package DataStructures; // RedBlackTree class // // CONSTRUCTION: with a negative infinity sentinel // // ******************PUBLIC OPERATIONS********************* // void insert( x ) --> Insert x // void remove( x ) --> Remove x (unimplemented) // Comparable find( x ) --> Return item that matches x // Comparable findMin( ) --> Return smallest item // Comparable findMax( ) --> Return largest item // boolean isEmpty( ) --> Return true if empty; else false // void makeEmpty( ) --> Remove all items // void printTree( ) --> Print tree in sorted order /** * Implements a red-black tree. * Note that all "matching" is based on the compareTo method. * @author Mark Allen Weiss */ public class RedBlackTree { /** * Construct the tree. * @param negInf a value less than or equal to all others. */ public RedBlackTree( Comparable negInf ) { header = new RedBlackNode( negInf ); header.left = header.right = nullNode; } /** * Insert into the tree. Does nothing if item already present. * @param item the item to insert. */ public void insert( Comparable item ) { current = parent = grand = header; nullNode.element = item; while( current.element.compareTo( item ) != 0 ) { great = grand; grand = parent; parent = current; current = item.compareTo( current.element ) < 0 ? current.left : current.right; // Check if two red children; fix if so if( current.left.color == RED && current.right.color == RED ) handleReorient( item ); } // Insertion fails if already present if( current != nullNode ) return; current = new RedBlackNode( item, nullNode, nullNode ); // Attach to parent if( item.compareTo( parent.element ) < 0 ) parent.left = current; else parent.right = current; handleReorient( item ); } /** * Remove from the tree. * Not implemented in this version. * @param x the item to remove. */ public void remove( Comparable x ) { System.out.println( "Remove is not implemented" ); } /** * Find the smallest item the tree. * @return the smallest item or null if empty. */ public Comparable findMin( ) { if( isEmpty( ) ) return null; RedBlackNode itr = header.right; while( itr.left != nullNode ) itr = itr.left; return itr.element; } /** * Find the largest item in the tree. * @return the largest item or null if empty. */ public Comparable findMax( ) { if( isEmpty( ) ) return null; RedBlackNode itr = header.right; while( itr.right != nullNode ) itr = itr.right; return itr.element; } /** * Find an item in the tree. * @param x the item to search for. * @return the matching item or null if not found. */ public Comparable find( Comparable x ) { nullNode.element = x; current = header.right; for( ; ; ) { if( x.compareTo( current.element ) < 0 ) current = current.left; else if( x.compareTo( current.element ) > 0 ) current = current.right; else if( current != nullNode ) return current.element; else return null; } } /** * Make the tree logically empty. */ public void makeEmpty( ) { header.right = nullNode; } /** * Test if the tree is logically empty. * @return true if empty, false otherwise. */ public boolean isEmpty( ) { return header.right == nullNode; } /** * Print the tree contents in sorted order. */ public void printTree( ) { if( isEmpty( ) ) System.out.println( "Empty tree" ); else printTree( header.right ); } /** * Internal method to print a subtree in sorted order. * @param t the node that roots the tree. */ private void printTree( RedBlackNode t ) { if( t != nullNode ) { printTree( t.left ); System.out.println( t.element ); printTree( t.right ); } } /** * Internal routine that is called during an insertion * if a node has two red children. Performs flip and rotations. * @param item the item being inserted. */ private void handleReorient( Comparable item ) { // Do the color flip current.color = RED; current.left.color = BLACK; current.right.color = BLACK; if( parent.color == RED ) // Have to rotate { grand.color = RED; if( ( item.compareTo( grand.element ) < 0 ) != ( item.compareTo( parent.element ) < 0 ) ) parent = rotate( item, grand ); // Start dbl rotate current = rotate( item, great ); current.color = BLACK; } header.right.color = BLACK; // Make root black } /** * Internal routine that performs a single or double rotation. * Because the result is attached to the parent, there are four cases. * Called by handleReorient. * @param item the item in handleReorient. * @param parent the parent of the root of the rotated subtree. * @return the root of the rotated subtree. */ private RedBlackNode rotate( Comparable item, RedBlackNode parent ) { if( item.compareTo( parent.element ) < 0 ) return parent.left = item.compareTo( parent.left.element ) < 0 ? rotateWithLeftChild( parent.left ) : // LL rotateWithRightChild( parent.left ) ; // LR else return parent.right = item.compareTo( parent.right.element ) < 0 ? rotateWithLeftChild( parent.right ) : // RL rotateWithRightChild( parent.right ); // RR } /** * Rotate binary tree node with left child. */ static RedBlackNode rotateWithLeftChild( RedBlackNode k2 ) { RedBlackNode k1 = k2.left; k2.left = k1.right; k1.right = k2; return k1; } /** * Rotate binary tree node with right child. */ static RedBlackNode rotateWithRightChild( RedBlackNode k1 ) { RedBlackNode k2 = k1.right; k1.right = k2.left; k2.left = k1; return k2; } private RedBlackNode header; private static RedBlackNode nullNode; static // Static initializer for nullNode { nullNode = new RedBlackNode( null ); nullNode.left = nullNode.right = nullNode; } static final int BLACK = 1; // Black must be 1 static final int RED = 0; // Used in insert routine and its helpers private static RedBlackNode current; private static RedBlackNode parent; private static RedBlackNode grand; private static RedBlackNode great; // Test program public static void main( String [ ] args ) { RedBlackTree t = new RedBlackTree( new MyInteger( Integer.MIN_VALUE ) ); final int NUMS = 40000; final int GAP = 307; System.out.println( "Checking... (no more output means success)" ); for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS ) t.insert( new MyInteger( i ) ); if( NUMS < 40 ) t.printTree( ); if( ((MyInteger)(t.findMin( ))).intValue( ) != 1 || ((MyInteger)(t.findMax( ))).intValue( ) != NUMS - 1 ) System.out.println( "FindMin or FindMax error!" ); for( int i = 1; i < NUMS; i++ ) if( ((MyInteger)(t.find( new MyInteger( i ) ))).intValue( ) != i ) System.out.println( "Find error1!" ); } }