
1

1

Threads and Synchronization

Mark Allen Weiss

Copyright 2000

2

Outline of Topics

● What threads are
● The Thre ad class and star ting some threads

● Synchronization: keeping threads from
clobber ing each other

● Deadlock avoidance: keeping threads from
stall ing over each other

2

3

Multitasking

● Multitasking means that you can have several
processes running at same time, even if only
one processor .

● Can run a browser, VM, powerpoint, pr int job,
etc.

● All modern operating systems support
multitasking

● On a single processor system, multitasking is
an ill usion projected by operating system

4

Threads

● Inside each process can have several threads
● Each thread represents its own flow of logic

– gets separate runtime stack

● Modern operating systems support threading
too; more eff icient than separate processes

● Example of threading in a browser :
– separate thread downloads each image on a page

(could be one thread per image)

– separate thread displays HTML

– separate thread allows typing or pressing of stop
button

– makes browser look more responsive

3

5

Threads in C/C++

● Threads are not par t of C or C++
● Have to wr ite different code for each operating

systems

● Diff icult to por t

6

Threads in Java

● Part of language
● Same code for every Java VM

● Simpler than in most other languages
● Still very diff icult:

– When running multiple threads, there is
nondeterminism, even on same machine

– Often hard to see that your code has bugs

– Requires lots of experience to do good designs

4

7

● VM has threads in background
● VM alive as long as a “ legitimate thread” stil l

around (il legitimate threads are “ daemons”)

● GUI programs wil l star t separate thread to
handle events once frame is visible

main thread
garbage collector

event thread
(once container is visible)

Threads in the Virtual Machine

8

Thread Class
● Use Thre ad class in j ava.l ang

● Two most important instance methods:
– star t : Creates a new thread of execution in the

VM; then, invokes run in that thread of execution;
current thread also continues running

– run : explains what the thread should do

● Thr ead is not abstract, so there are default
implementations
– star t does what is described above; should be final

method (but isn’ t)
– run returns immediately

5

9

Creating A Do Nothing Thread
● The following code creates a Thr ead object,

then star ts a second thread.
 public sta t ic void m ain(Strin g[] args) {

 Thread t = new Thr ead();

 t.start(); // now two threa ds, both r unning

 System.o ut.println (“main co ntinues”) ;

 }

● In code above:
– First line creates a Thr ead object, but mai n is the

only running thread

– Second line spawns a new VM thread. Two threads
are now active.

– main thread continues at same time as new thread
calls its r un method (which does nothing)

10

Getting Thread to Do Something
● Option #1: extend Thre ad class, overr ide r un

method
clas s ThreadEx t ends exte nds Thread {

 public void r un() {

 f or(int i = 0; i < 1000; i++)

 System.o ut.println ("ThreadE xtends " + i);

 }

}

clas s ThreadDe mo {

 public stati c void mai n(String[] args) {

 Thread t1 = new Thre adExtends();

 t 1.start() ;

 f or(int i = 0; i < 1000; i++)

 System.o ut.println ("main " + i);

}

}

6

11

Alternative to Extending Thread

● No multiple inher itance; might not have an
extends clause available

● Might not model an IS-A relationship
● Really just need to explain to Threa d what

ru n method to use
– Obvious function object pattern

– run is encapsulated in standard Runnable inter face

– implement Runnable; send an instance to Thread
constructor

– preferred solution

12

Alternative #2: Using Runnabl e
clas s ThreadsR unMethod i mplements Runnable {

 public void r un() {

 f or(int i = 0; i < 1000; i++)

 System.o ut.println ("Threads RunMethod " + i);

 }

}

clas s ThreadDe mo {

public st atic void main(Stri ng[] args) {

 Thread t2 = new Thr ead (new ThreadsRun Method()) ;

 t2.start();

 for(int i = 0; i < 1000; i++)

 System. out.printl n("main " + i);

}

}

7

13

Anonymous Implementation
● May see the Runnabl e implemented as an

anonymous class in other people’s code
clas s ThreadDe mo {

public st atic void main(Stri ng[] args) {

 Thread t3 = new Thr ead (new Runnable () {

 publi c void run () {

 for(i nt i = 0; i < 1000; i++)

 Sys t em.out.pr i ntln("Th r eadAnonymous " + i) ;

 }

 }

);

 t3.start();

 for(int i = 0; i < 1000; i++)

 System. out.printl n("main " + i);

}

}

14

Common Mistake #1
● You should NEVER call run yourself

– wil l not create new VM thread

– wil l not get separate stack space
– wil l invoke r un in the curr ent thread

● st art don’t r un

8

15

Thread States

● Thread is not runnable until star t is called
● Thread can only unblock if cause of blocking is

resolved

new

dead

runnable

blocked

star t

cons t ructor

slee p, wai t , blocked on I/O

time expires, notif yAll , I/O complete

run terminates

16

Is The Thread Alive?

● Cannot differentiate between being runnable
and blocked.

● Thread that is runnable or blocked is alive

● Thread that has not star ted or is dead is not
alive

● Can use Thr ead instance method isA l ive to
determine thread status

9

17

Uncaught Exceptions
● Uncaught exception terminates a thread’s run

method
● Does not terminate the VM unless there are

only daemon threads left
● ru n cannot list any checked exceptions in its

throws list (why not?)

18

Thread Methods

● instance methods
– setDaemon

– isDaemon

– setPr ior ity

– getPr ior ity

– interrupt

– join

● static methods
– sleep

– yield

10

19

Current Thread
● Before you can invoke any Threa d instance

method, you need a reference to the current
thread
– I f you extend Thread , no problem. In your run

method, this represents current Thre ad and can
be omitted

– I f you use Runnabl e, in your r un method t his
represents the Runnable object. Need to use static
method Thread.c urrentThr ead

Thre ad self = Thread.cu r rentThre ad();

20

Deamon Threads

● By themselves do not keep a VM alive
● Can mark a thread as a daemon thread by

call ing set Daemon(tru e)

● Call must be before call to st art ; after call an
exception is thrown

● Without call to se t Daemon thread’s daemon
status is same as thread that spawned it

● Can call i sDaemon to see if thread is a
daemon

11

21

Thread Priorities

● Can suggest to VM that when there is
contention for CPU, some threads should get
preference over others.
– Only considered when there’s CPU contention;

threads that are sleeping won’t go any faster with
higher pr ior ities

– I f your program depends on pr ior ities, you need to
do more work; VM could ignore suggestions

– Prior ity of thread is same as thread that created it

– Only 10 pr ior ities ranging from
Thre ad.MIN_PR I ORITY to
Thre ad.MAX_PRI ORITY, with
Thre ad.NORM_PRIORITY

22

Current Implementations

● Windows 98/NT and Solar is Native Threads:
– schedule highest pr ior ity thread

– scheduling is fully preemptive: if a new highest
pr ior ity thread becomes runnable, it gets scheduled

– rule of thumb: at any given time, highest-pr ior ity
thread is running. But this is not guaranteed by
language spec.

– Java platform does not time-slice, under lying thread
platform does (Solar is Green Threads does not), so
if several highest pr ior ity threads, system generally
does simple, non-preemptive round-robin

12

23

Interrupting A Thread

● Any thread can interrupt any other thread (if it
has a reference to its Thr ead object) by
invoking in t erru pt on that Threa d object.
– Used if target thread is deliberately blocked

(sleeping, waiting, yielding or otherwise not
interested in getting the processor r ight now, but not
blocked on I /O)

– I f target thread is deliberately blocked, inter rupt
sends an I nterrupt edExcepti on to the thread,
which wakes thread up

– I f target thread is no longer deliberately blocked,
interrupt is ignored

24

Inter r upted Exception

● In t erru pted Excep t ion is a checked
exception; must be caught or propagated by
host of Thre ad routines that cause thread to
give up the processor
– Really annoying

– Probably should terminate thread

13

25

join

● The call t1 . join () causes the current
thread to block until t1 terminates

● Have to catch Int errup t edExcept i on

● mai n can join on all threads it spawns to wait
for them all to finish

26

yield

● Threads that are CPU intensive can hog all the
cycles, especially if they are high pr ior ity

● Poli te thread yields every now and then
– not too often; could be spending too much time

context switching
– yiel d is a static method.

● Curr ent thread
– Gives up the processor if another thread of at least

as high pr ior ity is waiting for the CPU

– I f no eligible thread, current thread retains
processor

● Must catch Int errup t edExcept i on

14

27

sleep

● Static method.
● Curr ent thread

– Gives up the processor for at least the time specified

– Time is in milli seconds

– No guarantee that you get processor back

● Must catch Int errup t edExcept i on

28

Timeouts
● can invoke wai t and jo i n with a parameter

that limits the amount of blocking (in
mill iseconds)
– for wait not necessar ily a great idea

● Example: thread needs to do I /O; what if
nothing is typed?
– Do I /O in a separate thread
– main thread does a join , with timeout on the I /O

thread

– I f no I /O, main thread will continue and can
terminate itself and I /O thread if needed

15

29

Shared Data

● All threads share the VMs memory
– useful if threads are going to do real work

● I f two threads have references to the same
object, they can potentially simultaneously
invoke methods on the object
– ok if both accessing

– might be bad if one thread is mutating

– could be a disaster if two threads are mutating

30

Example
clas s TwoObjs {

 pr i vate int a = 15;

 pr i vate int b = 37;

 public int s um() { r eturn a + b; } // s hould alwa ys be 52

 public void swap() { i nt tmp = a; a = b; b = tmp; }

}

● Two threads share a reference to some
TwoObjs object, and the following steps occur
– Thread 1 invokes swap, and immediately after

executing a=b is time-sliced out.

– Thread 2 invokes sum, and returns 74.

● Despite pr ivate data, and object has been
accessed while in an inconsistent state

16

31

Two Mutators Do Serious Damage

● Last example not so bad
– We temporar ily see object in a bad state

– Thread 1 gets time-sliced in and object gets back in
good state

– Often we view objects in bad states, and we know
that cur rent information may be inaccurate, but will
eventually be corr ect

● bank accounts
● frequent flyer accounts
● credit card statements

● When two mutators interact, can ir reversibly
damage object state

32

Two mutators
clas s TwoObjs {

 pr i vate int a = 15;

 pr i vate int b = 37;

 public int s um() { return a + b; } / / should always be 52

 public void swap() { int tmp = a; a = b ; b = tmp ; }

}

● Star ting from good state
– Thread 1 invokes swap, and immediately after

executing tmp=a is time-sliced out. In this thread
tmp= 15.

– Thread 2 invokes swap, swapping a and b. a is now
37, b is now 15.

– Thread 1 is time-sliced back in and continues: a is
now 15, b is now tmp, so b is 15. OOPS!

17

33

Can This Really Happen?

● Yes but,
– I t can be fair ly rare

– Depends on speed of processors

– Depends on number of processors

– Depends on thread pr ior ities

– Depends on luck of the draw

● Worst kind of bug
– TwoObjs class is not thread-safe

– Could do mil lions of operations and never see a
problem

– Hard to know you’ve messed up

34

How Java Solves The Problem
● Use the syn chron i zed keyword

● Marking an instance method as synchronized
means that in order to invoke it the thread
must gain possession of the “ monitor” for the
invoking object (i.e. the “ monitor ” for thi s).

● The monitor is an abstraction
– every object has one and only one

– no getMonitor method, however

18

35

How It Works

● To enter a synchronized method, thread must
– either already own the monitor (perhaps this

method is being called from another synchronized
method)

– get the monitor

– once in, if you are timesliced out, you will keep the
monitor , blocking other threads out

● I f another thread already owns the monitor
and has been timesliced out, you wil l be
blocked from obtaining the monitor

● When thread leaves method from which it
obtained monitor , monitor is released by VM

36

Unsynchronized Methods

● Only synchronized methods require the
obtaining of a monitor

● Synchronization is very expensive

● Sun recommends:
– synchronize everything

● Less drastic:
– synchronize mutators

– synchronize accessors depending on the tradeoff of
occasional bad data versus per formance

19

37

Example #1

● Assume both pr int and swap are synchronized
– Thread #1 does obj.swap()

● can obtain obj ’ s monitor and enter

– Thread #1 is timesliced out in the middle of swap
● Thread #1 holds on to obj ’ s monitor

– Thread #2 does obj.print()
● Thread #2 needs obj ’s monitor . Can’ t get it, so thread is

blocked

– Thread #1 is timesliced in; f inishes swap
● Thread #1 releases obj ’ s monitor

– Thread #3 does obj.print()
● Thread #3 gets the monitor and proceeds

38

Example #2

● Assume only swap is synchronized
– Thread #1 does obj.swap()

● can obtain obj ’ s monitor and enter

– Thread #1 is timesliced out in the middle of swap
● Thread #1 holds on to obj ’ s monitor

– Thread #2 does obj.print()
● Thread #2 does not need obj ’ s monitor , so it proceeds

– Thread #1 is timesliced in; f inishes swap
● Thread #1 releases obj ’ s monitor

20

39

Example #3
● Assume swap is synchronized, and obj 1 and

obj 2 are different objects
– Thread #1 does obj1.swap()

● can obtain obj1 ’ s monitor and enter

– Thread #1 is timesliced out in the middle of swap
● Thread #1 holds on to obj1 ’ s monitor

– Thread #2 does obj2.print ()
● can obtain obj2 ’ s monitor and enter, so it proceeds
● when it finishes it releases obj2 ’ s monitor

– Thread #1 is timesliced in; f inishes swap
● Thread #1 releases obj1 ’ s monitor

40

Static Methods

● Synchronized static methods require the
obtaining of a monitor also
– can’ t be the objects monitor because there is not

– the monitor it needs to obtain the monitor for the
Clas s object.

● May be important for fancy stuff
● Just remember that instance methods and

static methods use different monitors

21

41

Synchronized Block

● Often don’t need to synchronize entire method
– just need to synchronize a “critical section”

– few lines of code that should be viewed as an
“atomic” single operation

● Use a synchronized block
sy nchro nize d(an yobje ct)

{

 // must have posse ssion of monit or fo r anyobje ct

 // w i ll r elea se if obta i ned (not just inh erite d)

}

42

These are Equivalent
publ i c class F oo // Ver s ion #1

{

 sy nchronized public vo i d foo() { ... }

 sy nchronized static vo i d bar() { ... }

}

publ i c class F oo // Ver s ion #2

{

 public void f oo()

 {

 synchroniz ed(this) { ... }

 }

 st atic void bar()

 {

 synchroniz ed(Foo.cl ass) { .. . }

 }

}

22

43

Synchronized Is Not Inherited

● As previous slide shows, synchronized in
method header is just a convenience

44

Synchronization Rule #1

● Can only synchronize methods and code
● Can never synchronize data, so

● RULE #1: ALL DATA MUST BE PRIVATE
OR YOU LOSE

23

45

Synchronization Rule #2

● RULE #2: Any code/methods that makes
changes to shared var iables must use
sy nchro nize d to ensure safe concurrent
access.

● Accessors are often decided based on
performance requirements.

46

Synchronization Rule #3

● RULE #3: Be careful about propagating
exceptions through a cr itical section.
– Can have a half-way done operation if you do this
– This is why st op is deprecated

24

47

Synchronization Rule #4
● Rule #4: Never call slee p in a synchronized

block.
– I f you call sleep , you give up the processor , but not

the monitor .

– Anybody else who needs the monitor will be blocked

– Can cause deadlock
– This is why su spend is deprecated

48

How to Wait For Conditions

● I f you are in a synchronized block and need to
stall for an external event
– use mon.wait() , where mon is the monitor that

you own.

● wai t

– gives up the processor

– gives up the monitor

– makes you ineligible to ever be rescheduled unless
either a timeout expires, an interrupt occurs, or
somebody else issues a notif yAll

25

49

notify vs notifyAll

● Once thread has done a wait, another thread
the rectifies situation should issue a
mon.not i fyA l l() .

● mon.not i fyA l l reinstates scheduling
eligibil ity for all threads that issued a
mon.wai t ()

● mon.not i fy reinstates scheduling eligibility
for one thread (VM chooses, not you) that
issued a mon. wait ()
– extremely dangerous to use notify unless you

know there is only one thread waiting. This method
should be deprecated

50

wait and notifyAl l

● You must own the monitor when you execute
either of these

● Runtime exception thrown if you don’t own
monitor

● Common mistake is to use wait() or
not ifyA l l() without specifying monitor .
Defaults to t his.w ait() and
th i s.no t ify All() , which only works if the
monitor is th i s .

● Typically, wait is in a very tight while loop,
NOT an if statement

26

51

Synchronization Rule #5
● The wait /notify All pattern:

– Place wait in a tight while loop that loops as long as
a required condition is not yet met

– Code that could fix the condition issues notif yAll

– Never use notify

– remember that these are instance methods for the
monitor that you are willing to release

52

Deadlock

● Occurs when two threads are each waiting for
monitors they can’t both get.

● Example:
– Thread #1 needs monitors A and B

– Thread #2 needs monitors A and B

– Thread #1 has A

– Thread #2 has B

– Deadlock

● Java does not detect deadlocks

● Avoiding deadlocks very difficult; requires lots
of exper ience

27

53

Sun’s Deadlock Avoidance Trick

● Use an internal pr ivate object to synchronize:
clas s Account {

 public void deposit(i nt d) {

 synchroniz ed(CRITI CAL_SECTION_1) {

 balance += d;

 }

 }

 public void withdraw(int d) t hrows Ove r draftExc eption {

 synchroniz ed(CRITI CAL_SECTION_1) {

 if(bala nce >= d)

 balanc e -= d;

 else

 throw new Overd r aftExcep t ion("" + d);

 }

 }

 pr i vate int balance = 0;

 pr i vate Obje ct CRITIC AL_SECTION_1 = new Object() ;

}

54

Synchronization Rule #6

● Rule #6: Always obtain monitors in the same
order
– Often involves finding an immutable totally-

orderable property of the object’s whose monitor
you will need, and obtaining monitors using that
order

– Example: obtaining monitors for two bank
accounts, use account #s, and obtain lower account
#’s monitor first

28

55

Summary

● Threading is an essential part of Java and any
real program. Easier in Java than elsewhere
– tells you how hard it is elsewhere

● Follow the rules
– star t don’ t run

– don’ t rely exclusively on pr ior ities

– no public data

– synchronize mutators, maybe accessors

– leave cr itical section only after object is restored

– no sleeping in synchronized block
– use wait /notify All pattern

– obtain monitors in same order

