é generics.fm Page A Thursday, October 14, 2004 11:26 PM 6%%

IMPLEMENTING GENERIC COMPONENTS USING JAVA 1.5 GENERICS (W&SL

i

4.7 IMPLEMENTING GENERIC COMPONENTS
USING JAVA 1.5 GENERICS

We have already seen that Java 1.5 supports generic classes, and these classes are
easy to use. However, writing generic classes requires a little more work. In this
section, we illustrate the basics of how generic classes and methods are written.
We do not attempt to cover all the constructs of the language, which are quite
complex and sometimes tricky. Instead, we show the syntax and idioms that are

used throughout this book.

4.7.1 Simple Generic Classes and I nterfaces

Figure 4.28 shows a generic version of the Memor yCel | class previously
depicted in Figure 4.21. Here, we have changed the name to
Generi cMenoryCel |, since neither classisin a package, and thus the names

cannot be the same.

public class GenericMenoryCel | <AnyType>
{

1
2
3 public AnyType read()

4 { return storedval ue; }

5 public void wite(AnyType Xx)
6 { storedValue = x; }

7
8
9

private AnyType storedVal ue;
}

Figure4.28 Genericimplementation of the Menmor yCel | class.

%

i

é generics.fm Page B Thursday, October 14, 2004 11:26 PM

When ageneric classis
specified, the class dec-
laration includes one or

more type parameters,

enclosed in angle brack-

ets <> after the class

name.

Interfaces can also be

declared as generic.

package java.l ang;

1
2
3 public interface Conparabl e<AnyType>

4 {

5 public int conpareTo(AnyType other);
6}

Figure4.29 Conpar abl e interface, Java 1.5 version which is generic.

When a generic class is specified, the class declaration includes one or more
type parameters, enclosed in angle brackets <> after the class name. Line 1
shows that the Generi cMenoryCel | takes one type parameter. In this
instance, there are no restrictions on the type parameter, so the user can create
types such as Generi cMenoryCel | <String>,
Generi cMenor yCel | <l nt eger >, but not Gener i cMenoryCel | <i nt >,
Insidethe Gener i cMenor yCel | class declaration, we can declare fields of the
generic type, and methods that use the generic type as a parameter or return type.

Interfaces can also be declared as generic. For example, prior to Java 1.5 the
Conpar abl e interface was not generic, and its conpar eTo method took an
bj ect as the parameter. As a result any reference variable passed to the
conpar eTo method would compile, even if the variable was not asensible type,
and only at runtime would the error be reported as a Cl assCast Excepti on.
In Java 1.5, the Conpar abl e class is generic, as shown in Figure 4.29. The
St ri ng class, for instance, now implements Conpar abl e<St ri ng>, and has
aconpar eTo method that takesa St r i ng as a parameter. By making the class
generic, many of the errors that were previously only reported at runtime become

compile-time errors.

%

é generics.fm Page C Thursday, October 14, 2004 11:26 PM é

IMPLEMENTING GENERIC COMPONENTS USING JAVA 1.5 GENERICS [V&[®

i

4.7.2 Wildcards With Bounds

In Figure 4.13 we saw a static method that computes the total areain an array of
Shapes. Suppose we want to rewrite the method, so that it works with a parame-
ter that isLi st <Shape>. Because of the enhanced for loop, the code should be
identical, and the resulting code is shown in Figure 4.30. If we pass a
Li st <Shape>, or ArrayLi st <Shape>, or Li nkedLi st <Shape>, the
code works. However, what happens if we passali st <Squar e>? The answer
depends on whether aLi st <Squar e> ISALi st <Shape>. Recall from Sec-
tion 4.1.10, that the technical term for this is whether we have covariance.

In Java, as we mentioned in Section 4.1.10, arrays are covariant. SO Generic collections are
Squar e[] IS-A Shape][] . One the one hand, consistency would suggest that if ~ "°t covanant.
arrays are covariant, then collections should be covariant too. On the other hand,
aswe saw in Section 4.1.10, the covariance of arrays leads to code that compiles
but then generates a runtime exception (an ArraySt or eExcepti on).
Because the entire reason to have generics is to generate compiler errors rather
than runtime exceptions for type mismatches, generic collections are not covari-
ant. Asaresult, we cannot passali st <Squar e> as a parameter to the method
in Figure 4.30.

What we are left with is that generics (and the generic collections) are not
covariant (which makes sense), but arrays are. Without additional syntax, users
would tend to avoid collections, because the lack of covariance makes the code

less flexible.

%

4~ 4

i

é generics.fm Page D Thursday, October 14, 2004 11:26 PM

Wildcards are used to
express subclasses (or
superclasses) of param-

eter types.

1 public static double total Area(List<Shape> arr)
2 {

3 doubl e total = O;

4

5 for(Shape s : arr)

6 if(s!=null)

7 total += s.area();

8
9
0

return total;

10 }

Figure4.30 t ot al Ar ea method that does not work if passedaLi St <Squar e>

public static double total Area(List<? extends Shape> arr)
{
doubl e total = 0;

1

2

3

4

5 for(Shape s : arr)

6 if(s!=null)

7 total += s.area();
8

9

0

return total;

10 }

Figure4.31 t ot al Ar ea method revised with wildcardsthat works if passed a
Li st <Squar e>

Java 1.5 makes up for this with wildcards. Wildcards are used to express sub-
classes (or superclasses) of parameter types. Figure 4.31 illustrates the use of
wildcards with abound to write at ot al Ar ea method that takes as parameter a
Li st <T>, where T ISA Shape. Thus, Li st <Shape>, Li st <Squar e>, and
ArrayLi st <Squar e> are al acceptable parameters. Wildcards can also be
used without a bound (in which case ext ends Obj ect ispresumed), or with
super instead of ext ends (to express superclass rather than subclass) and

there are also some other syntax uses that we do not discuss here.

%

é generics.fm Page E Thursday, October 14, 2004 11:26 PM 6%%

IMPLEMENTING GENERIC COMPONENTS USING JAVA 1.5 GENERICS VSIS

i

4.7.3 Generic Satic Methods

In some sense, thet ot al Ar ea method in Figure 4.31 is generic, since it works
for different types. But there is no specific type parameter list, aswas done in the
Generi cMenor yCel | classdeclaration. Someti mes the specific typeisimpor-

tant, perhaps because one of the following reasons apply:

1. thetypeisused asthereturntype
2. thetypeisused in more than one parameter type
3. thetypeisused to declare alocal variable

If so, then an explicit generic method, with type parameters must be declared.
For instance, Figure 4.32 illustrates a generic static method that performs a
sequential search for value x in array ar r. By using a generic method instead of
anon-generic method that uses Cbj ect asthe parameter types, we can get com-
pile-time errorsif searching for an Appl e in array of Shapes.
The generic method looks much like the generic class, in that the type param- The generic method

eter list uses the same syntax. The type parameters in a generic method precedes '00ksmuch likethe ge-

neric class, in that the

the return type.

type parameter list uses
the same syntax. The

1 public static <AnyType> type list in ageneric

2 bool ean contains(AnyType [] arr, AnyType x)

3 { method precedes the re-

4 for(AnyType val : arr)

5 if(x.equals(val)) turn type.

6 return true,

7

8 return fal se;

9}

Figure4.32 Generic static method to search an array

%

4~ 4

i

é generics.fm Page F Thursday, October 14, 2004 11:26 PM

The type bound is speci-

fied inside the angle

brackets <>.

4.74 TypeBounds

Suppose we want to write af i ndMax routine. Consider the code in Figure 4.33.
This code cannot work, because the compiler cannot prove that the call to
compar eTo at line 6 will work. conmpar eTo is guaranteed to exist only if
AnyType is Conpar abl e. We can solve this problem by using a type bound.
The type bound is specified inside the angle brackets <>, and specifies properties

that the parameter types must have. A naive attempt is to rewrite the signature as

public static <AnyType extends Conparable> ..
This is naive because as we know, the Conpar abl e interface is now

generic. Although this code would compile, a better attempt would be

public static <AnyType extends Conparabl e<AnyType>> ..

However, this attempt is not satisfactory. To see the problem, suppose
Shape implements Conpar abl e<Shape>. Suppose Squar e extends
Shape. Then al we know is that Square implements
Conpar abl e<Shape>. Thus, aSquar e IS A Conpar abl e<Shape>, but it
IS NOT-A Conpar abl e<Squar e>!

As aresult, what we need to say is that AnyType ISA Conpar abl e<T>
where T is a superclass of AnyType. Since we do not need to know the exact

type T, we can use awildcard. Theresulting signatureis

public static <AnyType extends Conparabl e<? super AnyType>>

%

%

é generics.fm Page G Thursday, October 14, 2004 11:26 PM

IMPLEMENTING GENERIC COMPONENTS USING JAVA 1.5 GENERICS V&€

1 public static <AnyType> AnyType findMax(AnyType [] a)
2 {

3 int maxlndex = 0O;

4

5 for(int i =1; i < a.length; i++)

6 if(a[i].conpareTo(a[maxlndex]) > 0)

7 max| ndex = i;

8

9

return a[mexl ndex];
10 }

Figure 4.33 Generic static method to find largest lement in an array that does not work.

1 public static <AnyType extends Conparabl e<? super AnyType>>
2 AnyType findvax(AnyType [] a)

3

4 int maxlndex = 0O;

5

6 for(int i =1; i < a.length; i++)

7 if(a[i].conpareTo(a[mexlndex]) > 0)
8 max| ndex = i;

9

10 return a[mexl ndex];

n}

Figure 4.34 Generic static method to find largest lement in an array. Thisillustrates a
bounds on the type parameter.
Figure 4.34 shows the implementation of f i ndMax. The compiler will only
accept arrays of types T such that T implements the Conpar abl e<S> interface,
where T IS-A S. Certainly the bounds declaration looks like a mess. Fortunately,

we won't see anything more complicated than this idiom.

%

i

é generics.fm PageH Thursday, October 14, 2004 11:26 PM

125

Generic classes are con-
verted by the compiler
to non-generic classes
by a process known as

type erasure.

Genericsto not make
the code faster. It does
make the code more
type-safe at compile

time.

Primitive types cannot
be used for atype pa-

rameter.

%

475 TypeErasure

Generic types, for the most part, are constructs in the Java language, but not in the
Virtual Machine. Generic classes are converted by the compiler to non-generic
classes by a process known as type erasure. The simplified version of what hap-
pensisthat the compiler generates araw class, with the same name as the generic
class with the type parameters removed. The type variables are replaced with
their bounds, and when calls are made to generic methods that have an erased
return type, casts are inserted automatically. If a generic classis used without a
type parameter, the raw classis used.

One important consequence of type erasure is that the generated code is not
much different than the code that programmers have been writing prior to gener-
ics, and in fact is not any faster. The significant benefit is that the programmer
does not have to place casts in the code, and the compiler will do significant type

checking.

4.7.6 Restrictionson Generics
There are numerous restrictions on generic types. Every one of the restrictions

listed below isrequired because of type erasure.

Primitive Types

Primitive types cannot be used for atype parameter. Thus Li st <i nt > isillegal.

You must use wrapper classes.

%

%

é generics.fm Pagel Thursday, October 14, 2004 11:26 PM 6%%

IMPLEMENTING GENERIC COMPONENTS USING JAVA 1.5 GENERICS 1251

i nst anceX Tests

i nst anceOF tests and type casts only work with the raw type. Thus, i nstanceCf testsand
type casts only work

Li st<Integer> listl = new ArraylLi st<Integer>(); with the raw type.

listl. add(4);

List<String> list2 = (List<String>) list1;

String s = list2.get(0);

compiles, but with awarning. At runtime, the typecast succeeds, since all types
areLi st . Eventually, aruntime error will result at the last line because the call to

get triestoreturnaSt ri ng, but it cannot.

Satic Contexts
In a generic class, static methods and fields cannot refer to the class' type vari- Static methods and
ables, since after erasure, there are no type variables. Further, since there isreally ~ N1eldscamotrefertothe

o o class' type variables.
only one raw class, static fields are shared amongst the class' generic instanta-
Static fields are shared
tions. amongst the class’ ge-

neric instantiations.
I nstantiation of Generic Types

Itisillegal to create an instance of agenerictype. If T isatype variable, the state- Itisillegal to create an

ment instance of a generic
type.

T obj = new T(); /'l Right-hand side is illegal
isillegal. T is replaced by its bounds, which could be Obj ect (or even an

abstract class), so the call to new cannot make sense.

Generic Array Objects
Itisillegal to create aarray of ageneric type. If T isatype variable, the statement Itisillegal to create a

array of ageneric type.

T[] arr = new T[10]; // Right-hand side is illegal

.
- ¢|e

i

é generics.fm PageJ Thursday, October 14, 2004 11:26 PM

1257

Instantiation of arrays
of parameterized types

isillegal.

isillega. T isreplaced by its bounds, which would likely be Gbj ect , and then
the cast (generated by type-erasure) to T[] would fail because Obj ect[] IS
NOT-A T[] . Figure 4.34 shows a generic version of Si npl eArrayli st, pre-
viously seen in Figure 4.23. The only tricky part is the code at line 38. Because
we cannot create arrays of generic objects, we must create an array of Obj ect
and then use a typecast. This typecast will generate a compiler warning about an
unchecked type conversion. It is impossible to implement the generic collection
classes with arrays without getting this warning. If clients want their code to com-
pile without warnings, they should use only generic collection types, and not

generic array types.

Arrays of Parameterized Types

Instantiation of arrays of parameterized typesisillegal. Consider the following

code:

List<String> [] arrl = new List<String> 10];

Cbject [] arr2 = arr1i;

arr2[0] = new List<Double>();

Normally, we would expect that the assignment at line 3, which has the wrong
type, would generate an Arr ay St or eExcepti on. However, after type era-
sure, the array typeis Li st [], and the object added to the array is Li st , so
thereisno Ar r ay St or eExcept i on. Thus, this code has no casts, yet will

eventually generate a Cl assCast Except i on, which is exactly the situation

that generics are supposed to avoid.

%

é generics.fm Page K Thursday, October 14, 2004 11:26 PM 6%%

IMPLEMENTING GENERIC COMPONENTS USING JAVA 1.5 GENERICS V&S]S

1 /**
2 * The CenericSinpleArrayList inplenents a growabl e array.
3 * Insertions are always done at the end.

4 *

5 public class GenericSinpl eArrayli st <AnyType>

6 {

7 /**

8 * Returns the nunber of itenms in this collection.
9 * @eturn the nunber of itenms in this collection.
10 */

u public int size()

12 {

13 return theSize;

14 }

15

16 [**

17 * Returns the itemat position idx.

18 * @aramidx the index to search in.

19 * @hrows Arrayl ndexOut Of BoundsException if index is bad.
20 */

21 public AnyType get(int idx)

22 {

23 if(idx <0] idx >= size())

24 t hrow new Arrayl ndexQut Of BoundsException();
25 return theltens[idx];

26 }

27

28 [**

29 * Adds an itemto this collection, at the end.
30 * @aram x any object.

31 * @eturn true.

32 */

33 public bool ean add(AnyType x)

34 {

35 if(theltems.length == size())

36 {

37 AnyType [] old = theltens;

38 theltens = (AnyType [])new Object[size()*2 + 1];
39 for(int i =0; i < size(); i++)

40 theltems[i] =old[i];

41 }

42

43 theltems[theSize++] = x;

44 return true;

45 }

46

47 private static final int |NIT_CAPACITY = 10;

48

49 private int theSi ze;

50 private AnyType [] theltens;

51 }

Figure435 Si npl eArraylLi st classusing generics

- ¢|e

