
4.7 implementing generic components using java 1.5 generics 131

4.7 implementing generic components

using java 1.5 generics

We have already seen that Java 1.5 supports generic classes and that these

classes are easy to use. However, writing generic classes requires a little more

work. In this section, we illustrate the basics of how generic classes and meth-

ods are written. We do not attempt to cover all the constructs of the language,

which are quite complex and sometimes tricky. Instead, we show the syntax

and idioms that are used throughout this book.

4.7.1 simple generic classes and interfaces

Figure 4.28 shows a generic version of the MemoryCell class previously

depicted in Figure 4.21. Here, we have changed the name to GenericMemoryCell

because neither class is in a package and thus the names cannot be the same.

When a generic
class is specified,
the class declara-
tion includes one or
more type parame-
ters, enclosed in
angle brackets <>
after the class
name.

When a generic class is specified, the class declaration includes one or

more type parameters enclosed in angle brackets <> after the class name. Line

1 shows that the GenericMemoryCell takes one type parameter. In this instance,

there are no explicit restrictions on the type parameter, so the user can create

types such as GenericMemoryCell<String> and GenericMemoryCell<Integer> but

not GenericMemoryCell<int>. Inside the GenericMemoryCell class declaration, we

can declare fields of the generic type and methods that use the generic type as

a parameter or return type.

Interfaces can also
be declared as
generic.

Interfaces can also be declared as generic. For example, prior to Java 1.5

the Comparable interface was not generic, and its compareTo method took an

Object as the parameter. As a result, any reference variable passed to the

compareTo method would compile, even if the variable was not a sensible type,

and only at runtime would the error be reported as a ClassCastException. In

figure 4.28

Generic
implementation of the
MemoryCell class

1 public class GenericMemoryCell<AnyType>
2 {
3 public AnyType read()
4 { return storedValue; }
5 public void write(AnyType x)
6 { storedValue = x; }
7

8 private AnyType storedValue;
9 }

Weiss_3e_04 Page 131 Wednesday, January 12, 2005 3:05 PM

132 chapter 4 inheritance

Java 1.5, the Comparable class is generic, as shown in Figure 4.29. The String

class, for instance, now implements Comparable<String> and has a compareTo

method that takes a String as a parameter. By making the class generic, many

of the errors that were previously only reported at runtime become compile-

time errors.

4.7.2 wildcards with bounds

In Figure 4.13 we saw a static method that computes the total area in an array

of Shapes. Suppose we want to rewrite the method so that it works with a

parameter that is List<Shape>. Because of the enhanced for loop, the code

should be identical, and the resulting code is shown in Figure 4.30. If we pass

a List<Shape> or ArrayList<Shape> or LinkedList<Shape>, the code works. How-

ever, what happens if we pass a List<Square>? The answer depends on

whether a List<Square> IS-A List<Shape>. Recall from Section 4.1.10 that the

technical term for this is whether we have covariance.

Generic collections
are not covariant.

In Java, as we mentioned in Section 4.1.10, arrays are covariant. So

Square[] IS-A Shape[]. On the one hand, consistency would suggest that if

arrays are covariant, then collections should be covariant too. On the other

hand, as we saw in Section 4.1.10, the covariance of arrays leads to code that

compiles but then generates a runtime exception (an ArrayStoreException).

Because the entire reason to have generics is to generate compiler errors

rather than runtime exceptions for type mismatches, generic collections are

not covariant. As a result, we cannot pass a List<Square> as a parameter to the

method in Figure 4.30.

What we are left with is that generics (and the generic collections) are not

covariant (which makes sense) but arrays are. Without additional syntax, users

would tend to avoid collections because the lack of covariance makes the code

less flexible.

Wildcards are used
to express sub-
classes (or
superclasses) of
parameter types.

Java 1.5 makes up for this with wildcards. Wildcards are used to express

subclasses (or superclasses) of parameter types. Figure 4.31 illustrates the

use of wildcards with a bound to write a totalArea method that takes as

parameter a List<T>, where T IS-A Shape. Thus, List<Shape>, List<Square>, and

ArrayList<Square> are all acceptable parameters. Wildcards can also be used

figure 4.29

Comparable interface,
Java 1.5 version
which is generic

1 package java.lang;
2

3 public interface Comparable<AnyType>
4 {
5 public int compareTo(AnyType other);
6 }

Weiss_3e_04 Page 132 Wednesday, January 12, 2005 3:05 PM

4.7 implementing generic components using java 1.5 generics 133

without a bound (in which case extends Object is presumed) or with super

instead of extends (to express superclass rather than subclass); there are also

some other syntax uses that we do not discuss here.

4.7.3 generic static methods

In some sense, the totalArea method in Figure 4.31 is generic, since it works

for different types. But there is no specific type parameter list, as was done in

the GenericMemoryCell class declaration. Sometimes the specific type is impor-

tant perhaps because one of the following reasons apply:

The generic
method looks much
like the generic
class in that the
type parameter list
uses the same syn-
tax. The type list in
a generic method
precedes the return
type.

1. The type is used as the return type

2. The type is used in more than one parameter type

3. The type is used to declare a local variable

If so, then an explicit generic method with type parameters must be declared.

For instance, Figure 4.32 illustrates a generic static method that performs

a sequential search for value x in array arr. By using a generic method instead

of a nongeneric method that uses Object as the parameter types, we can get

compile-time errors if searching for an Apple in an array of Shapes.

figure 4.30

totalArea method that
does not work if
passed a
List<Square>

1 public static double totalArea(List<Shape> arr)
2 {
3 double total = 0;
4
5 for(Shape s : arr)
6 if(s != null)
7 total += s.area();
8
9 return total;

10 }

figure 4.31

totalArea method
revised with wildcards
that works if passed a
List<Square>

1 public static double totalArea(List<? extends Shape> arr)
2 {
3 double total = 0;
4
5 for(Shape s : arr)
6 if(s != null)
7 total += s.area();
8
9 return total;

10 }

Weiss_3e_04 Page 133 Wednesday, January 12, 2005 3:05 PM

134 chapter 4 inheritance

The generic method looks much like the generic class in that the type

parameter list uses the same syntax. The type parameters in a generic method

precede the return type.

4.7.4 type bounds

The type bound is
specified inside the
angle brackets <>.

Suppose we want to write a findMax routine. Consider the code in Figure 4.33.

This code cannot work because the compiler cannot prove that the call to

compareTo at line 6 is valid; compareTo is guaranteed to exist only if AnyType is

Comparable. We can solve this problem by using a type bound. The type bound

is specified inside the angle brackets <>, and it specifies properties that the

parameter types must have. A naive attempt is to rewrite the signature as

public static <AnyType extends Comparable> ...

This is naive because as we know, the Comparable interface is now generic.

Although this code would compile, a better attempt would be

public static <AnyType extends Comparable<AnyType>> ...

figure 4.32

Generic static method
to search an array

1 public static <AnyType>
2 boolean contains(AnyType [] arr, AnyType x)
3 {
4 for(AnyType val : arr)
5 if(x.equals(val))
6 return true;
7
8 return false;
9 }

figure 4.33

Generic static method
to find largest element
in an array that does
not work

1 public static <AnyType> AnyType findMax(AnyType [] a)
2 {
3 int maxIndex = 0;
4
5 for(int i = 1; i < a.length; i++)
6 if(a[i].compareTo(a[maxIndex]) > 0)
7 maxIndex = i;
8
9 return a[maxIndex];

10 }

Weiss_3e_04 Page 134 Wednesday, January 12, 2005 3:05 PM

4.7 implementing generic components using java 1.5 generics 135

However, this attempt is not satisfactory. To see the problem, suppose

Shape implements Comparable<Shape>. Suppose Square extends Shape. Then all

we know is that Square implements Comparable<Shape>. Thus, a Square IS-A

Comparable<Shape>, but it IS-NOT-A Comparable<Square>!

As a result, what we need to say is that AnyType IS-A Comparable<T> where

T is a superclass of AnyType. Since we do not need to know the exact type T, we

can use a wildcard. The resulting signature is

public static <AnyType extends Comparable<? super AnyType>>

Figure 4.34 shows the implementation of findMax. The compiler will

accept arrays of types T only such that T implements the Comparable<S> inter-

face, where T IS-A S. Certainly the bounds declaration looks like a mess. For-

tunately, we won’t see anything more complicated than this idiom.

4.7.5 type erasure

Generic classes are
converted by the
compiler to non-
generic classes by
a process known as
type erasure.

Generic types, for the most part, are constructs in the Java language but not in

the Virtual Machine. Generic classes are converted by the compiler to non-

generic classes by a process known as type erasure. The simplified version of

what happens is that the compiler generates a raw class with the same name

as the generic class with the type parameters removed. The type variables are

replaced with their bounds, and when calls are made to generic methods that

have an erased return type, casts are inserted automatically. If a generic class

is used without a type parameter, the raw class is used.

Generics do not
make the code
faster. They do
make the code
more type-safe at
compile time.

One important consequence of type erasure is that the generated code is

not much different than the code that programmers have been writing before

generics and in fact is not any faster. The significant benefit is that the pro-

grammer does not have to place casts in the code, and the compiler will do

significant type checking.

figure 4.34

Generic static method
to find largest element
in an array. Illustrates
a bounds on the type
parameter

1 public static <AnyType extends Comparable<? super AnyType>>
2 AnyType findMax(AnyType [] a)
3 {
4 int maxIndex = 0;
5
6 for(int i = 1; i < a.length; i++)
7 if(a[i].compareTo(a[maxIndex]) > 0)
8 maxIndex = i;
9

10 return a[maxIndex];
11 }

Weiss_3e_04 Page 135 Wednesday, January 12, 2005 3:05 PM

136 chapter 4 inheritance

4.7.6 restrictions on generics

There are numerous restrictions on generic types. Every one of the restrictions

listed here is required because of type erasure.

primitive types

Primitive types can-
not be used for a
type parameter.

Primitive types cannot be used for a type parameter. Thus List<int> is illegal.

You must use wrapper classes.

instanceOf tests

instanceOf tests
and type casts
work only with the
raw type.

instanceOf tests and type casts work only with the raw type. Thus, if

List<Integer> list1 = new ArrayList<Integer>();
list1.add(4);
Object list = list1;
List<String> list2 = (List<String>) list;
String s = list2.get(0);

was legal, then at runtime the typecast would succeed since all types are List.

Eventually, a runtime error would result at the last line because the call to get

would try to return a String but could not.

static contexts

Static methods and
fields cannot refer
to the class’s type
variables. Static
fields are shared
among the
class’s generic
instantiations.

In a generic class, static methods and fields cannot refer to the class’s type

variables since after erasure, there are no type variables. Further, since there is

really only one raw class, static fields are shared among the class’s generic

instantiations.

instantiation of generic types

It is illegal to create an instance of a generic type. If T is a type variable, the

statement

T obj = new T(); // Right-hand side is illegal

It is illegal to cre-
ate an instance of a
generic type.

is illegal. T is replaced by its bounds, which could be Object (or even an

abstract class), so the call to new cannot make sense.

generic array objects

It is illegal to cre-
ate an array of a
generic type.

It is illegal to create an array of a generic type. If T is a type variable, the state-

ment

T [] arr = new T[10]; // Right-hand side is illegal

Weiss_3e_04 Page 136 Wednesday, January 12, 2005 3:05 PM

4.8 the functor (function objects) 137

is illegal. T would be replaced by its bounds, which would probably be Object,

and then the cast (generated by type erasure) to T[] would fail because

Object[] IS-NOT-A T[]. Figure 4.35 shows a generic version of SimpleArrayL-

ist previously seen in Figure 4.23. The only tricky part is the code at line 38.

Because we cannot create arrays of generic objects, we must create an array

of Object and then use a typecast. This typecast will generate a compiler warn-

ing about an unchecked type conversion. It is impossible to implement the

generic collection classes with arrays without getting this warning. If clients

want their code to compile without warnings, they should use only generic

collection types, not generic array types.

arrays of parameterized types

Instantiation of
arrays of parame-
terized types is
illegal.

Instantiation of arrays of parameterized types is illegal. Consider the follow-

ing code:

List<String> [] arr1 = new List<String>[10];
Object [] arr2 = arr1;
arr2[0] = new List<Double>();

Normally, we would expect that the assignment at line 3, which has the wrong

type, would generate an ArrayStoreException. However, after type erasure, the

array type is List[], and the object added to the array is List, so there is no

ArrayStoreException. Thus, this code has no casts, yet it will eventually gener-

ate a ClassCastException, which is exactly the situation that generics are sup-

posed to avoid.

4.8 the functor (function objects)

In Sections 4.6 and 4.7, we saw how interfaces can be used to write generic

algorithms. As an example, the method in Figure 4.34 can be used to find the

maximum item in an array.

However, the findMax method has an important limitation. That is, it

works only for objects that implement the Comparable interface and are able

to provide compareTo as the basis for all comparison decisions. There are

many situations in which this is not feasible. As an example, consider the

SimpleRectangle class in Figure 4.36.

The SimpleRectangle class does not have a compareTo function, and conse-

quently cannot implement the Comparable interface. The main reason for this is

that because there are many plausible alternatives, it is difficult to decide on a

good meaning for compareTo. We could base the comparison on area, perime-

ter, length, width, and so on. Once we write compareTo, we are stuck with it.

Weiss_3e_04 Page 137 Wednesday, January 12, 2005 3:05 PM

