package DataStructures; import Supporting.*; import Exceptions.*; import Supporting.Comparable; // AATree class // // CONSTRUCTION: with no initializer // // ******************PUBLIC OPERATIONS********************* // void insert( x ) --> Insert x // void remove( x ) --> Remove x // void removeMin( ) --> Remove smallest item // Comparable find( x ) --> Return item that matches x // Comparable findMin( ) --> Return smallest item // Comparable findMax( ) --> Return largest item // boolean isEmpty( ) --> Return true if empty; else false // void makeEmpty( ) --> Remove all items // void printTree( ) --> Print tree in sorted order // ******************ERRORS******************************** // Most routines throw ItemNotFound on various degenerate conditions // Insert throws DuplicateItem if item is already in the tree /** * Implements an AA-tree. * Note that all "matching" is based on the compares method. * @author Mark Allen Weiss */ public class AATree implements SearchTree { /** * Construct the tree. */ public AATree( ) { root = nullNode; } /** * Insert into the tree. * @param x the item to insert. * @exception DuplicateItem if an item * that matches x is already in the tree. */ public void insert( Comparable x ) throws DuplicateItem { root = insert( x, root ); } /** * Remove from the tree. * @param x the item to remove. * @exception ItemNotFound if no item * that matches x can be found in the tree. */ public void remove( Comparable x ) throws ItemNotFound { deletedNode = nullNode; root = remove( x, root ); } /** * Remove the smallest item from the tree. * @exception ItemNotFound if the tree is empty. */ public void removeMin( ) throws ItemNotFound { Comparable min = findMin( ); remove( min ); } /** * Find the smallest item in the tree. * @return the smallest item. * @exception ItemNotFound if the tree is empty. */ public Comparable findMin( ) throws ItemNotFound { if( isEmpty( ) ) throw new ItemNotFound( "AATree findMin" ); BinaryNode ptr = root; while( ptr.left != nullNode ) ptr = ptr.left; return ptr.element; } /** * Find the largest item in the tree. * @return the largest item. * @exception ItemNotFound if the tree is empty. */ public Comparable findMax( ) throws ItemNotFound { if( isEmpty( ) ) throw new ItemNotFound( "AATree findMax" ); BinaryNode ptr = root; while( ptr.right != nullNode ) ptr = ptr.right; return ptr.element; } /** * Find an item in the tree. * @param x the item to search for. * @return the matching item. * @exception ItemNotFound if no item * that matches x can be found in the tree. */ public Comparable find( Comparable x ) throws ItemNotFound { BinaryNode current = root; nullNode.element = x; for( ; ; ) { if( x.lessThan( current.element ) ) current = current.left; else if( current.element.lessThan( x ) ) current = current.right; else if( current != nullNode ) return current.element; else throw new ItemNotFound( "AATree find" ); } } /** * Make the tree logically empty. */ public void makeEmpty( ) { root = nullNode; } /** * Test if the tree is logically empty. * @return true if empty, false otherwise. */ public boolean isEmpty( ) { return root == nullNode; } /** * Print the tree contents in sorted order. */ public void printTree( ) { if( root == nullNode ) System.out.println( "Empty tree" ); else printTree( root ); } /** * Internal method to insert into a subtree. * @param x the item to insert. * @param t the node that roots the tree. * @return the new root. * @exception DuplicateItem if item that * matches x is already in the subtree rooted at t. */ private BinaryNode insert( Comparable x, BinaryNode t ) throws DuplicateItem { if( t == nullNode ) t = new BinaryNode( x, nullNode, nullNode ); else if( x.compares( t.element ) < 0 ) t.left = insert( x, t.left ); else if( x.compares( t.element ) > 0 ) t.right = insert( x, t.right ); else throw new DuplicateItem( "SearchTree insert" ); t = skew( t ); t = split( t ); return t; } /** * Internal method to remove from a subtree. * @param x the item to remove. * @param t the node that roots the tree. * @return the new root. * @exception ItemNotFound no item that * matches x is in the subtree rooted at t. */ private BinaryNode remove( Comparable x, BinaryNode t ) throws ItemNotFound { if( t != nullNode ) { // Step 1: Search down the tree and set lastNode and deletedNode lastNode = t; if( x.lessThan( t.element ) ) t.left = remove( x, t.left ); else { deletedNode = t; t.right = remove( x, t.right ); } // Step 2: If at the bottom of the tree and // x is present, we remove it if( t == lastNode ) { if( deletedNode == nullNode || x.compares( deletedNode.element ) != 0 ) throw new ItemNotFound( "AATree remove" ); deletedNode.element = t.element; deletedNode = nullNode; t = t.right; } // Step 3: Otherwise, we are not at the bottom; rebalance else if( t.left.level < t.level - 1 || t.right.level < t.level - 1 ) { if( t.right.level > --t.level ) t.right.level = t.level; t = skew( t ); t.right = skew( t.right ); t.right.right = skew( t.right.right ); t = split( t ); t.right = split( t.right ); } } return t; } /** * Internal method to print a subtree in sorted order. * @param t the node that roots the tree. */ private void printTree( BinaryNode t ) { if( t != t.left ) { printTree( t.left ); System.out.println( t.element.toString( ) ); printTree( t.right ); } } /** * Skew primitive for AA-trees. * @param t the node that roots the tree. * @return the new root after the rotation. */ private BinaryNode skew( BinaryNode t ) { if( t.left.level == t.level ) t = Rotations.withLeftChild( t ); return t; } /** * Split primitive for AA-trees. * @param t the node that roots the tree. * @return the new root after the rotation. */ private BinaryNode split( BinaryNode t ) { if( t.right.right.level == t.level ) { t = Rotations.withRightChild( t ); t.level++; } return t; } private BinaryNode root; private static BinaryNode nullNode; static // Static initializer for NullNode { nullNode = new BinaryNode( null ); nullNode.left = nullNode.right = nullNode; nullNode.level = 0; } private static BinaryNode deletedNode; private static BinaryNode lastNode; // Test program; should print min and max and nothing else public static void main( String [ ] args ) { SearchTree t = new AATree( ); final int NUMS = 40000; final int GAP = 307; System.out.println( "Checking... (no more output means success)" ); try { for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS ) t.insert( new MyInteger( i ) ); for( int i = 1; i < NUMS; i+= 2 ) t.remove( new MyInteger( i ) ); if( NUMS < 40 ) t.printTree( ); if( ((MyInteger)(t.findMin( ))).intValue( ) != 2 || ((MyInteger)(t.findMax( ))).intValue( ) != NUMS - 2 ) System.out.println( "FindMin or FindMax error!" ); for( int i = 2; i < NUMS; i+=2 ) t.find( new MyInteger( i ) ); for( int i = 1; i < NUMS; i+=2 ) { try { System.out.println( "OOPS!!! " + t.find( new MyInteger( i ) ) ); } catch( ItemNotFound e ) { } } } catch( DuplicateItem e ) { System.out.println( e ); } catch( ItemNotFound e ) { System.out.println( e ); } } }