package DataStructures; // BinarySearchTree class // // CONSTRUCTION: with no initializer // // ******************PUBLIC OPERATIONS********************* // void insert( x ) --> Insert x // void remove( x ) --> Remove x // Comparable find( x ) --> Return item that matches x // Comparable findMin( ) --> Return smallest item // Comparable findMax( ) --> Return largest item // boolean isEmpty( ) --> Return true if empty; else false // void makeEmpty( ) --> Remove all items // void printTree( ) --> Print tree in sorted order /** * Implements an unbalanced binary search tree. * Note that all "matching" is based on the compareTo method. * @author Mark Allen Weiss */ public class BinarySearchTree { /** * Construct the tree. */ public BinarySearchTree( ) { root = null; } /** * Insert into the tree; duplicates are ignored. * @param x the item to insert. */ public void insert( Comparable x ) { root = insert( x, root ); } /** * Remove from the tree. Nothing is done if x is not found. * @param x the item to remove. */ public void remove( Comparable x ) { root = remove( x, root ); } /** * Find the smallest item in the tree. * @return smallest item or null if empty. */ public Comparable findMin( ) { return elementAt( findMin( root ) ); } /** * Find the largest item in the tree. * @return the largest item of null if empty. */ public Comparable findMax( ) { return elementAt( findMax( root ) ); } /** * Find an item in the tree. * @param x the item to search for. * @return the matching item or null if not found. */ public Comparable find( Comparable x ) { return elementAt( find( x, root ) ); } /** * Make the tree logically empty. */ public void makeEmpty( ) { root = null; } /** * Test if the tree is logically empty. * @return true if empty, false otherwise. */ public boolean isEmpty( ) { return root == null; } /** * Print the tree contents in sorted order. */ public void printTree( ) { if( isEmpty( ) ) System.out.println( "Empty tree" ); else printTree( root ); } /** * Internal method to get element field. * @param t the node. * @return the element field or null if t is null. */ private Comparable elementAt( BinaryNode t ) { return t == null ? null : t.element; } /** * Internal method to insert into a subtree. * @param x the item to insert. * @param t the node that roots the tree. * @return the new root. */ private BinaryNode insert( Comparable x, BinaryNode t ) { /* 1*/ if( t == null ) /* 2*/ t = new BinaryNode( x, null, null ); /* 3*/ else if( x.compareTo( t.element ) < 0 ) /* 4*/ t.left = insert( x, t.left ); /* 5*/ else if( x.compareTo( t.element ) > 0 ) /* 6*/ t.right = insert( x, t.right ); /* 7*/ else /* 8*/ ; // Duplicate; do nothing /* 9*/ return t; } /** * Internal method to remove from a subtree. * @param x the item to remove. * @param t the node that roots the tree. * @return the new root. */ private BinaryNode remove( Comparable x, BinaryNode t ) { if( t == null ) return t; // Item not found; do nothing if( x.compareTo( t.element ) < 0 ) t.left = remove( x, t.left ); else if( x.compareTo( t.element ) > 0 ) t.right = remove( x, t.right ); else if( t.left != null && t.right != null ) // Two children { t.element = findMin( t.right ).element; t.right = remove( t.element, t.right ); } else t = ( t.left != null ) ? t.left : t.right; return t; } /** * Internal method to find the smallest item in a subtree. * @param t the node that roots the tree. * @return node containing the smallest item. */ private BinaryNode findMin( BinaryNode t ) { if( t == null ) return null; else if( t.left == null ) return t; return findMin( t.left ); } /** * Internal method to find the largest item in a subtree. * @param t the node that roots the tree. * @return node containing the largest item. */ private BinaryNode findMax( BinaryNode t ) { if( t != null ) while( t.right != null ) t = t.right; return t; } /** * Internal method to find an item in a subtree. * @param x is item to search for. * @param t the node that roots the tree. * @return node containing the matched item. */ private BinaryNode find( Comparable x, BinaryNode t ) { if( t == null ) return null; if( x.compareTo( t.element ) < 0 ) return find( x, t.left ); else if( x.compareTo( t.element ) > 0 ) return find( x, t.right ); else return t; // Match } /** * Internal method to print a subtree in sorted order. * @param t the node that roots the tree. */ private void printTree( BinaryNode t ) { if( t != null ) { printTree( t.left ); System.out.println( t.element ); printTree( t.right ); } } /** The tree root. */ private BinaryNode root; // Test program public static void main( String [ ] args ) { BinarySearchTree t = new BinarySearchTree( ); final int NUMS = 4000; final int GAP = 37; System.out.println( "Checking... (no more output means success)" ); for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS ) t.insert( new MyInteger( i ) ); for( int i = 1; i < NUMS; i+= 2 ) t.remove( new MyInteger( i ) ); if( NUMS < 40 ) t.printTree( ); if( ((MyInteger)(t.findMin( ))).intValue( ) != 2 || ((MyInteger)(t.findMax( ))).intValue( ) != NUMS - 2 ) System.out.println( "FindMin or FindMax error!" ); for( int i = 2; i < NUMS; i+=2 ) if( ((MyInteger)(t.find( new MyInteger( i ) ))).intValue( ) != i ) System.out.println( "Find error1!" ); for( int i = 1; i < NUMS; i+=2 ) { if( t.find( new MyInteger( i ) ) != null ) System.out.println( "Find error2!" ); } } }