// Treap class // // CONSTRUCTION: with no initializer // // ******************PUBLIC OPERATIONS********************* // void insert( x ) --> Insert x // void remove( x ) --> Remove x // boolean contains( x ) --> Return true if x is found // Comparable findMin( ) --> Return smallest item // Comparable findMax( ) --> Return largest item // boolean isEmpty( ) --> Return true if empty; else false // void makeEmpty( ) --> Remove all items // void printTree( ) --> Print tree in sorted order // ******************ERRORS******************************** // Throws UnderflowException as appropriate /** * Implements a treap. * Note that all "matching" is based on the compareTo method. * @author Mark Allen Weiss */ public class Treap> { /** * Construct the treap. */ public Treap( ) { nullNode = new TreapNode<>( null ); nullNode.left = nullNode.right = nullNode; nullNode.priority = Integer.MAX_VALUE; root = nullNode; } /** * Insert into the tree. Does nothing if x is already present. * @param x the item to insert. */ public void insert( AnyType x ) { root = insert( x, root ); } /** * Remove from the tree. Does nothing if x is not found. * @param x the item to remove. */ public void remove( AnyType x ) { root = remove( x, root ); } /** * Find the smallest item in the tree. * @return the smallest item, or throw UnderflowException if empty. */ public AnyType findMin( ) { if( isEmpty( ) ) throw new UnderflowException( ); TreapNode ptr = root; while( ptr.left != nullNode ) ptr = ptr.left; return ptr.element; } /** * Find the largest item in the tree. * @return the largest item, or throw UnderflowException if empty. */ public AnyType findMax( ) { if( isEmpty( ) ) throw new UnderflowException( ); TreapNode ptr = root; while( ptr.right != nullNode ) ptr = ptr.right; return ptr.element; } /** * Find an item in the tree. * @param x the item to search for. * @return true if x is found. */ public boolean contains( AnyType x ) { TreapNode current = root; nullNode.element = x; for( ; ; ) { int compareResult = x.compareTo( current.element ); if( compareResult < 0 ) current = current.left; else if( compareResult > 0 ) current = current.right; else return current != nullNode; } } /** * Make the tree logically empty. */ public void makeEmpty( ) { root = nullNode; } /** * Test if the tree is logically empty. * @return true if empty, false otherwise. */ public boolean isEmpty( ) { return root == nullNode; } /** * Print the tree contents in sorted order. */ public void printTree( ) { if( isEmpty( ) ) System.out.println( "Empty tree" ); else printTree( root ); } /** * Internal method to insert into a subtree. * @param x the item to insert. * @param t the node that roots the subtree. * @return the new root of the subtree. */ private TreapNode insert( AnyType x, TreapNode t ) { if( t == nullNode ) return new TreapNode<>( x, nullNode, nullNode ); int compareResult = x.compareTo( t.element ); if( compareResult < 0 ) { t.left = insert( x, t.left ); if( t.left.priority < t.priority ) t = rotateWithLeftChild( t ); } else if( compareResult > 0 ) { t.right = insert( x, t.right ); if( t.right.priority < t.priority ) t = rotateWithRightChild( t ); } // Otherwise, it's a duplicate; do nothing return t; } /** * Internal method to remove from a subtree. * @param x the item to remove. * @param t the node that roots the subtree. * @return the new root of the subtree. */ private TreapNode remove( AnyType x, TreapNode t ) { if( t != nullNode ) { int compareResult = x.compareTo( t.element ); if( compareResult < 0 ) t.left = remove( x, t.left ); else if( compareResult > 0 ) t.right = remove( x, t.right ); else { // Match found if( t.left.priority < t.right.priority ) t = rotateWithLeftChild( t ); else t = rotateWithRightChild( t ); if( t != nullNode ) // Continue on down t = remove( x, t ); else t.left = nullNode; // At a leaf } } return t; } /** * Internal method to print a subtree in sorted order. * @param t the node that roots the tree. */ private void printTree( TreapNode t ) { if( t != t.left ) { printTree( t.left ); System.out.println( t.element.toString( ) ); printTree( t.right ); } } /** * Rotate binary tree node with left child. */ private TreapNode rotateWithLeftChild( TreapNode k2 ) { TreapNode k1 = k2.left; k2.left = k1.right; k1.right = k2; return k1; } /** * Rotate binary tree node with right child. */ private TreapNode rotateWithRightChild( TreapNode k1 ) { TreapNode k2 = k1.right; k1.right = k2.left; k2.left = k1; return k2; } private static class TreapNode { // Constructors TreapNode( AnyType theElement ) { this( theElement, null, null ); } TreapNode( AnyType theElement, TreapNode lt, TreapNode rt ) { element = theElement; left = lt; right = rt; priority = randomObj.randomInt( ); } // Friendly data; accessible by other package routines AnyType element; // The data in the node TreapNode left; // Left child TreapNode right; // Right child int priority; // Priority private static Random randomObj = new Random( ); } private TreapNode root; private TreapNode nullNode; // Test program public static void main( String [ ] args ) { Treap t = new Treap<>( ); final int NUMS = 40000; final int GAP = 307; System.out.println( "Checking... (no bad output means success)" ); for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS ) t.insert( i ); System.out.println( "Inserts complete" ); for( int i = 1; i < NUMS; i+= 2 ) t.remove( i ); System.out.println( "Removes complete" ); if( NUMS < 40 ) t.printTree( ); if( t.findMin( ) != 2 || t.findMax( ) != NUMS - 2 ) System.out.println( "FindMin or FindMax error!" ); for( int i = 2; i < NUMS; i+=2 ) if( !t.contains( i ) ) System.out.println( "Error: find fails for " + i ); for( int i = 1; i < NUMS; i+=2 ) if( t.contains( i ) ) System.out.println( "Error: Found deleted item " + i ); } }