
IMPLEMENTING GENERIC COMPONENTS USING JAVA 1.5 GENERICS 125A

4.7 IMPLEMENTING GENERIC COMPONENTS
USING JAVA 1.5 GENERICS

We have already seen that Java 1.5 supports generic classes, and these classes are

easy to use. However, writing generic classes requires a little more work. In this

section, we illustrate the basics of how generic classes and methods are written.

We do not attempt to cover all the constructs of the language, which are quite

complex and sometimes tricky. Instead, we show the syntax and idioms that are

used throughout this book.

4.7.1 Simple Generic Classes and Interfaces

Figure 4.28 shows a generic version of the MemoryCell class previously

depi cted i n Fi gure 4.21. Here, we have changed the name t o

GenericMemoryCell, since neither class is in a package, and thus the names

cannot be the same.

1 public class GenericMemoryCell<AnyType>
2 {
3 public AnyType read()
4 { return storedValue; }
5 public void write(AnyType x)
6 { storedValue = x; }
7
8 private AnyType storedValue;
9 }

Figure 4.28 Generic implementation of the MemoryCell class.

generics.fm Page A Thursday, October 14, 2004 11:26 PM

 125B

1 package java.lang;
2
3 public interface Comparable<AnyType>
4 {
5 public int compareTo(AnyType other);
6 }

Figure 4.29 Comparable interface, Java 1.5 version which is generic.

When a generic class is

specified, the class dec-

laration includes one or

more type parameters,

enclosed in angle brack-

ets <> after the class

name.

When a generic class is specified, the class declaration includes one or more

type parameters, enclosed in angle brackets <> after the class name. Line 1

shows that the GenericMemoryCell takes one type parameter. In this

instance, there are no restrictions on the type parameter, so the user can create

types such as GenericMemoryCell<String>,

GenericMemoryCell<Integer>, but not GenericMemoryCell<int>.

Inside the GenericMemoryCell class declaration, we can declare fields of the

generic type, and methods that use the generic type as a parameter or return type.

Interfaces can also be

declared as generic.

Interfaces can also be declared as generic. For example, prior to Java 1.5 the

Comparable interface was not generic, and its compareTo method took an

Object as the parameter. As a result any reference variable passed to the

compareTo method would compile, even if the variable was not a sensible type,

and only at runtime would the error be reported as a ClassCastException.

In Java 1.5, the Comparable class is generic, as shown in Figure 4.29. The

String class, for instance, now implements Comparable<String>, and has

a compareTo method that takes a String as a parameter. By making the class

generic, many of the errors that were previously only reported at runtime become

compile-time errors.

generics.fm Page B Thursday, October 14, 2004 11:26 PM

IMPLEMENTING GENERIC COMPONENTS USING JAVA 1.5 GENERICS 125C

4.7.2 Wildcards With Bounds

In Figure 4.13 we saw a static method that computes the total area in an array of

Shapes. Suppose we want to rewrite the method, so that it works with a parame-

ter that is List<Shape>. Because of the enhanced for loop, the code should be

identi cal , and the resul ti ng code i s shown in Figure 4.30. I f we pass a

List<Shape>, or ArrayList<Shape>, or LinkedList<Shape>, the

code works. However, what happens if we pass a List<Square>? The answer

depends on whether a List<Square> IS-A List<Shape>. Recall from Sec-

tion 4.1.10, that the technical term for this is whether we have covariance.

Generic collections are

not covariant.

In Java, as we mentioned in Section 4.1.10, arrays are covariant. So

Square[] IS-A Shape[]. One the one hand, consistency would suggest that if

arrays are covariant, then collections should be covariant too. On the other hand,

as we saw in Section 4.1.10, the covariance of arrays leads to code that compiles

but then generates a runtime exception (an ArrayStoreException).

Because the entire reason to have generics is to generate compiler errors rather

than runtime exceptions for type mismatches, generic collections are not covari-

ant. As a result, we cannot pass a List<Square> as a parameter to the method

in Figure 4.30.

What we are left with is that generics (and the generic collections) are not

covariant (which makes sense), but arrays are. Without additional syntax, users

would tend to avoid collections, because the lack of covariance makes the code

less flexible.

generics.fm Page C Thursday, October 14, 2004 11:26 PM

 125D

1 public static double totalArea(List<Shape> arr)
2 {
3 double total = 0;
4
5 for(Shape s : arr)
6 if(s != null)
7 total += s.area();
8
9 return total;

10 }

Figure 4.30 totalArea method that does not work if passed a List<Square>

1 public static double totalArea(List<? extends Shape> arr)
2 {
3 double total = 0;
4
5 for(Shape s : arr)
6 if(s != null)
7 total += s.area();
8
9 return total;

10 }

Figure 4.31 totalArea method revised with wildcards that works if passed a

List<Square>

Wildcards are used to

express subclasses (or

superclasses) of param-

eter types.

Java 1.5 makes up for this with wildcards. Wildcards are used to express sub-

classes (or superclasses) of parameter types. Figure 4.31 i llustrates the use of

wildcards with a bound to write a totalArea method that takes as parameter a

List<T>, where T IS-A Shape. Thus, List<Shape>, List<Square>, and

ArrayList<Square> are all acceptable parameters. Wildcards can also be

used without a bound (in which case extends Object is presumed), or with

super instead of extends (to express superclass rather than subclass) and

there are also some other syntax uses that we do not discuss here.

generics.fm Page D Thursday, October 14, 2004 11:26 PM

IMPLEMENTING GENERIC COMPONENTS USING JAVA 1.5 GENERICS 125E

4.7.3 Generic Static Methods

In some sense, the totalArea method in Figure 4.31 is generic, since it works

for different types. But there is no specific type parameter list, as was done in the

GenericMemoryCell class declaration. Sometimes the specific type is impor-

tant, perhaps because one of the following reasons apply:

1. the type is used as the return type

2. the type is used in more than one parameter type

3. the type is used to declare a local variable

If so, then an explicit generic method, with type parameters must be declared.

For instance, Figure 4.32 illustrates a generic static method that performs a

sequential search for value x in array arr. By using a generic method instead of

a non-generic method that uses Object as the parameter types, we can get com-

pile-time errors if searching for an Apple in array of Shapes.

The generic method

looks much like the ge-

neric class, in that the

type parameter list uses

the same syntax. The

type list in a generic

method precedes the re-

turn type.

The generic method looks much like the generic class, in that the type param-

eter list uses the same syntax. The type parameters in a generic method precedes

the return type.

1 public static <AnyType>
2 boolean contains(AnyType [] arr, AnyType x)
3 {
4 for(AnyType val : arr)
5 if(x.equals(val))
6 return true;
7
8 return false;
9 }

Figure 4.32 Generic static method to search an array

generics.fm Page E Thursday, October 14, 2004 11:26 PM

 125F

4.7.4 Type Bounds

The type bound is speci-

fied inside the angle

brackets <>.

Suppose we want to write a findMax routine. Consider the code in Figure 4.33.

This code cannot work, because the compi ler cannot prove that the call to

compareTo at l ine 6 wil l work. compareTo is guaranteed to exist only if

AnyType is Comparable. We can solve this problem by using a type bound.

The type bound is specified inside the angle brackets <>, and specifies properties

that the parameter types must have. A naive attempt is to rewrite the signature as

public static <AnyType extends Comparable> ...

This is naive because as we know, the Comparable interface is now

generic. Although this code would compile, a better attempt would be

public static <AnyType extends Comparable<AnyType>> ...

However, this attempt is not satisfactory. To see the problem, suppose

Shape implements Comparable<Shape>. Suppose Square extends

Shape. Then all we know is that Square implements

Comparable<Shape>. Thus, a Square IS-A Comparable<Shape>, but it

IS-NOT-A Comparable<Square>!

As a result, what we need to say is that AnyType IS-A Comparable<T>

where T is a superclass of AnyType. Since we do not need to know the exact

type T, we can use a wildcard. The resulting signature is

public static <AnyType extends Comparable<? super AnyType>>

generics.fm Page F Thursday, October 14, 2004 11:26 PM

IMPLEMENTING GENERIC COMPONENTS USING JAVA 1.5 GENERICS 125G

1 public static <AnyType> AnyType findMax(AnyType [] a)
2 {
3 int maxIndex = 0;
4
5 for(int i = 1; i < a.length; i++)
6 if(a[i].compareTo(a[maxIndex]) > 0)
7 maxIndex = i;
8
9 return a[maxIndex];

10 }

Figure 4.33 Generic static method to find largest element in an array that does not work.

1 public static <AnyType extends Comparable<? super AnyType>>
2 AnyType findMax(AnyType [] a)
3 {
4 int maxIndex = 0;
5
6 for(int i = 1; i < a.length; i++)
7 if(a[i].compareTo(a[maxIndex]) > 0)
8 maxIndex = i;
9

10 return a[maxIndex];
11 }

Figure 4.34 Generic static method to find largest element in an array. This il lustrates a

bounds on the type parameter.

Figure 4.34 shows the implementation of findMax. The compiler will only

accept arrays of types T such that T implements the Comparable<S> interface,

where T IS-A S. Certainly the bounds declaration looks like a mess. Fortunately,

we won’ t see anything more complicated than this idiom.

generics.fm Page G Thursday, October 14, 2004 11:26 PM

 125

4.7.5 Type Erasure

Generic classes are con-

verted by the compiler

to non-generic classes

by a process known as

type erasure.

Generic types, for the most part, are constructs in the Java language, but not in the

Virtual Machine. Generic classes are converted by the compiler to non-generic

classes by a process known as type erasure. The simplified version of what hap-

pens is that the compiler generates a raw class, with the same name as the generic

class with the type parameters removed. The type variables are replaced with

their bounds, and when calls are made to generic methods that have an erased

return type, casts are inserted automatically. If a generic class is used without a

type parameter, the raw class is used.

Generics to not make

the code faster. It does

make the code more

type-safe at compile

time.

One important consequence of type erasure is that the generated code is not

much different than the code that programmers have been writing prior to gener-

ics, and in fact is not any faster. The significant benefit is that the programmer

does not have to place casts in the code, and the compiler will do significant type

checking.

4.7.6 Restrictions on Generics

There are numerous restrictions on generic types. Every one of the restrictions

listed below is required because of type erasure.

Primitive Types

Primitive types cannot

be used for a type pa-

rameter.

Primitive types cannot be used for a type parameter. Thus List<int> is illegal.

You must use wrapper classes.

generics.fm Page H Thursday, October 14, 2004 11:26 PM

IMPLEMENTING GENERIC COMPONENTS USING JAVA 1.5 GENERICS 125I

instanceOf Tests

instanceOf tests and

type casts only work

with the raw type.

instanceOf tests and type casts only work with the raw type. Thus,

List<Integer> list1 = new ArrayList<Integer>();
list1.add(4);
List<String> list2 = (List<String>) list1;
String s = list2.get(0);

compiles, but with a warning. At runtime, the typecast succeeds, since all types

are List. Eventually, a runtime error will result at the last line because the call to

get tries to return a String, but it cannot.

Static Contexts

Static methods and

fields cannot refer to the

class’ type variables.

Static f ields are shared

amongst the class’ ge-

neric instantiations.

In a generic class, static methods and fields cannot refer to the class’ type vari-

ables, since after erasure, there are no type variables. Further, since there is really

only one raw class, static fields are shared amongst the class’ generic instanta-

tions.

Instantiation of Generic Types

It is il legal to create an

instance of a generic

type.

It is i llegal to create an instance of a generic type. If T is a type variable, the state-

ment

T obj = new T(); // Right-hand side is illegal

is i l legal. T is replaced by its bounds, which could be Object (or even an

abstract class), so the call to new cannot make sense.

Generic Array Objects

It is il legal to create a

array of a generic type.

It is illegal to create a array of a generic type. If T is a type variable, the statement

T [] arr = new T[10]; // Right-hand side is illegal

generics.fm Page I Thursday, October 14, 2004 11:26 PM

 125J

is illegal. T is replaced by its bounds, which would l ikely be Object, and then

the cast (generated by type-erasure) to T[] would fail because Object[] IS-

NOT-A T[]. Figure 4.34 shows a generic version of SimpleArrayList, pre-

viously seen in Figure 4.23. The only tricky part is the code at line 38. Because

we cannot create arrays of generic objects, we must create an array of Object,

and then use a typecast. This typecast wil l generate a compiler warning about an

unchecked type conversion. It is impossible to implement the generic collection

classes with arrays without getting this warning. If clients want their code to com-

pile without warnings, they should use only generic collection types, and not

generic array types.

Arrays of Parameterized Types

Instantiation of arrays

of parameterized types

is i llegal.

Instantiation of arrays of parameterized types is il legal. Consider the following

code:

List<String> [] arr1 = new List<String>[10];
Object [] arr2 = arr1;
arr2[0] = new List<Double>();

Normally, we would expect that the assignment at l ine 3, which has the wrong

type, would generate an ArrayStoreException. However, after type era-

sure, the array type is List[], and the object added to the array is List, so

there is no ArrayStoreException. Thus, this code has no casts, yet wil l

eventually generate a ClassCastException, which is exactly the situation

that generics are supposed to avoid.

generics.fm Page J Thursday, October 14, 2004 11:26 PM

IMPLEMENTING GENERIC COMPONENTS USING JAVA 1.5 GENERICS 125K

1 /**
2 * The GenericSimpleArrayList implements a growable array.
3 * Insertions are always done at the end.
4 */
5 public class GenericSimpleArrayList<AnyType>
6 {
7 /**
8 * Returns the number of items in this collection.
9 * @return the number of items in this collection.

10 */
11 public int size()
12 {
13 return theSize;
14 }
15
16 /**
17 * Returns the item at position idx.
18 * @param idx the index to search in.
19 * @throws ArrayIndexOutOfBoundsException if index is bad.
20 */
21 public AnyType get(int idx)
22 {
23 if(idx < 0 || idx >= size())
24 throw new ArrayIndexOutOfBoundsException();
25 return theItems[idx];
26 }
27
28 /**
29 * Adds an item to this collection, at the end.
30 * @param x any object.
31 * @return true.
32 */
33 public boolean add(AnyType x)
34 {
35 if(theItems.length == size())
36 {
37 AnyType [] old = theItems;
38 theItems = (AnyType [])new Object[size()*2 + 1];
39 for(int i = 0; i < size(); i++)
40 theItems[i] = old[i];
41 }
42
43 theItems[theSize++] = x;
44 return true;
45 }
46
47 private static final int INIT_CAPACITY = 10;
48
49 private int theSize;
50 private AnyType [] theItems;
51 }

Figure 4.35 SimpleArrayList class using generics

generics.fm Page K Thursday, October 14, 2004 11:26 PM

