COP 3530
Data Structures

Midsemester Exam Version A

Name:
Email:

October 14, 2003

This exam has 4 questions. Each question starts on a new page. Please answer each question on its page. You
may assume java.util has been imported. There will be no deductions for lack of commenting. There will be no
deductions for lack of import directives. There will be no deductions for minor syntax errors.

1. [50 points] Method containsTriplicates returns true if the array contains three items with the same state,
and false otherwise:

public static boolean containsTriplicates(Object [] arr)

{

for(int i = 0; i < arr.length; i++)

for(int j = i + 1; j < arr.length; j++)
if(arr[i J.equals(C arr[j]))
for(int k = j + 1; k < arr.length; k++)
if(arr[j].equals(arr[k1))
return true;

return false;

}

(a) What is the Big-Oh running time of containsTriplicates?

(b) If it takes 4 milliseconds to return false for 1000 items, approximately how long would it take to return
false for 2000 items?

(¢) Using the Collections API, describe an algorithm (in English, no code) that is more efficient than the one
above, and provide the running time of your algorithm, with a brief justification.

2. [50 points] This question requires that you implement some methods for a class that represents a doubly-linked
list. In this question, both a beginMarker and endMarker are used. You may assume an appropriate
declared nested class Node.

(a) Implement the constructor.
(b) Implement the private helper method addBefore in the space shown below:

private void addBefore(Object x, Node p)
{

}

(¢) Implement both addFirst and addLast in the space shown below. You may assume code written by you
in the previous part works.

public void addFirst(Object x)
{

¥

public void addLast(Object x)
{

3. [0 points] Assume that you have a java.util.Map in which the keys are names of students (stored as a
String), and for each student, the value is a java.util.List of courses (each course name is a String).
Write a routine that computes the inverse map, in which the keys are the names of the courses, and the values
are lists of enrolled students. The signature of your method is:

// In input Map

// keys are String representing student name

// values are List of String representing corresponding course
// In returned Map

// keys are String representing course name

// values are List of String representing corresponding students
public static Map inverseMap(Map m)

{

4. [50 pts] Method getEvenElements returns a java.util.List consisting of only the elements originally in the
even indexes of a java.util.List. For instance, if the original list is [3, 4, 8, 1, 5], then the returned list
is [3, 8, 5].

Implement getEvenElements recursively. You may write an additional private routine if you find that
helpful. Your algorithm must be efficient in terms of Big-Oh, regardless of whether the List is an ArrayList
or LinkedList.

