
Networking

Mark Allen Weiss

Copyright 2000

Outline of Topics

● Networking Concepts
– Internet Addresses and por ts
– Packets and TCP/IP
– Sockets

● Java Classes
– InetAddress

– Socket and ServerSocket
– URL and URLConnection
– DatagramSocket and DatagramPacket

● Threading and networking
● Firewall Issues

Internet Addresses

● Every computer represented by (at least one)
internet address (IP address)
– Can use quad bytes or easier-to-remember domain

names
● 131.94.126.81 (32 bit quad-bytes)
● ocelot.aul.fiu.edu (domain name)

– Can use special name and address for local machine
● 127.0.0.1
● localhost

– Machines can have multiple names/addresses

– Some addresses represent multiple machines; useful
for load-balancing

Ports

● Abstraction to allow multiple programs access
to single internet connection

● Ports are numbered 0 to 65,535

● Ports 0 to 1,023 are reserved and often
restr icted

● Well known-por ts:
– 7 echo

– 13 time of day

– 21 ftp

– 23 telnet
– 80 http

Socket

● Can communicate with another machine by
opening a socket.

● I f the other machine is listening on the port,
you can establish a two-way connection.
L istening at other end is done with a server-side
socket.

● Example: connect to www.cs.harvard.edu at
por t 13 and get t ime of day
– Can do this in a telnet window

– Can do this using browser and URL
http://www.cs.harvard.edu:13/

TCP/IP vs UDP

● UDP
– Packets are sent from one machine to another

– Packets may take different routes

– Packets may arr ive in random order or not at all

– You must set up a protocol that numbers packets,
and sends out a header . Receiver can request
retransmission of missing packets, and reassemble

– Faster but more work, good if loss of packets is
tolerable (Real Audio)

● TCP/IP
– Does all the dir ty work. Looks like a smooth stream.

The Java Socket Class

● Defined in java.net package
● Create a socket by specifying the machine and

por t to connect to.

● Once you have a socket, can use
getInputStream and getOutputStream
to read from and wr ite into the socket.
– Returns InputStream and OutputStream
– Actual types are invisible SocketInputStream

and SocketOutputStream
– Should always turn off buffering on PrintWriters

● Old I /O rules apply once you have streams

Getting the Time of Day
import java.io.*;

import java.net.*;

class Time {

 public static void main(String [] args) {

 try {

 Socket t = Socket("www.cs.harvard.edu", 13);

 InputStream in = t.getInputStream();

 InputStreamReader rin = new InputStreamReader(in);

 BufferedReader bin = new BufferedReader(rin);

 String str;

 while((str = bin.readLine()) != null)

 System.out.println(str);

 }

 catch(IOException e) {

 System.out.println(e);

 }

 // should close socket in finally block

 }

}

InetA ddress

● Abstracts the idea of an IP address
– Some constructors require InetAddress instead

of a str ing
– Using InetAddress avoids repeated lookup of

same IP address; can save time

● InetAddress is a factory class; no
constructors
– Use getByName static method

– Use getLocalHost (gives real info, not localhost)
● Can then use instance methods getHostName,
getHostAddress

Serve r Socket

● Used to listen on a local por t
● Constructor specifies por t to listen on

● Cannot listen on a port that is already being
listened on

● After creation, call accept.
– Blocks until a connection comes in
– When connection occurs, accept returns a Socket

– At that point, you can get a pair of streams and
communicate with the client

– Should close inside finally block when done

Echo server example
import java.io.*;

import java.net.*;

class EchoServer {

 public static void main(String [] args) {

 Socket sock = null;

 try {

 ServerSocket ss = new ServerSocket(3737); // Use port 3737

 sock = ss.accept();

 InputStreamReader in = new InputStreamReader(sock.getInputStream());

 BufferedReader is = new BufferedReader(in);

 PrintWriter os = new PrintWriter(sock.getOutputStream(), true);

 os.println("Welcome to the EchoServer!");

 os.println("Enter " + "***" + " to exit");

 String str;

 while((str = is.readLine()) != null && !str.trim().equals("***"))

 os.println(str);

 }

 catch(IOException e) { /* Could write to a log file */ }

 finally { /* close stuff here */ }

 }

}

Problem With Previous Example

● Can only handle one connection
● Once accept is called nobody is listening on the

por t any more
– future connect attempts will fail

– could use a loop to call accept again after connection
is processed

● will allow connections indefinitely
● will only allow one at a time, however

● Solution: use threads!

Threads And Networking

● main thread
– creates the ServerSocket

– has a tight loop listening for a connection

– when a connection comes in, main thread spawns a
background thread

● passes the socket to the background thread
● background thread processes the connection
● main thread resumes listening for a connection
● multiple simultaneous connections possible, subject to

system limits
● main thread runs indefinitely
● main thread could keep a shared list of all background

threads it has spawned: chatroom possibili ties!

A Better Echo Server: Main
import java.io.*;

import java.net.*;

public class BetterEchoServer

{

 public static void main(String [] args) {

 ServerSocket ss = null;

 try {

 ss = new ServerSocket(3737);

 while(true) {

 Socket sock = ss.accept();

 Thread t = new EchoHandler(sock);

 t.start();

 }

 }

 catch(IOException e) { /* Could write to a log file */ }

 finally { /* close stuff here */ }

 }

}

The Background Handler Thread
class EchoHandler extends Thread {

 private Socket sock;

 public EchoHandler(Socket incoming) {

 sock = incoming;

 }

 public void run() {

 try {

 InputStreamReader in = new InputStreamReader(sock.getInputStream());

 BufferedReader is = new BufferedReader(in);

 PrintWriter os = new PrintWriter(incoming.getOutputStream(), true);

 os.println("Welcome to the EchoServer!");

 os.println("Enter " + "***" + " to exit");

 String str;

 while((str = is.readLine()) != null && !str.trim().equals("***"))

 os.println(str);

 }

 catch(IOException e) { /* Could write to a log file */ }

 finally { /* close stuff here */ } }

 }

}

Datagrams

● Models UDP transmission
● Create a DatagramSocket, and use it to
send or receive a DatagramPacket.

● DatagramPacket contains
– The InetAddress of the other par ty

● Either you set it to send initially
● receive will fill i t in, so you reuse the packet to reply

– The por t of the other par ty

– The bytes to send (including how many)

– Basically a C++-style struct with a bunch of sets and
gets.

Connecting to Real Echo Server
import java.io.*;

import java.net.*;

class EchoClient {

 public static void main(String[] args) {

 DatagramSocket sock = null;

 String oneLine = null;

 try {

 InetAddress remoteIP = InetAddress.getByName(" www.cs.harvard.edu");

 BufferedReader bin = new BufferedReader(new InputStreamReader(System.in));

 sock = new DatagramSocket(); sock.setSoTimeout(5000);

 System.out.print("you> ");

 while((oneLine = bin.readLine()) != null) {

 byte[] msg = oneLine.getBytes();

 sock.send(new DatagramPacket(msg, msg.length, remoteIP, 7));

 byte[] reply = new byte[msg.length];

 DatagramPacket replyPack = new DatagramPacket(reply, reply.length);

 sock.receive(replyPack);

 System.out.print("echo> " + new String(reply) + "\nyou> ");

 }

 }

 catch(IOException e) { /* Print some messages */ }

 finally { /* Close the socket */ }

 }

}

Uniform Resource Locators (URLs)

● Represent web resources
– http://www.cs.fiu.edu:80/~weiss/

● good idea to have / at end of directory URLs!!! !

– file:./dir /foo.txt

– ftp://ftp.imdb.com/pub/actors.list.gz
– https://www.itn.net/

● Consists of
– protocol (http, file, ftp, https, etc.)

– IP address

– port (optional; defaults exist)

– resource

Java Classes
● URL

– abstracts the notion of a URL
– suppor ts http, ftp, file
– https ok in browser if you download JSSE

● URLConnection

– abstract class abstracts the notion of a connection
– can optionally set request headers
– then make connection
– then optionally get returned header info
– then access resource with both input stream and

outputstream (for instance, to post forms)
– can define your own protocols

Getting A Text-Based Web Page
import java.io.*;

import java.net.*;

class GetWebPage {

 public static void main(String [] args) {

 try {

 URL url = new URL(args[0]);

 URLConnection urlconn = url.openConnection();

 String str = null;

 if(urlconn.getContent() instanceof InputStream) {

 BufferedReader in = new BufferedReader(

 new InputStreamReader(urlconn.getInputStream()));

 while((str = in.readLine()) != null)

 System.out.println(str);

 }

 }

 catch(IOException e) { System.out.println(e); }

 }

}

Firewalls and Security

● Most corporate environments will not allow
you to directly open sockets to sites outside the
corporate network (or maybe even inside)

● Usually access is controlled by a proxy server
– You open connection to the proxy server

– I f proxy likes you, it forwards the request on your
behalf

– typically proxy server will allow only http requests
to acceptable hosts and will deny most others

● proxy servers are more suspicious than Java VMs!

http Connecting Through The Proxy
● Need undocumented magic for http

– After you have a URLConnection object, set some header
data before making actual connection via connect or
getInputStream.

URLConnection conn = url.openConnection();

System.getProperties().put("proxySet", "true");

System.getProperties().put("proxyHost", PROXY_HOST);

System.getProperties().put("proxyPort", PROXY_PORT);

 // If proxy server requires authentication, add next three lines.

 // username and password will be what proxy verifies.

String proxyAuth = "Basic " + new

sun.misc.BASE64Encoder().encode("username:password".getBytes());

conn.setRequestProperty("Proxy-Authorization", proxyAuth);

Password-Protected Web Pages

● Can access password protected pages by
including an additional property in the header

 // name and pwd will be what web page verifies.

String webAuth = "Basic " + new

sun.misc.BASE64Encoder().encode("name:pwd".getBytes());

conn.setRequestProperty("Authorization", webAuth);

ftp Connections

● ftp protocol is supported in Java (you get an
invisible FtpURLConnection)

● Password protected pages accessed via
standard ftp URL (works in browsers too)
ftp://username:password@ftp.imdb.com/

● I f you need to tunnel through proxy servers,
use same idea as http, but with replacements:

System.getProperties().put("ftpProxySet", "true");

System.getProperties().put("ftpProxyHost", PROXY_HOST);

System.getProperties().put("ftpProxyPort", PROXY_PORT);

Secure Connections

● https will work if you are inside a browser
– browser ’s VM has an HttpsURLConnection

implementation

– complications if the applet the browser is running was
loaded from the network

● https is not part of Standard Development Kit (yet).
Can download the extension from Sun at
http://developer.java.sun.com/developer/ear lyAccess/jsse/index.html

● Needs Java 1.2 or later (thus can use setProperty)

● Then, add to your code:
System.setProperty("java.protocol.handler.pkgs",

 "com.sun.net.ssl.internal.www.protocol");

Security.addProvider(new com.sun.net.ssl.internal.ssl.Provider());

Summary

● Networking in Java is basically easy
– ServerSocket and Socket for TCP/IP

connections
– DatagramSocket and DatagramPacket for

UDP connections
– URL and URLConnection for basic protocols

● In most corporate environments, the only
reliable way to communicate is through an http
request that tunnels through a proxy server .

