
Introduction to Serialization

Mark Allen Weiss

Copyright 1999

Outline of Topics

λ What is Serialization
λ Basics of Serialization
λ The transient keyword

λ Changing the default reading and writing

λ Security Issues
λ Versioning

Serialization

λ Introduced in Java 1.1
λ Allows reading and writing of whole objects to

any InputStream or OutputStream

λ Reasonably easy to use default behavior
λ Reasonably easy to customize

Why Serialization?

λ Persistence: Storing objects in files and
databases (persistence)

λ Marshalling: Passing whole objects between
VMs over the network

Serializable Interface

λ Only objects that implement the
Serializable interface can be serialized

λ This interface is part of Java 1.1
λ String, Integer, Vector, Hashtable and

other typical classes have been retrofitted in
Java 1.1 to be Serializable

λ Easy to implement this interface: it has no
methods!

λ If it was, there could be information leaks when
objects are written.

λ We also need to be careful when reading a
serialized object (sketch of the details provided
later)

Why Isn’t Everything Serializable?

Writing an Object
λ Create an ObjectOutputStream from any
OutputStream

λ Use its writeObject method:
void writeObject(Object obj);

λ Remember: obj must be serializable.
λ Need to handle IOException,
NotSerializableException,
InvalidClassException. All are
IOExceptions.

Reading an Object
λ Create an ObjectInputStream from any
InputStream

λ Use its readObject method:
Object readObject();

λ Returned type must be downcast to actual type.
λ Need to handle IOException,
ClassNotFoundException,
OptionalDataException. All but
ClassNotFoundException are
IOExceptions.

Example of Writing
FileOutputStream f;

ObjectOutputStream out = new ObjectOutputStream(f);

Person p = new Person(...);

...

try {

out.writeObject(p);

}

catch(NotSerializableException e) {

// Oops: Person is not serializable

}

catch(IOException e) {

// Oops: Various I/O problems

}

Example of Reading
FileInputStream f;

ObjectInputStream out = new ObjectInStream(f);
Person p;

...
try {

p = (Person) in.readObject();
}

catch(ClassNotFoundException e) {
// Oops: Person class not loadable on this VM

}
catch(IOException e) {

// Oops: Various I/O problems
}

What Gets Written
λ ObjectStreamClass object for the object’s

class
– Includes 64-bit serialVersionUID (versioning)

– Names and types of fields
– ObjectStreamClass of super class

λ Non-transient, non-static fields
– Base class data written first (if base class not

serializable, zero-parameter constructor used)
– Fields that are object references are followed; if they

can be serialized, they are; otherwise, if null ok;
otherwise exception is thrown.

Several References to Same Object

λ When written, each object gets a serial number
(hence, serialization)

λ Each reference is then either null or the
appropriate serial number

λ Long chains of references are followed
automatically using a depth-first search; saves
you lots of manual labor

λ When objects are restored, everything looks
like it was.

What Gets Read
λ ObjectStreamClass object for the object’s

class
– Includes 64-bit serialVersionUID (versioning)

– Names and types of fields
– ObjectStreamClass of super class

λ Object fields read in next

λ If base class is nonserializable, inherited
portion is initialized with no-parameter
constructor.

Class Versioning
λ 64 bit serialVersionUID is stored; it is

based on the class members
λ If the class changes in any significant way, the
serialVersionUID changes too

λ When object is read from an object stream,
system ensures that version UIDs of
ObjectStreamClass and local class are the
same

λ If not, exception is thrown

Version UIDs

λ Computed using SHA (only 64 of the 160 bits
are retained); can obtain it by running
serialvar, which is part of the JDK.

λ Will change if you add or delete members or
change signatures (even from public to private)

λ You can declare your opinion that a class is
compatible by adding a private static
final long member named
serialVersionUID.

Version UIDs (continued)

λ If UIDs match, attempt to load class will
continue

λ During the read, new fields (those not written
by the write) will get default values (null for
references, etc.)

λ Removed fields will be ignored
λ If VM isn’t happy, an exception is thrown. May

happen if field type has changed

Security Problems
λ The constructor for the Serializable object

is NOT called.
– Some fields may be null, which might not be what

was expected based on constructors

λ Serializable object is read in without checks.
Consider a serializable Date class.
– Can write the Date out to a file

– Can edit the file, and generate an illegal date
– When it is read in, fields are copied, blindly
– There’s no check, and Date is now inconsistent

– Don’t even need files: can use ByteStreams.

Customizing r eadObj ect

λ Can have readObject do extra work by
implementing (in the serialized object’s class)

private void readObject(ObjectInputStream in)
throws IOException, ClassNotFoundException;

λ readObject (and only readObject) can call
an ObjectInputStream method to do the
normal default read, and can then add code to
do error checks or other additional work. The
method call would be

λ in.defaultReadObject();

λ Note: readObject must be private

Example: Making Dat e Safer
public class Date implements Serializable

{

...

private boolean isValid()

{ /* implementation omitted */ }

private void readObject(ObjectInputStream in)

throws IOException, ClassNotFoundException

{

in.defaultReadObject();

if(!isValid()) throw new IOException();

}

}

Customizing wr i t eObj ect

λ Not surprisingly, can do similar things with
writeObject
– Can have private writeObject method (throws
IOException only)

– Private writeObject method can call
out.defaultWriteObject()

λ This is useful for writing output in a special
way. For instance, can write a transient field in
an encrypted format. Of course, need to
implement readObject to match.

r eadObj ect and wr i t eObj ect
public class Secure implements Serializable {

transient private String password;

private String name;

private void writeObject(ObjectOutputStream out)
throws IOException {

out.defaultWriteObject();

out.writeUTF(NSA.encrypt(password));

}

private void readObject(ObjectInputStream is)

throws IOException, ClassNotFoundException {

in.defaultReadObject();

password = NSA.decrypt(in.readUTF());

}

}

Dealing With Changing Fields
λ Uses nested class
ObjectInputStream.GetField

λ Call ObjectInputStream.readFields to
get a collection of name/value pairs
– unfortunately, cannot enumerate over collection
– must know exact field name in stream format

λ Various get methods extract objects
– Two parameters: name of field, and value to return

if field is not in the stream (but is in current class)
– if field not in the stream AND field is not in the

current class, you get an exception
– Must explicitly assign values to all class fields, or

they will get zero for primitives, null for references

Using ObjectInputStream.GetField
class Person {

static final long serialVersionUID = ...;

...

private void readObject(ObjectInputStream in)

throws IOException, ClassNotFoundException {

ObjectInputStream.GetField gf = in.readFields();

fullName = (String) gf.get("fullName", null);

if(fullName == null)

fullName = gf.get("lastName", null)

+ ", " + gf.get("firstName", null);

age = gf.get("age", 0);

}

private String fullName; // the new version

// private String lastName; // the old version

// private String firstName; // the old version

}

Externalization
λ Serializable is nice, but has some overhead.

May not be appropriate in all instances.
λ The Externalizable interface extends
Serializable. Must implement

public void writeExternal(ObjectOutput out)

throws IOException;

public void readExternal(ObjectInput in)

throws IOException, ClassNotFoundException;

λ Your object has complete control over how it is
written but you deal with base classes, and
serializing object references.

λ Object and all super classes must have 0-param
constructor

Ext er nal i zabl e Date Class
class Date implements Externalizable

{

public Date()

{ this(1, 1, 2000); }

public Date(int m, int d, int y)

{ month = m; date = d; year = y; }

public void writeExternal(ObjectOutput out) throws IOException

{ out.writeInt(month); out.writeInt(date); out.writeInt(year); }

public void readExternal(ObjectInput in)

throws IOException, ClassNotFoundException

{ month = in.readInt(); date = in.readInt(); year = in.readInt(); }

private int month;

private int date;

private int year;

}

Summary

λ Serialization is easy to use; it tracks down and
serializes all objects reachable from the basic
object being serialized

λ Usually have to implement private
readObject to do security check

λ May need to watch out for class version
changes and set the serialVersionUID

λ Externalization is hard to use unless class is
trivial, but can be faster and more compact

