Threads and Synchronization

Mark Allen Weiss
Copyright 2006

\Outﬁn of Topics

- What threadsare
- TheThr ead class and starting ethreads

- Synchronization: keeping threads
clobbering each other

- Deadlock avoidance: keeping threads fr
stalling over each other

Multitasking

Multitasking means that you can have several
processes running at same timepeven if only
one pr ocessor .

Can run a browser, VM, power point, print.job,
etc.

All moder n operating systems support
multitasking

On asingle processor system, multitasking is
an illusion projected by operating system

Threads

I nside each process can have several threads

Each thread representsits own flew of logic
» getsseparate runtime stack

M oder n oper ating systems support threading
too; mor e efficient than separ ate pr ocesses

Example of threading in a browser:

» separate thread downloads each image on a page
(could be onethread per image)

» separatethread displaysHTML

» separatethread allowstyping or pressing of stop
button

* makesbrowser look more responsive

Threads in C/C++

Threadsarenot part of C or C++

Haveto write different code for ‘each operating
systems

Difficult to port

Threads in Java

Part of language
Same code for every Java VM
Simpler than in most other languages

Still very difficult:

* When running multiple threads, thereis
nondeter minism, even on same machine

» Often hard to see that your code hasbugs
* Requireslotsof experienceto do good designs

Threads in the Virtual Machine

VM hasthreadsin background

VM aliveaslong asa*“legitimatethread” still
around (illegitimate threads are “daemons’)

GUI programswill start separate thread to
handle events once frameisvisible

), main thread

garbage collector #Y,
event thread

(once container isvisible)

Thread Class

UseThr ead classinj ava. | ang

Two most important instance methods:

e start: Createsanew thread of execution.in the
VM then, invokesr un in that thread of execution;
current thread also continuesrunning

» run: explainswhat the thread should do
Thr ead isnot abstract, so there are default
Implementations

* start doeswhat isdescribed above; should befinal
method (but isn’t)
* run returnsimmediately

Creating A Do Nothing Thread

» Thefollowing code createsa Thr ead object,
then starts a second thread.

public static void main(String[] args) {
Thread t = new Thread();
t.start(); // now two threads, both running
Systemout.println(“main continues”);

}
* In code above:
» First linecreatesa Thr ead object, but mai n isthe
only running thread
» Second line spawnsanew VM thread. Two threads
arenow active.

* main thread continues at sametime as new thread
callsitsr un method (which does nothing) 0

Getting Thread to Do Something

- Option #1: extend Thr ead class, overrider un
method

cl ass ThreadExt ends extends Thread {
public void run() {
for(int i =0; i < 1000; i++)
Systemout.println("ThreadExtends " + i);
}
}

cl ass ThreadDenmo {
public static void main(String[] args) {
Thread t1 = new ThreadExtends();

tl.start();
for(int i =0; i < 1000; i++)
Systemout.printin("main " +i);

10

Alternative to Extending Thr ead

* No multiple inheritance; might not have an
extends clause available

* Might not model an | S-A relationship
* Really just need to explain to Thr ead what
r un method to use
» Obviousfunction object pattern
* runisencapsulated in standard Runnable interface

* implement Runnable; send an instanceto Thread
constructor

» preferred solution

11

Alternative #2. Using Runnabl e

cl ass ThreadsRunMet hod i npl enents Runnabl e {
public void run() {
for(int i =0; i < 1000; i++)
System out. println("ThreadsRunMet hod " “#ni);
}
}

cl ass ThreadDenmo {
public static void main(String[] args) {
Thread t2 = new Thread (new ThreadsRunMet hod());

t2.start();
for(int i =0; i < 1000; i++)
Systemout.printin("main " +i);

Anonymous Implementation

- May seethe Runnabl e implemented as an
anonymous classin other people's code

cl ass ThreadDenmo {
public static void main(String[] args) {

Thread t3 = new Thread (new Runnable() {
public void run() {
for(int i =0; i < 1000; i++)

System out. println("ThreadAnonynous " + i);
}
}
)

t3.start();
for(int i =0; i < 1000; i++)
Systemout.printin("main " +i);

13

Common Mistake #1

* You should NEVER call r un your self

* will not create new VM thread
» will not get separate stack space
e will invoker un inthecurrent thread

e start don’trun

14

Thread States

« Thread is not runnable until start is called

- Thread can only unblock if cause,of blocking is
resolved

run terminateg

/

constructor

sl eep, wai t, blocked on I/©

blocked

timeexpires, noti fyAl |, /O complete

15

Is The Thread Alive?

« Thread that isrunnable or blocked isalive

- Thread that has not started or iSdead is not
alive

« Can use Thr ead instance method i sAl | ve to
determine thread status

- Javal4or earlier: Cannot differentiate
between being runnable and blocked.

- Javab: useget St at e.

16

Uncaught Exceptions

- Uncaught exception terminatesathread’sr un
method

« Does not terminatethe VM unlessthere are
only daemon threads left

- run cannot list any checked exceptionsin its
throws list (why not?)

17

Thread Methods

* instance methods

» setDaemon

* isDaemon
setPriority
getPriority
interrupt

e join
* static methods

. s|eep

 yield

18

Current Thread

» Beforeyou can invoke any Thr ead instance
method, you need areference toithe current
thread

* |f you extend Thr ead, no problem. In your run
method, t hi s representscurrent Thr ead and can
be omitted

* If you use Runnabl e, in your r un method t hi's
representsthe Runnabl e object. Need to use static
method Thr ead. current Thr ead

Thread self = Thread. current Thread();

19

Deamon Threads

By themselves do not keep a VM alive

Can mark athread as a daemon‘thread by
calling set Daenon(true)

Call must be before call tost art ; after call an
exception isthrown

Without call to set Daenpn thread’s daemon
statusis same as thread that spawned it

Cancall i sDaenon toseeif thread isa
daemon

20

10

Thread Priorities

e Can suggest to VM that when thereis
contention for CPU, some threads should get
preference over others.

* Only considered when there’s CPU contention;
threadsthat are deeping won't go any faster with
higher priorities

 |f your program dependson priorities, you need to
do morework; VM could ignore suggestions

* Priority of thread issame asthread that created it

* Only 10 prioritiesranging from
Thread. M N_PRI ORI TY to
Thread. MAX_PRI ORI TY, with
Thr ead. NORM PRI ORI TY ”

Interrupting A Thread

* Any thread can interrupt any other thread (if it
has a referencetoits Thr ead object) by
invoking i nt errupt on that Thread object.
» Used if target thread is deliberately blocked

(deeping, waiting, yielding or otherwise not
interested in getting the processor right now, but not
blocked on 1/0)

* |If target thread isdeliberately blocked, interrupt
sendsan | nt er r upt edExcepti on tothethread,
which wakes thread up

* |If target thread isno longer deliberately blocked,
interrupt isignored

11

| nt err upt edException

* I nterruptedExcepti onisachecked

exception; must be caught or prepagated by
host of Thr ead routinesthat causethread to

give up the processor
* Really annoying
» Probably should terminate thread

23

join
- Thecalltl1l.join() causesthecurrent
thread to block until t 1 terminates
- Havetocatch | nt er r upt edExcept.i on

- mai n canjoin on all threadsit spawnsto wait
for them all to finish

24

12

yield

Threadsthat are CPU intensive can hog all the
cycles, especially if they are high.priority
Polite thread yields every now and then

* not too often; could be spending too much time
context switching

* yi el d isastatic method.

Current thread

» Givesup the processor if another thread of at least
as high priority iswaiting for the CPU

» If nodligiblethread, current thread retains
processor

Must catch | nt er r upt edExcepti on »

sl eep

Static method.

Current thread

» Givesup the processor for at least the time specified
* Timeisin milliseconds

* No guaranteethat you get processor back

Must catch | nt er r upt edeExcepti on

26

13

Timeouts

e caninvokewai t andj oi n with a parameter
that limits the amount of blocking (in
milliseconds)

» for wai t not necessarily a great idea

» Example: thread needstodo |I/O; what If
nothing istyped?
* Dol/Oin aseparatethread
* main thread doesaj oi n, with timeout on the l/O
thread

e |f no /O, main thread will continue and can
terminateitsaf and I/O thread if needed

27

Shared Data

» All threads sharethe VM s memory
» useful if threads are going to do real work

 If two threads have referencesto thesame
object, they can potentially simultaneously
invoke methods on the object
» ok if both accessing
* might bebad if onethread is mutating
» could be a disaster if two threads are mutating

28

14

Example

class TwoObj s {
private int a
private int b

15
37,

public int sunm() { return a + b; } // shoul'd akways be 52
public void swap() { int tnp =a; a=b; b =1tnp; }
}

* Two threads share areference to some
TwoQbj s object, and the following steps occur

» Thread 1invokesswap, and immediately after
executing a=b istime-diced out.

* Thread 2 invokessum and returns 74.

» Despite private data, and object has been
accessed whilein an inconsistent state

29

Two Mutators Do Serious Damage

» Last example not so bad
» Wetemporarily see object in a badckstate
* Thread 1 getstime-diced in and object gets back in
good state

» Often we view objectsin bad states, and we know
that current information may be inaccurate, but will
eventually be correct

» bank accounts
* frequent flyer accounts
* credit card statements

* When two mutatorsinteract, can irreversibly
damage object state

15

Two mutators

class TwoObj s {
private int a = 15;
private int b = 37;

public int sun() { return a + b; } // should always, be 52
public void swap() { int tnp =a;, a=b; b =tnp; }
}

e Starting from good state
* Thread 1invokesswap, and immediately after
executing t np=a istime-diced out. In thisthread
t mp=15.
* Thread 2 invokes swap, swappinga and b. a isnow
37, b isnow 15.

 Thread 1 istime-diced back in and continues; a is
now 15, b isnow t np, so b is 15. OOPS!

31

Can This Really Happen?

* Yesbut,

* |t can befairly rare

* Dependson speed of processors
Depends on number of processors
Dependson thread priorities
Dependson luck of the draw
* Worst kind of bug

* Twohj s classisnot thread-safe

* Could do millions of operations and never seea
problem

» Hard to know you’ ve messed up

32

16

Classic Java Synchronization

* Usethesynchroni zed keyword

* Marking an instance method as'synchronized
meansthat in order toinvokeit thethread
must gain possession of the “monitor” for the
invoking object (i.e. the “monitor” for t hi s).

» Themonitor is an abstraction

» every object hasone and only one
* no getMonitor method, however

How It Works

* Toenter asynchronized method, thread must

* either already own the monitor (perhapsthis
method isbeing called from another synchronized
method)

» get the monitor
» oncein, if you aretimediced out, you will keep the
monitor, blocking other threads out
» |If another thread already owns the monitor
and has been timesliced out, you will be
blocked from obtaining the monitor

* When thread leaves method from which it
obtained monitor, monitor isreleased by VM

Unsynchronized Methods

Only synchronized methodsrequirethe
obtaining of a monitor

Synchronization is very expensive
Sun recommends:

» gsynchronize everything
Lessdrastic:

» synchronize mutators

» synchronize accessor s depending on the tradeoff of
occasional bad data versus performance

Example #1

* Assume both print and swap ar e synchronized
* Thread #1 doesobj . swap()
 can obtain obj 'smonitor and enter
Thread #1 istimesliced out in the middle of swap
» Thread #1 holds on to obj s monitor

Thread #2 doesobj . print ()

» Thread #2 needsobj 'smonitor. Can’t get it, so thread is
blocked

Thread #1 istimesliced in; finishes swap
» Thread #1 releasesobj 's monitor

Thread #3 doesobj . print ()
» Thread #3 getsthe monitor and proceeds

18

Example #2

» Assume only swap is synchronized
* Thread #1 doesobj . swap()
 can obtain obj 'smonitor and enter

* Thread #1 istimesliced out in the middle of swap
» Thread #1 holds on to obj 's monitor

» Thread #2 doesobj . print ()
» Thread #2 does not need obj 's monitor, so it proceeds

» Thread #1 istimesliced in; finishes swap
» Thread #1 releasesobj 's monitor

37

Example #3

» Assume swap and print are synchronized, and
obj 1 and obj 2 aredifferent objects

* Thread #1 doesobj 1. swap()
 can obtain obj 1’smonitor and enter

» Thread #1 istimesliced out in the middle of swap
» Thread #1 holds on to obj 1’smonitor

» Thread #2 doesobj 2. pri nt ()
 can obtain obj 2’smonitor and enter, soit proceeds
» when it finishesit releases obj 2’smonitor

» Thread #1 istimesliced in; finishes swap
* Thread #1 releasesobj 1'smonitor

19

Static Methods

» Synchronized static methodsrequirethe
obtaining of a monitor also
» can’t bethe objects monitor because there is not

* themonitor it needsto obtain the monitor forthe
Cl ass object.

* May beimportant for fancy stuff

e Just remember that instance methods and
static methods use different monitors

39

Synchronized Block

» Often don’t need to synchronize entire method
* just need to synchronize a “ criticaksection”
» few lines of code that should be viewed as an
“atomic” single operation

» Use a synchronized block
synchroni zed(anyobject)

{

/1 must have possession of nonitor for anyobject

/1 will release if obtained (not just inherited)

20

These are Equivalent

public class Foo // Version #1

{
synchroni zed public void foo() { ... }
synchroni zed static void bar() { ... }

}

public class Foo // Version #2
{
public void foo()
{
synchroni zed(this) { ... }
}
static void bar()
{
synchroni zed(Foo.class) { ... }
}
}

41

Synchronized Is Not Inherited

- Asprevious slide shows, synchronized in
method header isjust a convenience

42

21

Synchronization Rule #1

- Can only synchronize methods and code
- Can never synchronize data, so

- RULE#1: ALL DATA MUST BE PRIVATE

OR YOU LOSE

Synchronization Rule #2

- RULE #2: Any code/methods that makes

changes to shared variables must use
synchr oni zed to ensure safe concur rent

access.

- Accessors ar e often decided based on
per for mance requir ements.

22

Synchronization Rule #3

* RULE #3: Be careful about propagating
exceptions through a critical section.
» Can have a half-way done operation ifyoeu do this
* Thisiswhy st op isdeprecated

Java 5 Locks

- Java5addslibrary to support locks.
- Packageisj ava. util.concurrent.| ocks

. InterfaceisLock with methods| ock»and
unl ock

- Lock isimplemented by Reent r ant Lock
(among others)

46

23

Example Code With Java 5 Locks

inport java.util.concurrent.|ocks. Lock;
inport java.util.concurrent.|ocks. ReentrantLock;

class TwoQbj s
{
private int a = 15;
private int b = 37;
private Lock I ck = new ReentrantLock();

public int sun()

{
try { Ick.lock(); return a + b; } // should al ways be 52

finally { Ick.unlock(); }
}

public void swap()

{
try { Ick.lock(); int tnp =a; a=Db; b=tnp; }
finally { Ick.unlock(); }

} 47
Locks vs Monitors

» Locksareahigher level of abstraction than
monitors.
e Similar toarray vs. List

» Locks could beimplemented via monitor s;.or
could be implemented some special way that
would make them faster than monitors.

48

24

Synchronization Rule #4

C Rule#4: Never call sl eep in asynchronized
block.

— If you call sl eep, you give up the processor, but not
the monitor.

— Anybody else who needs the monitor will be blocked
— Can cause deadlock
— Thisiswhy suspend isdeprecated

49

Classic Java: How to Wait For Conditions

» If you arein a synchronized block and need to
stall for an external event
e usenon. wai t (), wherenon isthe monitor that
you own.
* wait
* givesup the processor
* givesup the monitor

* makesyou indligibleto ever berescheduled unless
either atimeout expires, an interrupt occurs, or
somebody elseissuesanoti f yAl |

25

notify vs notifyAll

e Oncethread has done a wait, another thread
the rectifies situation should issue a
non. noti fyAll ().

non. noti fyAl | reinstates scheduling
eligibility for all threadsthat issued a

non. wai t ()

non. not i fy reinstates scheduling eligibility
for onethread (VM chooses, not you) that
issued anon. wai t ()

» extremely dangerousto usenoti f y unlessyou
know thereisonly onethread waiting. This method
should be deprecated

51

wai t and noti fyAll

- You must own the monitor when you execute
either of these

- Runtime exception thrown if you don’t own
monitor

- Common mistakeistousewai t () or

noti fyAl | () without specifying monitor.
Defaultstot hi s. wai t () and
this.notifyAll(),whichonlyworksif the
monitor ist hi s.

- Typically, wai t isin avery tight while loop,
NOT an if statement

52

26

Synchronization Rule #5

» Thewai t/notifyAll pattern:

* Placewai t in atight whileloop that loopsaslong as
arequired condition isnot yet met

» Codethat could fix the condition issues not inf yAl |

* Never usenotify

* remember that these areinstance methods for the
monitor that you arewilling to release

Waiting in Java 5

* UseCondi ti on object

» Generated by Lock’snewCondint i on factory
method

* Important methods:
e awnai t (likewai t)
e signal Al'l (likenoti fyAll

27

Java 5 Example With Condition Objects

class Account
{
public void deposit(int d)
{
try { Ick.lock(); balance += d; cond.signabA I (); }
finally { Ick.unlock(); }
}

public void withdraw(int d) throws OverdraftException
{
try {
lck.lock();
whil e(balance < d)
cond. awai t ();
bal ance -= d;
}
catch(I nterruptedException e)
{ throw new OverdraftException(); }
finally { Ick.unlock(); }
}

private int balance = 0;
private Lock I ck = new ReentrantLock();
private Condition cond = |ck.newCondition();

Deadlock

* Occurswhen two threads are each waiting for
monitorsthey can’t both get.

» Example:
* Thread #1 needs monitors A and B

Thread #2 needs monitors A and B

Thread #1 has A

Thread #2 hasB

Deadlock

» Java does not detect deadlocks

» Avoiding deadlocks very difficult; requireslots
of experience

56

28

Synchronization Rule #6

* Rule#6: Always obtain monitorsand locksin
the same or der
» Often involvesfinding an immutable totally-
orderable property of the object’s whose monitor
you will need, and obtaining monitors using that
order
» Example: obtaining monitorsfor two bank

accounts, use account #s, and obtain lower account
smonitor first

57

Summary

* Threading isan essential part of Java and any real
program. Easier in Java than elsewhere
* tellsyou how hard it is elsawhere

* Follow therules
e start don’t run
* don’t rely exclusively on priorities
* no public data
* synchronize mutators, maybe accessor s
* leave critical section only after object isrestored
» no deeping in synchronized block
* usewai t/noti fyAl | pattern (or awai t/si gnal Al IY)
» obtain monitorsin same order 58

29

