package DataStructures; // BinomialQueue class // // CONSTRUCTION: with a negative infinity sentinel // // ******************PUBLIC OPERATIONS********************* // void insert( x ) --> Insert x // Comparable deleteMin( )--> Return and remove smallest item // Comparable findMin( ) --> Return smallest item // boolean isEmpty( ) --> Return true if empty; else false // boolean isFull( ) --> Return true if full; else false // void makeEmpty( ) --> Remove all items // vod merge( rhs ) --> Absord rhs into this heap // ******************ERRORS******************************** // Overflow if CAPACITY is exceeded /** * Implements a binomial queue. * Note that all "matching" is based on the compareTo method. * @author Mark Allen Weiss */ public class BinomialQueue { /** * Construct the binomial queue. */ public BinomialQueue( ) { theTrees = new BinomialNode[ MAX_TREES ]; makeEmpty( ); } /** * Merge rhs into the priority queue. * rhs becomes empty. rhs must be different from this. * @param rhs the other binomial queue. * @exception Overflow if result exceeds capacity. */ public void merge( BinomialQueue rhs ) throws Overflow { if( this == rhs ) // Avoid aliasing problems return; if( currentSize + rhs.currentSize > capacity( ) ) throw new Overflow( ); currentSize += rhs.currentSize; BinomialNode carry = null; for( int i = 0, j = 1; j <= currentSize; i++, j *= 2 ) { BinomialNode t1 = theTrees[ i ]; BinomialNode t2 = rhs.theTrees[ i ]; int whichCase = t1 == null ? 0 : 1; whichCase += t2 == null ? 0 : 2; whichCase += carry == null ? 0 : 4; switch( whichCase ) { case 0: /* No trees */ case 1: /* Only this */ break; case 2: /* Only rhs */ theTrees[ i ] = t2; rhs.theTrees[ i ] = null; break; case 4: /* Only carry */ theTrees[ i ] = carry; carry = null; break; case 3: /* this and rhs */ carry = combineTrees( t1, t2 ); theTrees[ i ] = rhs.theTrees[ i ] = null; break; case 5: /* this and carry */ carry = combineTrees( t1, carry ); theTrees[ i ] = null; break; case 6: /* rhs and carry */ carry = combineTrees( t2, carry ); rhs.theTrees[ i ] = null; break; case 7: /* All three */ theTrees[ i ] = carry; carry = combineTrees( t1, t2 ); rhs.theTrees[ i ] = null; break; } } for( int k = 0; k < rhs.theTrees.length; k++ ) rhs.theTrees[ k ] = null; rhs.currentSize = 0; } /** * Return the result of merging equal-sized t1 and t2. */ private static BinomialNode combineTrees( BinomialNode t1, BinomialNode t2 ) { if( t1.element.compareTo( t2.element ) > 0 ) return combineTrees( t2, t1 ); t2.nextSibling = t1.leftChild; t1.leftChild = t2; return t1; } /** * Insert into the priority queue, maintaining heap order. * This implementation is not optimized for O(1) performance. * @param x the item to insert. * @exception Overflow if capacity exceeded. */ public void insert( Comparable x ) throws Overflow { BinomialQueue oneItem = new BinomialQueue( ); oneItem.currentSize = 1; oneItem.theTrees[ 0 ] = new BinomialNode( x ); merge( oneItem ); } /** * Find the smallest item in the priority queue. * @return the smallest item, or null, if empty. */ public Comparable findMin( ) { if( isEmpty( ) ) return null; return theTrees[ findMinIndex( ) ].element; } /** * Find index of tree containing the smallest item in the priority queue. * The priority queue must not be empty. * @return the index of tree containing the smallest item. */ private int findMinIndex( ) { int i; int minIndex; for( i = 0; theTrees[ i ] == null; i++ ) ; for( minIndex = i; i < theTrees.length; i++ ) if( theTrees[ i ] != null && theTrees[ i ].element.compareTo( theTrees[ minIndex ].element ) < 0 ) minIndex = i; return minIndex; } /** * Remove the smallest item from the priority queue. * @return the smallest item, or null, if empty. */ public Comparable deleteMin( ) { if( isEmpty( ) ) return null; int minIndex = findMinIndex( ); Comparable minItem = theTrees[ minIndex ].element; BinomialNode deletedTree = theTrees[ minIndex ].leftChild; BinomialQueue deletedQueue = new BinomialQueue( ); deletedQueue.currentSize = ( 1 << minIndex ) - 1; for( int j = minIndex - 1; j >= 0; j-- ) { deletedQueue.theTrees[ j ] = deletedTree; deletedTree = deletedTree.nextSibling; deletedQueue.theTrees[ j ].nextSibling = null; } theTrees[ minIndex ] = null; currentSize -= deletedQueue.currentSize + 1; try { merge( deletedQueue ); } catch( Overflow e ) { } return minItem; } /** * Test if the priority queue is logically empty. * @return true if empty, false otherwise. */ public boolean isEmpty( ) { return currentSize == 0; } /** * Test if the priority queue is logically full. * @return true if full, false otherwise. */ public boolean isFull( ) { return currentSize == capacity( ); } /** * Make the priority queue logically empty. */ public void makeEmpty( ) { currentSize = 0; for( int i = 0; i < theTrees.length; i++ ) theTrees[ i ] = null; } private static final int MAX_TREES = 14; private int currentSize; // # items in priority queue private BinomialNode [ ] theTrees; // An array of tree roots /** * Return the capacity. */ private int capacity( ) { return ( 1 << theTrees.length ) - 1; } public static void main( String [ ] args ) { int numItems = 10000; BinomialQueue h = new BinomialQueue( ); BinomialQueue h1 = new BinomialQueue( ); int i = 37; System.out.println( "Starting check." ); try { for( i = 37; i != 0; i = ( i + 37 ) % numItems ) if( i % 2 == 0 ) h1.insert( new MyInteger( i ) ); else h.insert( new MyInteger( i ) ); h.merge( h1 ); for( i = 1; i < numItems; i++ ) if( ((MyInteger)( h.deleteMin( ) )).intValue( ) != i ) System.out.println( "Oops! " + i ); } catch( Overflow e ) { System.out.println( "Unexpected overflow" ); } System.out.println( "Check done." ); } }