1. For union-by-rank with path compression, show
 (a) \(C(M, N, r) \) is 0 if \(r \leq 1 \).
 (b) \(C(M, N, 2) \) is at most \(M \).
 (c) \(C(M, N, r) \leq M + N \) if \(r \leq 8 \) (hint: choose an appropriate \(s \)).

2. When a vertex and its incident edges are removed from an undirected tree, a collection of subtrees remains. Give a linear-time algorithm that finds a vertex whose removal from an \(N \)-vertex tree leaves no subtree with more than \(N/2 \) vertices.

3. Integers 1, 2, ..., \(E \) are each randomly assigned as a weight to an edge in an undirected graph with \(E \) edges and \(V \) vertices. Give an \(O(E\alpha(E, V)) \) algorithm to find the minimum spanning tree of this graph.

4. Give a linear-time algorithm to find the longest weighted path from \(s \) to \(t \) in a directed ACYCLIC graph.

5. Let \(G = (V, E) \) be an undirected graph. Use depth-first search to design a linear-time algorithm to convert each edge in \(G \) to a directed edge such that the resulting graph is strongly connected, or determine that this is not possible.