
1

1

Introduction to Reflection

Mark Allen Weiss

Copyright 2000

2

Outline of Topics

● What is Reflection
● The Class class

● Run Time Type Identification (RTTI)
● Getting Class Information

● Accessing an arbitrary object’s fields
● Advanced features

3

Reflection

● Introduced in Java 1.1
● Allows you to find out information about any

object, including its methods and fields, even if
the type of the object is not known at compile
time

● Added to the language to suppor t Beans,
Ser ialization, RMI, and other goodies.

● Reflection is an enabling technology.

2

4

The Cl ass Object

● Class objects represent a loaded class

● Can find out information about the class
– its methods
– its fields
– its superclass
– the inter faces it implements
– whether it is an array

5

Obtaining a Cl ass Object

● I f you know a class name, can get it:
Class c1 = String.class;

Class c2 = Employee[].class;

● Can get it from any object, using getClass:
void printType(Object obj)

{

Class c3 = obj.getClass();

System.out.println(c.toString());

}

● Can get it by loading the class using the
forName static method:
Class c = Class.forName("java.util.Date");

6

public class Class

{

public String getName();

public boolean isInterface();

public boolean isArray();

public Class getSuperclass();

public Class[] getInterfaces();

public Class[] getClasses(); // inner classes

public Object newInstance();

public static Class forName(String name);

public Method[] getDeclaredMethods();

public Method[] getMethods();

}

What’s In Cl ass?

3

7

Reflection Classes
● Found in java.lang.reflect
● Method: Allows you to get info about an

arbitrary method, and even invoke one
● Field: Allows you to get the name and access

an arbitrary field
● Constructor: Allows you to get info about

an arbitrary constructor, and even invoke one
● Array: Contains static methods to create and

access arbitrary arrays

8

Example: Array Expansion

● Want to wr ite automatic ar ray doubling code.
● Here is typical idea, but it does not work
public Object[] doubleArray(Object[] arr)

{

int newSize = arr.length * 2 + 1;

Object[] newArray = new Object[newSize];

for(int i = 0; i < arr.length; i++)

newArray[i] = arr[i];

return newArray;

}

● But: even if arr is Foo[], actual returned
object Object[] can’t be downcast to Foo[].

9

Solution
public Object doubleArray(Object arr)

{

Class cl = arr.getClass();

if(!cl.isArray()) return null;

int oldSize = Array.getLength(arr);

int newSize = oldSize * 2 + 1;

Object newArray = Array.newInstance(

c1.getComponentType(), newLength);

System.arraycopy(a, 0, newArray, oldSize);

return newArray;

}

● Notes: array can be int[]; arraycopy is
faster than a loop (fewer bounds checks)

4

10

The Ar r ay Class
public class Array

{

// All of these are static

public int getLength(Object arr);

public Object newInstance(Class comp, int length);

public Object get(Object arr, int index);

public void set(Object arr, int index, Object val);

// Various specialized versions:

public int getInt(Object arr, int index);

public void setInt(Object arr, int index, int val);

}

11

Accessing a Class’ Members
● From Class object, you can get Method

objects that reflect all methods, Field objects
that reflect all fields, and Constructor
objects that reflect all constructors.

● Two versions (use Field as example)
– getField gets a public field given name
– getDeclaredField gets a field declared in this

class (but not superclass); could be pr ivate
– getFields gets an ar ray of public fields
– getDeclaredFields gets an array of fields

declared in this class (but not superclass); could be
pr ivate

12

Example: List Visible Class Functions
public void printClassMethods(String name)

{

try {

Class cl = Class.forName(name);

Constructor c = cl.getConstructors();

for(int i = 0; i < c.length; i++)

System.out.println(c.toString());

Method m [] = cl.getMethods();

for(int i = 0; i < m.length; i++)

System.out.println(m.toString());

} catch(ClassNotFoundException e) {

System.out.println(name + " not found");

}

5

13

Using a Met hod Object

● From Method object
– Can find out everything about method signature
– Invoke a method with normal dynamic binding.
– You can obtain a Method from a signature, or get a

list of all methods.

● To specify the signature, give an array of
Class objects that represent the types of the
parameters.
– Array will be zero-length if no parameters
– Special Class objects for pr imitives

14

What’s In Met hod Class

● Var ious accessors to get info. Also invoke.
public class Method

{

public Class getReturnType();

public Class[] getParameterTypes();

public String getName();

public int getModifiers();

public Class[] getExceptionTypes();

public Object invoke(Object o, Object[] args);

}

● The modifiers are stored as a bit pattern; class
Modifier has methods to interpret the bits.

15

Some Details

● Parameters and return types are Objects. I f the
actual types are pr imitives, they will be
wrapped using one of the eight wrapper classes.

● The first parameter to invoke is the controlling
object (good idea to use null for static
methods, but not required). The second
parameter is the parameter list.

● When you use invoke beware:
– I t is much much slower than static invocation
– You have to handle all the exceptions
– You lose lots of compile-time checks

6

16

Exceptions

● I f invoked method throws an exception,
invoke will throw an
InvocationTargetException

● Can get or iginal via getException

● Lots of other exceptions to worry about before
you call invoke:
– Did class load? ClassNotFoundException
– Was method found? NoSuchMethodException

– Can you access method? IllegalAccessException

17

Representing the Primitive Types
● Special Class objects for the pr imitives:

– Integer.TYPE is the Class object for int

– There is a type for each of the eight pr imitives
– Void.TYPE is the Class object for void

● Not the same as
– Integer.class which is the Class object for
Integer wrapper

● Also Class types for ar rays
– for example, class type for int[][] is
Integer.TYPE[][].class

18

Steps To Invoke A Method
● Get a Class object for the class that contains

the method
● Get a Method object, m. Will need name of

method, and an array of Class objects.
● Form an array of Object that contains the

parameters to pass (second argument to
m.invoke). Pass the controlling object or null
(if static method) as the first parameter .

● Catch InvocationTargetException

7

19

Example: Run any main
// Assumes import statements present

// Run the main for any class className

// This is the main logic; exception handling is on next slide

public static void invokeMain(String className, Object[] params)

{

try {

Class cl = Class.forName(className);

Class[] mainsParamTypes = new Class[] { String[].class };

Method mainMethod = cl.getMethod("main", mainsParamTypes);

if(!Modifier.isStatic(mainMethod.getModifiers()))

System.out.println("Oops... main is not static!");

else if(mainMethod.getReturnType() != Void.TYPE)

System.out.println("Oops... main doesn’t return void!");

else

mainMethod.invoke(null, params);

}

20

Example: Run any main (exceptions)
catch(ClassNotFoundException e) {

System.out.println("Cannot find " + className);

}

catch(NoSuchMethodException e) {

System.out.println("Cannot find main in " + className);

}

catch(IllegalAccessException e) {

System.out.println("Cannot invoke main in " +

className);

}

catch(InvocationTargetException e) {

System.out.println("main threw an exception");

e.getTargetException().printStackTrace();

}

}

21

The Fi el d Class

● Can get list of all fields from a Class object.
● Once you have a Field class representation of

an object, you can get or set its value.
● For instance (assume Date has month field, as

a str ing):
Object d = new Date("July 1, 1993");

Field f = d.getClass().getField("month");

System.out.println(f.get(d));

● Secur ity check is per formed: if field is
inaccessible, an IllegalAccessException
is thrown. And fields should be pr ivate!!

8

22

get and set For Fi el d

● get and set return value in an Object.

● Pr imitives are wrapped.
● Special versions for convenience (e.g. getInt,
getDouble, setInt, etc.)

23

Java 1.2: Accessible Objects
● Can request that Field, Method, and
Constructor objects be “ accessible.”

● Request granted if no secur ity manager, or if
the existing secur ity manager allows it.

● Can invoke method or access field, even if
inaccessible via pr ivacy rules.

● Blatant secur ity hole, means now you need to
know what a secur ity manager is. Stay tuned....

24

Example Of Accessing Private Data
import java.lang.reflect.*;

class Hidden

{

private static int SECRET = 3737;

}

class Spy

{

public static int getHiddenSecret() {

try {

Field f = Hidden.class.getDeclaredField("SECRET");

f.setAccessible(true); // Make private field accessible

return f.getInt(null);

}

catch(NoSuchFieldException e) { }

catch(IllegalAccessException e) { }

catch(java.security.AccessControlException e) {

System.out.println("Security manager objects to this!");

}

return -1;

}

}

9

25

Added In Java 1.3

● Dynamic Proxy Classes
● Automates the creation of proxies
● We will discuss a use of the proxy pattern in

more detail later in the course when we discuss
Java 1.2 garbage collection

26

The Problem

● Suppose you have an interface and an
implementation

public interface Foo

{

void meth1();

int meth2();

...

}

class FooImpl implements Foo

{

...

}

● You want to have a new class that does
everything each Foo method in FooImpl does,
with a little before or after the call

27

You Need a Proxy Class

● Easy to wr ite: Proxy class stores a reference to the
Foo. For instance to pr int Hello,

class FooProxy implements Foo

{

public FooProxy(Foo d)

{ delegate = d; }

public void meth1()

{ System.out.println("Hello"); delegate.meth1(); }

public int meth2();

{ System.out.println("Hello"); return delegate.meth2(); }

...

Foo delegate;

}

10

28

Proxy Pattern
● With the proxy pattern, FooImpl and
FooProxy are not usually constructed directly
by the user. Instead, they are handed out by a
FooFactory class and only Foo is visible:

public class FooFactory

{

public static Foo allocateFoo()

{ return new FooProxy(new FooImpl()); }

private FooFactory() { } // No FooFactory objects

}

● With this pattern, user is oblivious to the fact
that they have a proxy!

● Easy to change implementation of the concrete
Foo instances

29

Dynamic Proxies

● Proxies useful to
– do secur ity checks pr ior to each call
– do logging that calls are being made and completed
– do lazy loading or copying
– represent remote objects

● I f interfaces are large, the code to wr ite new
proxies is cumbersome and repeated.

● Reflection can do this for you automatically.

● Downside is that reflection might be too slow;
depends on what the proxy is doing.

30

Code Is Straightforward

● Uses two classes:
– InvocationHandler inter face; must implement

its invoke method to do delegation
– Proxy; usually call its newProxyInstance

method with parameters that explain the class
loader to use, inter face being implemented, and a ref
to an invocation handler object.

– Proxy pattern is impor tant; you should understand
the pattern; automatic generation is not so
impor tant now

11

31

Generation of Foo Proxy Class
public class FooFactory {

public static Foo allocateFoo() {

return (Foo) Proxy.newProxyInstance(Foo.class.getClassLoader(),

new Class[] { Foo.class }, new FooHandler(new FooImpl()));

}

private FooFactory() { } // No FooFactory objects

}

class FooHandler implements InvocationHandler {

public FooHandler(Object d) {

delegate = d;

}

public Object invoke(Object proxy, Method meth, Object[] args)

throws Throwable {

System.out.println("Hello");

return meth.invoke(delegate, args);

}

private Object delegate;

}

32

Dynamic Proxy Details

● Can have several interfaces implemented;
order of interfaces matters if interfaces declare
common methods

● Generated Proxy classes
– public, final, not abstract
– extend java.lang.reflect.Proxy

– implement the specified inter faces
– constructor populates Proxy base class public

reference h to invocation handler by calling super

● newProxyInstance actually calls
getProxyClass to get a Class object, and
then newInstance on the Class object.

33

What The New Proxy Class Is
public final class GeneratedProxy extends Proxy implements Foo {

public GeneratedProxy(InvocationHandler h)

{ super(h); handler = super.h; }

public int meth2() {

Object ret = null;

try {

Method m = myClass.getMethod("meth2", new Class[] { });

ret = handler.invoke(this, m, new Object[] { });

} catch(Throwable e) {

if(e instanceof RuntimeException) throw (RuntimeException) e;

if(e instanceof Error) throw (Error) e;

}

return ((Integer)ret).intValue();

}

...

private InvocationHandler handler;

private static final Class myClass = Foo.class;

}

12

34

Summary

● Reflection lets you do some cool stuff and is
relatively easy to use.

● Allows RTTI , which is occasionally useful to
you, and crucial for other Java stuff.

