
108 chapter 4 inheritance

4.1.10 compatibility of array types

One of the difficulties in language design is how to handle inheritance for

aggregate types. In our example, we know that Employee IS-A Person. But is it

true that Employee[] IS-A Person[]? In other words, if a routine is written to

accept Person[] as a parameter, can we pass an Employee[] as an argument?

Arrays of sub-
classes are type-
compatible with
arrays of super-
classes. This is
known as
covariant arrays.

At first glance, this seems like a no-brainer, and Employee[] should be

type-compatible with Person[]. However, this issue is trickier than it seems.

Suppose that in addition to Employee, Student IS-A Person. Suppose the

Employee[] is type-compatible with Person[]. Then consider this sequence of

assignments:

Person[] arr = new Employee[5]; // compiles: arrays are compatible
arr[0] = new Student(...); // compiles: Student IS-A Person

If an incompatible
type is inserted into
the array, the Virtual
Machine will throw
an ArrayStore-
Exception.

Both assignments compile, yet arr[0] is actually a referencing an Employee,

and Student IS-NOT-A Employee. Thus we have type confusion. The runtime

system cannot throw a ClassCastException since there is no cast.

The easiest way to avoid this problem is to specify that the arrays are not

type-compatible. However, in Java the arrays are type-compatible. This is

known as a covariant array type. Each array keeps track of the type of object

it is allowed to store. If an incompatible type is inserted into the array, the Vir-

tual Machine will throw an ArrayStoreException.

In Java 5, the sub-
class method’s
return type only
needs to be type-
compatible with
(i.e., it may be a
subclass of) the
superclass
method’s return
type. This is known
as a covariant
return type.

4.1.11 covariant return types

Prior to Java 5, when a method was overridden, the subclass method was

required to have the same return type as the superclass method. Java 5

relaxes this rule. In Java 5, the subclass method’s return type only needs to

be type-compatible with (i.e., it may be a subclass of) the superclass

method’s return type. This is known as a covariant return type. As an exam-

ple, suppose class Person has a makeCopy method

public Person makeCopy();

that returns a copy of the Person. Prior to Java 5, if class Employee overrode this

method, the return type would have to be Person. In Java 5, the method may be

overridden as

public Employee makeCopy();

Weiss_3e_04 Page 108 Saturday, January 15, 2005 2:09 PM

