
8/30/00 1

Java Principles

Mark Allen Weiss

Copyright 2000

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 2

Java Philosophy

● Syntax is similar to C++, but
– Hard-to-use fluff is removed

– Sil ly stuff is illegal
– More effor t added to catch sill y mistakes at compile-

time

– error handling buil t in from day 1
– inheritance supported very neatly

– language wr itten to be por table among platforms

– large, por table APIs to handle drudery

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 3

What's Completely Gone
● Pointers / pointer math / * , -> operator

● preprocessor
● enum
● typedef

● parameter passing diff iculties
● goto
● :: operator
● global functions and var iables
● operator overloading (ouch!)
● templates (ouch!)

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 4

New Stuff Not in C++

● Compiler must do a conservative flow analysis
to ensure var iables are definitely assigned and
return values are returned.

● Exception handling is first rate.
● Automatic garbage collection.

● Inher itance is easy to use, with automatic
dynamic binding.

● Objects are accessed by reference var iables
(aka respectable pointers).

● Classes loaded on demand.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 5

The Environment

● Command line interface
– use notepad to enter program
– j avac pr ogra m.j ava (applied for each source

file)
– j ava pro gram

● JBuilder
– Integrated environment with project file, debugger,

and highlighted editor

● Source files must end in .java

● javac generates .class files (one per class)
● java loads class; goes to main method

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 6

First Program
cl ass Fi r st Pro gr am

{

 publ i c st ati c v oi d m ai n(St r i ng arg s[])

 {

 Syst em.out . pr in t l n(" Get me ou t of h er e! ") ;

 }

}

● Place in Firs t Program . java

● Java is case-sensitive!

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 7

Comments
/ * t hi s i s a comment * /

/ / c omment ext ends t o en d o f l i ne

/ * * th i s is a j avadoc co mment * /

● Comments do not nest

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 8

impor t directive

● No #i nclude statements in java
● impo r t directive is similar to usin g

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 9

main

● In an application program execution begins at
main . (This is not true for applets).

● main must have the following prototype:
publ i c st ati c v oi d m ai n(St r i ng [] ar gs)

● args [] is similar to argv[] , except that
args [0] is equivalent to ar gv[1] , and so on.

● main does not return a value.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 10

I/O

● I /O, especially with files in Java is complex
(because it is assumed the the major ity of
applications will use a GUI for terminal I /O
and binary files otherwise).

● Use Syst em.out.p r intln for simple
terminal output.

● We will discuss I /O at later date.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 11

Built-in Types and Object

● The following are the Java buil t-in types:
– byte, shor t, int, long

– float, double
– char

– boolean

● Everything else is an object.
● A buil t-in type IS NOT AN OBJECT!!!

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 12

Constant Things

● Constant things (both buil t-in types and
objects) can be defined class-wide and are both
static and final.

cl ass Dumb

{

 publ i c st ati c f in al do ubl e PI = 3.1 4159265358979323;

 publ i c st ati c v oi d m ai n(St r i ng arg s[])

 {

 Syst em.out . pr in t l n(" Pi i s " + PI) ;

 }

}

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 13

Declarations of Built-in Types

● Like C++
i nt i ntV al ;

doubl e double Val = 0 . 0;

● Can declare var iables local to a function or
global to a class.

● Can declare var iables anywhere pr ior to use
inside a function.

● Can declare a var iable in the first expression of
a for loop.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 14

Operators

● All are like C++, unless indicated:
● !, ++, --, unary +, unary -, . operator
● +, -, * , /, %

● ==, !=, <, >, <=, >= (all return boolean)

● && , ||
● & , |, ^ , ~

● <<, >>, >>> (slightly better defined)
● ?:

● +=, -=, *=, /=, %=, etc.

● Some operators have better semantics across
platforms, and left-t o-r ight evaluation

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 15

Type Conversions

● Type mixing rules are stronger than C++.
● May need to use type conversion, which follows

old C-style:
i nt x = 4;

i nt y = 6;

doubl e z = (double) x / y;

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 16

Conditional Statements

● Same as C++ unless noted:
– i f , while , do, f or , swit ch

– goto is a reserved word, but you cannot use it.
– br eak and cont i nue (break and continue may be

labelled).
done:

 whi l e(bl ah1) {

 whil e(bl ah2)

 i f(b l ah3)

 br eak d one;

 }

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 17

Functions
● publ i c stati c member is a C++ global

function
● All parameters are passed using call -by-value.
● Recursion is supported.
● Function over loading is supported.
● Default parameters are not allowed.
● Inline functions are not allowed.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 18

Objects and References

● All non-pr imitive entities are objects.
● Objects are

– always created on the heap.

– always accessed by reference var iables

● Reference var iables are logically pointers; also
known as object handles.

● Legal operations on references:
– assignment via =

– compar ison via == and != (compares handles)

– accessing object members via . operator
– instanceof operator

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 19

Using Objects

● new creates a new object; called with
appropr iate parameters specified in set of
constructors

● Reference always references either
– an object of appropr iate type

– null

● Invoking method from a null references
generates a runtime exception

● = copies reference values, not object states.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 20

Strings

● Java str ings are halfway between buil t-in types
and objects (they are closer to objects that
buil t-ins). This is not a wonderful feature of the
language!!

● The type is Strin g. Case matters.

● Examples:
St r i ng e mpt y = " " ;

St r i ng m ess age = "H el l o" ;

St r i ng r epeat = message;

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 21

String Operations

● Str ings are immutable!
● Concatenation uses +
● Concatenation with non-str ings works too; note

that you provide the blank space.
Syst em. out .p r i ntl n("P i i s " + PI) ;

● Substr ings work too, but note that positions
start at zero and you specify the star ting point
and the first non-included position.

St r i ng g r eet in g = " hel lo " ;

St r i ng s = gre et i ng. subs t r i ng(0 , 4) ; / / s i s " hell "

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 22

Strings: The Different
● Use .len gth() to get the str ing length:

i nt n = gr eet i ng. l engt h(); / / i s 5

● Use .cha r At() to get an individual char

● You cannot change an individual character in a
str ing; you must alter the str ing as a single
object.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 23

Strings: The Downright Ugly
● Use .equals() to compare for equali ty.

Note: == determines if two str ings are stored in
the same location, so NEVER use it. Usage is

st ri ng1.e qual s(st r i ng2)

● Use .com pareTo() to mimic the C-style
strc mp. I t returns <0, 0, or >0 depending on
stri ng1 and st ring2 in

st ri ng1.c ompar eTo(s tr i ng2)

● Can use .e qualsIgn oreCase or
compareToIgn oreCase

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 24

StringBuffer

● Helper class useful for optimizing repeated
str ing concatenations that are in different
statements.

/ / E ff i ci ent even i f n =1000000

St r i ng m anyAs(i nt n)

{

 St ri ngBuf f er s b = n ew St r in gBuff er() ;

 f or(i nt i = 0 ; i < n; i ++)

 sb . append(' A') ;

 r etu r n ne w St r i ng(s b) ;

}

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 25

Arrays: The Good

● Arr ays are indexed star ting at 0.
● The number of items in the ar ray is always

accessible via .leng t h. Note, that unlike
str ings, leng t h is not a function, so don't use
parentheses.

● Bounds checking is performed.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 26

Arrays: The Bad

● Arr ays are objects, not buil t-in types. Thus
they have a different declaration syntax, and
the meaning of = is different.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 27

Declaration and Definition
● An object is declared to be an ar ray of int as

follows (note the [] can go in other places; stick
to this style for now)

i nt [] ar ra yOf In t ;

● No memory is allocated yet. To allocate, use
new:

ar r ayOf I nt = new i nt [100];

● Declaration and definition can be combined:
i nt [] ar ra yOf In t = new in t [100] ;

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 28

What = Means for Arrays
i nt [] ar ra y1 = new i nt [100] ;

i nt [] ar ra y2 = new i nt [100] ;

i nt [] ar ra y3;

ar ra y3 = new i nt [1 00] ;

ar ra y3 = arr ay1;

● arra y3 now refers to the same memory as
arra y1. Any change in either changes both!!!
(Old memory is garbage collected)

● Reason: objects are references, references are
pointers. So watch out!!

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 29

Arrays and Functions

● Can be returned (unlike C++).
● When passed as a parameter, contents can be

changed. There is no const equivalent.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 30

Next Time

● Objects and Classes
● Packages
● Inher itance
● Exceptions

