably a
lame excuse)

5

Problems With Native Methods

● You lose por tabili ty. You must provide a native
library for each suppor ted environment.

● You lose safety. Native methods do not have
same checks as Java methods. I f your native
method has a bad bug (e.g. a corrupt pointer)
you are in trouble. The VM can get completely
lost.

● Generally, a native call is untrusted.

● The JNI binding is not a work of beauty.
Coding is cumbersome.

6

Basic Ideas

● A Java class declares that a par ticular method
has a native implementation, by using the
native keyword.

● A C or C++ function (the stub) is wr itten to
implement the keyword, using a JNI protocol
that we will discuss.

● The stub is compiled into a shared library
(DLL on Windows).

● The Java VM loads the library. Calls to the
native method are handled by call ing the stub.

3

7

The Complications

● Basic ideas are simple, as next example will
il lustrate.

● There are complications:
– How are method calls made (C has no classes)?

– How are parameters passed?
– How is a value returned?

– What about function over loading?

– How can the stub throw an exception?
– How do we differentiate between static and non-

static members?
– What about str ings and arrays?

8

Simple Stuff First
● Example is a function called hello, that is

called from a Java program.
● hello is declared as a native method
● HelloNative (the DLL containing hello) is

loaded pr ior to first use.
class HelloNative {

 native public static void hello();

 static {

 System.loadLibrary("HelloNative");

 }

 public static void main(String[] args) {

 hello();

 }

}

9

Generating the Stub Specification

● After you compile the java code, you generate
the header file for the stub. This will tell you
what function(s) to implement. I t uses a bizarr e
encoding. Run (from MS-DOS window)

javah HelloNative

● What you get is (approximately)
#include <jni.h>

JNIEXPORT void JNICALL Java_HelloNative_hello

 (JNIEnv *, jclass);

● There are also comments and #ifdefs that
allow you to wr ite both C and C++ code.

4

10

Mangling

● The stub corresponds to the native method
name, signature, and return type.

● There is a rule to figure it all out, but why
bother? Rule takes into account:
– Class name, Method name, weird characters in

identifiers

– Parameter types, overloading

● Remember that javah requires a class file
generated by javac.

11

Some Details
● The parameters (especially env) in the stub are

useful when the native method has parameters,
return types, exceptions, or if we want to create
str ings and arrays. That's a future example.

● We need to implement the stub in a .c file, then
compile it into a shared DLL .

#include <stdio.h>

#include "HelloNative.h"

JNIEXPORT void JNICALL

Java_HelloNative_hello(JNIEnv *env, jclass cls) {

 printf("Hello world\n");

}

12

More Details
● Remember to add jdk??/include and
jdk??/include/win32 to include path for
C or C++ compilation.

● Move .dll file up to same directory as Java
project.

5

13

Parameters

● Primitive parameters and return values in the
Java native declaration have C equivalents in
the stub.
int --> jint

double --> jdouble

boolean --> jboolean

● Use these for por tabili ty. (A jint wil l always
be 32 bits)

● JNI_TRUE and JNI_FALSE are also defined

14

Strings
● Use the jstring type in your stubs.
● May need to convert between C-style char*

str ings and jstring.
● Use NewStringUTF to create a new jstring

from a C-style str ing. Useful for returning a
jstring. NewStringUTF is accessed through
env with a funky call. First parameter is env,
second parameter is a C-style str ing.

JNIEXPORT jstring JNICALL

Java_Class1_GetHelloWorld(JNIEnv *env, jclass c)

{return (*env)->NewStringUTF(env,"Hello world");}

15

Strings as Parameters

● Need to get info about the str ing, and most
likely, get a C-style equivalent.

● Problem: I f a C-style equivalent holds a
reference to the str ing, then garbage collector
won't reclaim it.

● C-style equivalent must release its hold.
● These methods are accessed via (*env)->
const jbyte* GetStringUTFChars(JNIENV *env,

 jstring str, jboolean *isCopy);

void ReleaseStringUTFChars(JNIENV *env,

 jstring str, const jbytes *bytes);

6

16

Here's a String Concatenation

● This is very prone to bugs, with bad pointers
and memory leaks. Also, watch constness.

JNIEXPORT jstring JNICALL Java_StringAdd_add (JNIEnv *env,
jclass cl, jstring a, jstring b) {

 const char *a1 = (*env)->GetStringUTFChars(env, a, NULL);

 const char *b1 = (*env)->GetStringUTFChars(env, b, NULL);

 char *c = (char *) malloc(strlen(a1) + strlen(b1) + 1);

 jstring result;

 strcpy(c, a1); strcat(c, b1);

 result = (*env)->NewStringUTF(env, c);

 (*env)->ReleaseStringUTFChars(env, a, a1);

 (*env)->ReleaseStringUTFChars(env, b, b1);

 free(c);

 return result;

}

17

Same Code in C++
● In C++, change (*env) to env, and remove
env as first parameter in most calls.

JNIEXPORT jstring JNICALL Java_StringAdd_add (JNIEnv *env,
jclass cl, jstring a, jstring b) {

 const char *a1 = env->GetStringUTFChars(a, NULL);

 const char *b1 = env->GetStringUTFChars(b, NULL);

 char *c = new char[strlen(a1) + strlen(b1) + 1];

 strcpy(c, a1); strcat(c, b1);

 jstring result = env->NewStringUTF(c);

 env->ReleaseStringUTFChars(a, a1);

 env->ReleaseStringUTFChars(b, b1);

 delete [] c;

 return result;

}

18

Same Code in Safer C++

● Can use C++ library classes.

JNIEXPORT jstring JNICALL Java_StringAdd_add (JNIEnv *env,
jclass cl, jstring a, jstring b) {

 const char *a1 = env->GetStringUTFChars(a, NULL);

 const char *b1 = env->GetStringUTFChars(b, NULL);

 string c = a1;

 c += a2;

 jstring result = env->NewStringUTF(c.c_str());

 env->ReleaseStringUTFChars(a, a1);

 env->ReleaseStringUTFChars(b, b1);

 return result;

}

7

19

Accessing Instance Members

● Not all that convoluted (the standards are going
down!)
– Use the second parameter (jobject) in the stub
– Need to get a jclass object for the jobject

– Need to get either a fieldID or methodID; this
involves more convoluted mangling

– Need to then use either GetXXXField or
SetXXXField or CallXXXMethod (XXX is int or
double or Object, etc.)

● On second thought, this is convoluted!

20

Getting Fields
● Consider an Employee class with pr ivate int

fields month, day, and year.

● Here's code to pr int out the month:
JNIEXPORT void JNICALL Java_Date_printMonth

 (JNIEnv * env, jobject obj)

{

 jint month;

 jclass class = (*env)->GetObjectClass(env, obj);

 jfieldID id_month = (*env)->GetFieldID(env, class,

 "month", "I");

 month = (*env)->GetIntField(env, obj, id_month);

 printf("Month is %d\n", month);

}

21

Some Details
● Use GetObjectClass to obtain the jclass

object. Pass in env and the object.
● Use GetFieldID to obtain the fieldID.

Parameters are env, the jclass object, the
field name, and the mangled type of the field.

● Use javap -s -private ClassName to
get the mangled info. Again, there's a formula
for this, but why bother. You must be
exceptionally accurate with the mangling.

● Use GetXXXField to get a field. Parameters
are env, the object, and the fieldID.

8

22

Getting String fields
● Use GetObjectField; you must typecast

down to a jstring.

23

Calling Methods

● Here's code to pr int out a month by calling its
getMonth method:

JNIEXPORT void JNICALL Java_Date_printMonth

 (JNIEnv * env, jobject obj) {

 jclass class = (*env)->GetObjectClass(env, obj);

 jmethodID id_getMonth = (*env)->GetMethodID(env,

 class, "getMonth", "()I");

 jint month = (*env)->CallIntMethod(env, obj, id_getMonth);

 printf("Month = %d", month);

}

● I f method takes parameters, they are additional
parameters to CallXXXMethod

● Last parameter to GetMethodID is mangled

24

Accessing Static Members
● Use FindClass instead of GetObjectClass

to obtain j class reference
jclass class_math = (*env)->FindClass(env,
"java/lang/math");

● Use GetStaticXXXField and
SetStaticXXXField to access static fields.
– Second parameter to access field is jclass instead

of jobject.

● Use GetStaticMethodID and
CallStaticXXXMethod to access static
methods. Again, use jclass when invoking.

9

25

Calling a Constructor
● Invoke a constructor by calli ng NewObject:
jobject obj = (*env)->NewObject(env, class,

methodID, param1, param2, ...);

● Get the class by using FindClass.
● To get the methodID pass four parameters:

– env (as usual)

– The class obtained above
– "<init>" as the method name

– The usual mangling stuff that contains the signature

26

Arrays

● Java arr ays have corr esponding C types.
double[] -> jdoubleArray

int[] -> jintArray

Object[] -> jobjectArray

● Can use GetXXXArrayElement and
SetXXXArrayElement to access elements:
jint x = (*env)->GetIntArrayElement(env, arr, 3);

● Syntax is annoying, to say the least
● Can call NewXXXArray to create a new array.
 jintArray a = (*env)->NewIntArray(env, 40);

27

Getting a C-style Array

● Can get a C-style arr ay using
GetXXXArrayElements (note pluralization).

● This gives a pointer to an arr ay.
● This may be a copy of the arr ay, but the copy

can be copied back to the or iginal when you
call ReleaseXXXArrayElements.
– last param is 0, JNI_COMMIT, or JNI_ABORT

● I f you don't call Release..., there is no
guarantee that any changes stick.

jint *a = (*env)->GetIntArrayElements(env, arr, NULL);

...

(*env)->ReleaseIntArrayElements(env, arr, 0);

10

28

Exceptions
● Can throw an exception with ThrowNew. The

exception will be thrown when the native
method eventually returns.

● ThrowNew does not terminate the method.
(*env)->ThrowNew(env, (*env)->FindClass(env,

"java/io/IOException"), "IO error");

● Native method can check if an exception
occurred by calli ng ExceptionOccured:

jthrowable e = (*env)->ExceptionOccurred(env);

● e is NULL if no exception; otherwise should
return and let VM propagate exception

29

Some Details
● Object references (jstring, jobject, etc)

are valid for duration of method call only, and
in same thread only
– use global references if you need longer duration

● Create with
globref = env->NewGlobalReference(ref);

● Must then eventually use
env->DeleteGlobalReference(globref);

● Can also get and release monitors
– Obtain monitor with env->MonitorEnter,

release with env->MonitorExit

30

Summary

● With native code, you can wr ite pretty much
anything you want to.

● Very diff icult debugging; there's li ttle help.
● Not por table.

● Don't use it unless you have to.

