
1

1

Threads and SynchronizationThreads and Synchronization

Mark Allen Weiss

Copyright 2006

2

Outline of TopicsOutline of Topics

• What threads are
• The Thread class and starting some threads

• Synchronization: keeping threads from
clobbering each other

• Deadlock avoidance: keeping threads from
stalling over each other

2

3

MultitaskingMultitasking

• Multitasking means that you can have several
processes running at same time, even if only
one processor.

• Can run a browser, VM, powerpoint, print job,
etc.

• All modern operating systems support
multitasking

• On a single processor system, multitasking is
an illusion projected by operating system

4

ThreadsThreads

• Inside each process can have several threads

• Each thread represents its own flow of logic
• gets separate runtime stack

• Modern operating systems support threading
too; more efficient than separate processes

• Example of threading in a browser:
• separate thread downloads each image on a page

(could be one thread per image)
• separate thread displays HTML
• separate thread allows typing or pressing of stop

button
• makes browser look more responsive

3

5

Threads in C/C++Threads in C/C++

• Threads are not part of C or C++

• Have to write different code for each operating
systems

• Difficult to port

6

Threads in JavaThreads in Java

• Part of language

• Same code for every Java VM

• Simpler than in most other languages

• Still very difficult:
• When running multiple threads, there is

nondeterminism, even on same machine
• Often hard to see that your code has bugs
• Requires lots of experience to do good designs

4

7

• VM has threads in background

• VM alive as long as a “legitimate thread” still
around (illegitimate threads are “daemons”)

• GUI programs will start separate thread to
handle events once frame is visible

main thread
garbage collector

event thread
(once container is visible)

Threads in the Virtual MachineThreads in the Virtual Machine

8

Thread ClassThread Class
• Use Thread class in java.lang

• Two most important instance methods:
• start: Creates a new thread of execution in the

VM; then, invokes run in that thread of execution;
current thread also continues running

• run: explains what the thread should do

• Thread is not abstract, so there are default
implementations
• start does what is described above; should be final

method (but isn’t)
• run returns immediately

5

9

Creating A Do Nothing ThreadCreating A Do Nothing Thread
• The following code creates a Thread object,

then starts a second thread.
public static void main(String[] args) {

Thread t = new Thread();

t.start(); // now two threads, both running

System.out.println(“main continues”);

}

• In code above:
• First line creates a Thread object, but main is the

only running thread
• Second line spawns a new VM thread. Two threads

are now active.
• main thread continues at same time as new thread

calls its run method (which does nothing)

10

Getting Thread to Do SomethingGetting Thread to Do Something
• Option #1: extend Thread class, override run

method
class ThreadExtends extends Thread {

public void run() {

for(int i = 0; i < 1000; i++)

System.out.println("ThreadExtends " + i);

}

}

class ThreadDemo {

public static void main(String[] args) {

Thread t1 = new ThreadExtends();

t1.start();

for(int i = 0; i < 1000; i++)

System.out.println("main " + i);

}

}

6

11

Alternative to Extending Alternative to Extending ThreadThread

• No multiple inheritance; might not have an
extends clause available

• Might not model an IS-A relationship
• Really just need to explain to Thread what
run method to use
• Obvious function object pattern
• run is encapsulated in standard Runnable interface
• implement Runnable; send an instance to Thread

constructor
• preferred solution

12

Alternative #2: Using Alternative #2: Using RunnableRunnable
class ThreadsRunMethod implements Runnable {

public void run() {

for(int i = 0; i < 1000; i++)

System.out.println("ThreadsRunMethod " + i);

}

}

class ThreadDemo {

public static void main(String[] args) {

Thread t2 = new Thread (new ThreadsRunMethod());

t2.start();

for(int i = 0; i < 1000; i++)

System.out.println("main " + i);

}

}

7

13

Anonymous ImplementationAnonymous Implementation
• May see the Runnable implemented as an

anonymous class in other people’s code
class ThreadDemo {

public static void main(String[] args) {

Thread t3 = new Thread (new Runnable() {

public void run() {

for(int i = 0; i < 1000; i++)

System.out.println("ThreadAnonymous " + i);

}

}

);

t3.start();

for(int i = 0; i < 1000; i++)

System.out.println("main " + i);

}

}

14

Common Mistake #1Common Mistake #1
• You should NEVER call run yourself

• will not create new VM thread
• will not get separate stack space
• will invoke run in the current thread

• start don’t run

8

15

Thread StatesThread States

• Thread is not runnable until start is called

• Thread can only unblock if cause of blocking is
resolved

new

dead

runnable

blocked

start

constructor

sleep, wait, blocked on I/O

time expires, notifyAll, I/O complete

run terminates

16

Is The Thread Alive?Is The Thread Alive?

• Thread that is runnable or blocked is alive

• Thread that has not started or is dead is not
alive

• Can use Thread instance method isAlive to
determine thread status

• Java 1.4 or earlier: Cannot differentiate
between being runnable and blocked.

• Java 5: use getState.

9

17

Uncaught ExceptionsUncaught Exceptions
• Uncaught exception terminates a thread’s run

method

• Does not terminate the VM unless there are
only daemon threads left

• run cannot list any checked exceptions in its
throws list (why not?)

18

Thread MethodsThread Methods

• instance methods
• setDaemon
• isDaemon
• setPriority
• getPriority
• interrupt
• join

• static methods
• sleep
• yield

10

19

Current ThreadCurrent Thread
• Before you can invoke any Thread instance

method, you need a reference to the current
thread
• If you extend Thread, no problem. In your run

method, this represents current Thread and can
be omitted

• If you use Runnable, in your run method this
represents the Runnable object. Need to use static
method Thread.currentThread

Thread self = Thread.currentThread();

20

DeamonDeamon ThreadsThreads

• By themselves do not keep a VM alive

• Can mark a thread as a daemon thread by
calling setDaemon(true)

• Call must be before call to start; after call an
exception is thrown

• Without call to setDaemon thread’s daemon
status is same as thread that spawned it

• Can call isDaemon to see if thread is a
daemon

11

21

Thread PrioritiesThread Priorities

• Can suggest to VM that when there is
contention for CPU, some threads should get
preference over others.
• Only considered when there’s CPU contention;

threads that are sleeping won’t go any faster with
higher priorities

• If your program depends on priorities, you need to
do more work; VM could ignore suggestions

• Priority of thread is same as thread that created it
• Only 10 priorities ranging from
Thread.MIN_PRIORITY to
Thread.MAX_PRIORITY, with
Thread.NORM_PRIORITY

22

Interrupting A ThreadInterrupting A Thread

• Any thread can interrupt any other thread (if it
has a reference to its Thread object) by
invoking interrupt on that Thread object.
• Used if target thread is deliberately blocked

(sleeping, waiting, yielding or otherwise not
interested in getting the processor right now, but not
blocked on I/O)

• If target thread is deliberately blocked, interrupt
sends an InterruptedException to the thread,
which wakes thread up

• If target thread is no longer deliberately blocked,
interrupt is ignored

12

23

InterruptedExceptionInterruptedException

• InterruptedException is a checked
exception; must be caught or propagated by
host of Thread routines that cause thread to
give up the processor
• Really annoying
• Probably should terminate thread

24

joinjoin

• The call t1.join() causes the current
thread to block until t1 terminates

• Have to catch InterruptedException

• main can join on all threads it spawns to wait
for them all to finish

13

25

yieldyield

• Threads that are CPU intensive can hog all the
cycles, especially if they are high priority

• Polite thread yields every now and then
• not too often; could be spending too much time

context switching
• yield is a static method.

• Current thread
• Gives up the processor if another thread of at least

as high priority is waiting for the CPU
• If no eligible thread, current thread retains

processor

• Must catch InterruptedException

26

sleepsleep

• Static method.

• Current thread
• Gives up the processor for at least the time specified
• Time is in milliseconds
• No guarantee that you get processor back

• Must catch InterruptedException

14

27

TimeoutsTimeouts
• can invoke wait and join with a parameter

that limits the amount of blocking (in
milliseconds)
• for wait not necessarily a great idea

• Example: thread needs to do I/O; what if
nothing is typed?
• Do I/O in a separate thread
• main thread does a join, with timeout on the I/O

thread
• If no I/O, main thread will continue and can

terminate itself and I/O thread if needed

28

Shared DataShared Data

• All threads share the VMs memory
• useful if threads are going to do real work

• If two threads have references to the same
object, they can potentially simultaneously
invoke methods on the object
• ok if both accessing
• might be bad if one thread is mutating
• could be a disaster if two threads are mutating

15

29

ExampleExample
class TwoObjs {

private int a = 15;

private int b = 37;

public int sum() { return a + b; } // should always be 52

public void swap() { int tmp = a; a = b; b = tmp; }

}

• Two threads share a reference to some
TwoObjs object, and the following steps occur
• Thread 1 invokes swap, and immediately after

executing a=b is time-sliced out.
• Thread 2 invokes sum, and returns 74.

• Despite private data, and object has been
accessed while in an inconsistent state

30

Two Two MutatorsMutators Do Serious DamageDo Serious Damage

• Last example not so bad
• We temporarily see object in a bad state
• Thread 1 gets time-sliced in and object gets back in

good state
• Often we view objects in bad states, and we know

that current information may be inaccurate, but will
eventually be correct

• bank accounts
• frequent flyer accounts
• credit card statements

• When two mutators interact, can irreversibly
damage object state

16

31

Two Two mutatorsmutators
class TwoObjs {

private int a = 15;

private int b = 37;

public int sum() { return a + b; } // should always be 52

public void swap() { int tmp = a; a = b; b = tmp; }

}

• Starting from good state
• Thread 1 invokes swap, and immediately after

executing tmp=a is time-sliced out. In this thread
tmp=15.

• Thread 2 invokes swap, swapping a and b. a is now
37, b is now 15.

• Thread 1 is time-sliced back in and continues: a is
now 15, b is now tmp, so b is 15. OOPS!

32

Can This Really Happen?Can This Really Happen?

• Yes but,
• It can be fairly rare
• Depends on speed of processors
• Depends on number of processors
• Depends on thread priorities
• Depends on luck of the draw

• Worst kind of bug
• TwoObjs class is not thread-safe

• Could do millions of operations and never see a
problem

• Hard to know you’ve messed up

17

33

Classic Java SynchronizationClassic Java Synchronization
• Use the synchronized keyword

• Marking an instance method as synchronized
means that in order to invoke it the thread
must gain possession of the “monitor” for the
invoking object (i.e. the “monitor” for this).

• The monitor is an abstraction
• every object has one and only one
• no getMonitor method, however

34

How It WorksHow It Works

• To enter a synchronized method, thread must
• either already own the monitor (perhaps this

method is being called from another synchronized
method)

• get the monitor
• once in, if you are timesliced out, you will keep the

monitor, blocking other threads out

• If another thread already owns the monitor
and has been timesliced out, you will be
blocked from obtaining the monitor

• When thread leaves method from which it
obtained monitor, monitor is released by VM

18

35

Unsynchronized MethodsUnsynchronized Methods

• Only synchronized methods require the
obtaining of a monitor

• Synchronization is very expensive

• Sun recommends:
• synchronize everything

• Less drastic:
• synchronize mutators
• synchronize accessors depending on the tradeoff of

occasional bad data versus performance

36

Example #1Example #1

• Assume both print and swap are synchronized
• Thread #1 does obj.swap()

• can obtain obj’s monitor and enter

• Thread #1 is timesliced out in the middle of swap
• Thread #1 holds on to obj’s monitor

• Thread #2 does obj.print()
• Thread #2 needs obj’s monitor. Can’t get it, so thread is

blocked

• Thread #1 is timesliced in; finishes swap
• Thread #1 releases obj’s monitor

• Thread #3 does obj.print()
• Thread #3 gets the monitor and proceeds

19

37

Example #2Example #2

• Assume only swap is synchronized
• Thread #1 does obj.swap()

• can obtain obj’s monitor and enter

• Thread #1 is timesliced out in the middle of swap
• Thread #1 holds on to obj’s monitor

• Thread #2 does obj.print()
• Thread #2 does not need obj’s monitor, so it proceeds

• Thread #1 is timesliced in; finishes swap
• Thread #1 releases obj’s monitor

38

Example #3Example #3

• Assume swap and print are synchronized, and
obj1 and obj2 are different objects
• Thread #1 does obj1.swap()

• can obtain obj1’s monitor and enter

• Thread #1 is timesliced out in the middle of swap
• Thread #1 holds on to obj1’s monitor

• Thread #2 does obj2.print()
• can obtain obj2’s monitor and enter, so it proceeds
• when it finishes it releases obj2’s monitor

• Thread #1 is timesliced in; finishes swap
• Thread #1 releases obj1’s monitor

20

39

Static MethodsStatic Methods

• Synchronized static methods require the
obtaining of a monitor also
• can’t be the objects monitor because there is not
• the monitor it needs to obtain the monitor for the
Class object.

• May be important for fancy stuff

• Just remember that instance methods and
static methods use different monitors

40

Synchronized BlockSynchronized Block

• Often don’t need to synchronize entire method
• just need to synchronize a “critical section”
• few lines of code that should be viewed as an

“atomic” single operation

• Use a synchronized block
synchronized(anyobject)

{

// must have possession of monitor for anyobject

// will release if obtained (not just inherited)

}

21

41

These are EquivalentThese are Equivalent
public class Foo // Version #1

{

synchronized public void foo() { ... }

synchronized static void bar() { ... }

}

public class Foo // Version #2

{

public void foo()

{

synchronized(this) { ... }

}

static void bar()

{

synchronized(Foo.class) { ... }

}

}

42

Synchronized Is Not InheritedSynchronized Is Not Inherited

• As previous slide shows, synchronized in
method header is just a convenience

22

43

Synchronization Rule #1Synchronization Rule #1

• Can only synchronize methods and code

• Can never synchronize data, so

• RULE #1: ALL DATA MUST BE PRIVATE
OR YOU LOSE

44

Synchronization Rule #2Synchronization Rule #2

• RULE #2: Any code/methods that makes
changes to shared variables must use
synchronized to ensure safe concurrent
access.

• Accessors are often decided based on
performance requirements.

23

45

Synchronization Rule #3Synchronization Rule #3

• RULE #3: Be careful about propagating
exceptions through a critical section.
• Can have a half-way done operation if you do this
• This is why stop is deprecated

46

Java 5 LocksJava 5 Locks

• Java 5 adds library to support locks.
• Package is java.util.concurrent.locks

• Interface is Lock with methods lock and
unlock

• Lock is implemented by ReentrantLock
(among others)

24

47

Example Code With Java 5 LocksExample Code With Java 5 Locks
import java.util.concurrent.locks.Lock;

import java.util.concurrent.locks.ReentrantLock;

class TwoObjs

{

private int a = 15;

private int b = 37;

private Lock lck = new ReentrantLock();

public int sum()

{

try { lck.lock(); return a + b; } // should always be 52

finally { lck.unlock(); }

}

public void swap()

{

try { lck.lock(); int tmp = a; a = b; b = tmp; }

finally { lck.unlock(); }

}

}

48

Locks Locks vsvs MonitorsMonitors

• Locks are a higher level of abstraction than
monitors.
• Similar to array vs. List

• Locks could be implemented via monitors, or
could be implemented some special way that
would make them faster than monitors.

25

49

Synchronization Rule #4Synchronization Rule #4
lRule #4: Never call sleep in a synchronized

block.
– If you call sleep, you give up the processor, but not

the monitor.
– Anybody else who needs the monitor will be blocked
– Can cause deadlock
– This is why suspend is deprecated

50

Classic Java: How to Wait For ConditionsClassic Java: How to Wait For Conditions

• If you are in a synchronized block and need to
stall for an external event
• use mon.wait(), where mon is the monitor that

you own.

• wait

• gives up the processor
• gives up the monitor
• makes you ineligible to ever be rescheduled unless

either a timeout expires, an interrupt occurs, or
somebody else issues a notifyAll

26

51

notify notify vsvs notifyAllnotifyAll

• Once thread has done a wait, another thread
the rectifies situation should issue a
mon.notifyAll().

• mon.notifyAll reinstates scheduling
eligibility for all threads that issued a
mon.wait()

• mon.notify reinstates scheduling eligibility
for one thread (VM chooses, not you) that
issued a mon.wait()
• extremely dangerous to use notify unless you

know there is only one thread waiting. This method
should be deprecated

52

waitwait and and notifyAllnotifyAll

• You must own the monitor when you execute
either of these

• Runtime exception thrown if you don’t own
monitor

• Common mistake is to use wait() or
notifyAll() without specifying monitor.
Defaults to this.wait() and
this.notifyAll(), which only works if the
monitor is this.

• Typically, wait is in a very tight while loop,
NOT an if statement

27

53

Synchronization Rule #5Synchronization Rule #5
• The wait/notifyAll pattern:

• Place wait in a tight while loop that loops as long as
a required condition is not yet met

• Code that could fix the condition issues notifyAll
• Never use notify

• remember that these are instance methods for the
monitor that you are willing to release

54

Waiting in Java 5Waiting in Java 5
• Use Condition object

• Generated by Lock’s newCondition factory
method

• Important methods:
• await (like wait)

• signalAll (like notifyAll)

28

55

Java 5 Example With Condition ObjectsJava 5 Example With Condition Objects
class Account
{

public void deposit(int d)
{

try { lck.lock(); balance += d; cond.signalAll(); }
finally { lck.unlock(); }

}

public void withdraw(int d) throws OverdraftException
{

try {
lck.lock();
while(balance < d)

cond.await();
balance -= d;

}
catch(InterruptedException e)

{ throw new OverdraftException(); }
finally { lck.unlock(); }

}

private int balance = 0;
private Lock lck = new ReentrantLock();
private Condition cond = lck.newCondition();

}

56

DeadlockDeadlock

• Occurs when two threads are each waiting for
monitors they can’t both get.

• Example:
• Thread #1 needs monitors A and B
• Thread #2 needs monitors A and B
• Thread #1 has A
• Thread #2 has B
• Deadlock

• Java does not detect deadlocks

• Avoiding deadlocks very difficult; requires lots
of experience

29

57

Synchronization Rule #6Synchronization Rule #6

• Rule #6: Always obtain monitors and locks in
the same order
• Often involves finding an immutable totally-

orderable property of the object’s whose monitor
you will need, and obtaining monitors using that
order

• Example: obtaining monitors for two bank
accounts, use account #s, and obtain lower account
#’s monitor first

58

SummarySummary

• Threading is an essential part of Java and any real
program. Easier in Java than elsewhere
• tells you how hard it is elsewhere

• Follow the rules
• start don’t run
• don’t rely exclusively on priorities
• no public data
• synchronize mutators, maybe accessors
• leave critical section only after object is restored
• no sleeping in synchronized block
• use wait/notifyAll pattern (or await/signalAll)

• obtain monitors in same order

