Copyright] 1998 by Addison-Wesley Publishing Company 147

Chapter 15

Stacks and Queues

Copyright] 1998 by Addison-Wesley Publishing Company

tos (-1)

tos (0)

tos (1)

tos (0)

How the stack routines work: empty stack, push(A)

push(B) , pop

148

Copyright] 1998 by Addison-Wesley Publishing Company

makeEmpty()
size=0
enqueue(A)
size=1
enqueue(B)
size=2
dequeue()
size=1
dequeue()
size=0

Basic array implementation of the queue

back

front
back
A
front
back
A B
front
back
B
front
back
front

149

Copyright] 1998 by Addison-Wesley Publishing Company 150

back
After 3 enqueues C D E
size =3 front
back
enqueue(F) F C D E
size=4 front
back
dequeue() F D E
size =3 front
back
dequeue() F E
size =2 front
back
dequeue() F
size=1 front

Array implementation of the queue with wraparound

Copyright] 1998 by Addison-Wesley Publishing Company 151

topOfStack

Linked list implementation of the stack

Copyright] 1998 by Addison-Wesley Publishing Company 152

front back

— T

| | | |
Ay +—» B | +—» C | +——p» D | 4
| | | =

Linked list implementation of the queue

Copyright] 1998 by Addison-Wesley Publishing Company 153

Before

After :
|

engueue operation for linked-list-based implementation

Copyright] 1998 by Addison-Wesley Publishing Company 154

Chapter 16
Linked Lists

Copyright] 1998 by Addison-Wesley Publishing Company 155

frontOfList

Basic linked list

Copyright] 1998 by Addison-Wesley Publishing Company 156

|
—» A - — B | —»
| 'R}

/

current ,
tmp

Insertion into a linked list: create new node (IMp), copy in

X, settmp’s next reference, set current 's next
reference

Copyright] 1998 by Addison-Wesley Publishing Company 157

| | |
—» A (-4 X -/ B | 1+ »
N | |
current

Deletion from a linked list

Copyright] 1998 by Addison-Wesley Publishing Company 158

header

Using a header node for the linked list

Copyright] 1998 by Addison-Wesley Publishing Company 159

header

Empty list when header node is used

Copyright] 1998 by Addison-Wesley Publishing Company 160

e

\ head tail /‘

Doubly linked list

Copyright] 1998 by Addison-Wesley Publishing Company 161

-

hea:\ %;I

Empty doubly linked list

Copyright] 1998 by Addison-Wesley Publishing Company 162

i

Insertion into a doubly linked list by getting new node and
then changing references in order indicated

Copyright] 1998 by Addison-Wesley Publishing Company 163

- A — A
A B] ...C L. D
| - - - — <
»
first

Circular doubly linked list

Copyright] 1998 by Addison-Wesley Publishing Company 164

Chapter 17

Trees

Copyright] 1998 by Addison-Wesley Publishing Company 165

A tree

Copyright] 1998 by Addison-Wesley Publishing Company 166

Tree viewed recursively

Copyright] 1998 by Addison-Wesley Publishing Company 167

First child/next sibling representation of tree in Figure 17.1

Copyright] 1998 by Addison-Wesley Publishing Company

mark*

books* courses* Jogin

dsﬂcp*\ipps* copi%\cop%%*

chl ch2 chl ch2 chl ch2 syl syl

Unix directory

168

Copyright] 1998 by Addison-Wesley Publishing Company 169

mark
books
dsaa
chl
ch2
ecp
chl
ch2
ipps
chl
ch2
courses
cop3223
syl
cop3530
syl
Jogin

The directory listing for tree in Figure 17.4

Copyright] 1998 by Addison-Wesley Publishing Company

books*y) coursesfyy .loginy,

dsaaty ecp¥y) ipps¥1y cop32237y) cop35307y)

ch 1(9) Ch2(7) Ch1(4) Ch2(6) ch 1(3) Ch2(8) Sy|(2) Sy|(3)

Unix directory with file sizes

170

Copyright] 1998 by Addison-Wesley Publishing Company 171

chl 9
ch2 7
dsaa 17
chl 4
ch2 6
ecp 11
chl 3
ch2 8
ipps 12
books 41
syl 2
cop3223 3
syl 3
cop3530 4
courses 8
Jogin 2
mark 52

Trace of the Sizeé method

Copyright] 1998 by Addison-Wesley Publishing Company 172

Uses of binary trees: left is an expression tree and right is a
Huffman coding tree

Copyright] 1998 by Addison-Wesley Publishing Company 173

roo

tl.root t2.root

Result of a naive merge operation

Copyright] 1998 by Addison-Wesley Publishing Company 174

oldRoot
oldT1.Root
N T2.root

Aliasing problems in the merge operation; T1 is also the
current object

Copyright] 1998 by Addison-Wesley Publishing Company 175

Recursive view used to calculate the size of a tree:
ST: SL + SR + 1

Copyright] 1998 by Addison-Wesley Publishing Company 176

A A
H +1 * * Hgr+1
HL Hg
Y + v ¥

Recursive view of node height calculation:
HT: maX(HL+1, HR +1)

Copyright] 1998 by Addison-Wesley Publishing Company 177

&® 2® @ ®

Preorder, postorder, and inorder visitation routes

Copyright] 1998 by Addison-Wesley Publishing Company 178

do dl d?2
b0 b1l b2 b2 b2 b2
ao al al al al al al al
b
e0 el e 2
cO cl cl cl cl c?2
az2 az2 az2 az2 az2 az2 az2
e C a

Stack states during postorder traversal

Copyright] 1998 by Addison-Wesley Publishing Company 179

Chapter 18

Binary Search Trees

Copyright] 1998 by Addison-Wesley Publishing Company 180

Two binary trees (only the left tree is a search tree)

Copyright] 1998 by Addison-Wesley Publishing Company 181

Binary search trees before and after inserting 6

Copyright] 1998 by Addison-Wesley Publishing Company 182

Deletion of node 5 with one child, before and after

Copyright] 1998 by Addison-Wesley Publishing Company 183

Deletion of node 2 with two children, before and after

Copyright] 1998 by Addison-Wesley Publishing Company 184

AN AWARAN.

K<§ +1 K==§ +1 K>S +1

Using the Size data field to implement findKth

Copyright] 1998 by Addison-Wesley Publishing Company 185

Balanced tree on the left has a depth of log N; unbalanced
tree on the right has a depth of N-1

Copyright] 1998 by Addison-Wesley Publishing Company 186

IRAR O

Binary search trees that can result from inserting a permu-
tation 1, 2, and 3; the balanced tree in the middle is twice
as likely as any other

Copyright] 1998 by Addison-Wesley Publishing Company 187

Two binary search trees: the left tree is an AVL tree, but
the right tree is not (unbalanced nodes are darkened)

Copyright] 1998 by Addison-Wesley Publishing Company 188

Minimum tree of height H

Copyright] 1998 by Addison-Wesley Publishing Company 189

Single rotation to fix case 1

Copyright] 1998 by Addison-Wesley Publishing Company 190

Single rotation fixes AVL tree after insertion of 1

Copyright] 1998 by Addison-Wesley Publishing Company 191

Symmetric single rotation to fix case 4

Copyright] 1998 by Addison-Wesley Publishing Company 192

Single rotation does not fix case 2

Copyright] 1998 by Addison-Wesley Publishing Company 193

Left-right double rotation to fix case 2

Copyright] 1998 by Addison-Wesley Publishing Company 194

Double rotation fixes AVL tree after insertion of 5

Copyright] 1998 by Addison-Wesley Publishing Company 195

Left-right double rotation to fix case 3

Copyright] 1998 by Addison-Wesley Publishing Company 196

A red-black tree is a binary search tree with the following ordering properties:

1. Every node is colored either red or black.

2. The root is black.

3. Ifanode is red, its children must be black.

4. Every path from a node tonalll reference must contain the same number
of black nodes.

Red-black tree properties

Copyright] 1998 by Addison-Wesley Publishing Company 197

Example of a red-black tree; insertion sequence is 10, 85,
15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55)

Copyright] 1998 by Addison-Wesley Publishing Company 198

If Sis black, then a single rotation between the parent and
grandparent, with appropriate color changes, restores
property 3 if Xis an outside grandchild

Copyright] 1998 by Addison-Wesley Publishing Company 199

If Sis black, then a double rotation involving X, the parent,
and the grandparent, with appropriate color changes,
restores property 3 if X'is an inside grandchild

Copyright] 1998 by Addison-Wesley Publishing Company 200

If Sis red, then a single rotation between the parent and
grandparent, with appropriate color changes, restores
property 3 between X and P

Copyright] 1998 by Addison-Wesley Publishing Company 201

Color flip; only if X’s parent is red do we continue with a
rotation

Copyright] 1998 by Addison-Wesley Publishing Company 202

Color flip at 50 induces a violation; because it is outside, a
single rotation fixes it

Copyright] 1998 by Addison-Wesley Publishing Company 203

Result of single rotation that fixes violation at node 50

Copyright] 1998 by Addison-Wesley Publishing Company 204

Insertion of 45 as a red node

Copyright] 1998 by Addison-Wesley Publishing Company 205

Deletion: X has two black children, and both of its sibling’s
children are black; do a color flip

Copyright] 1998 by Addison-Wesley Publishing Company 206

Deletion: X has two black children, and the outer child of its
sibling is red; do a single rotation

Copyright] 1998 by Addison-Wesley Publishing Company 207

Deletion: X has two black children, and the inner child of its
sibling is red; do a double rotation

Copyright] 1998 by Addison-Wesley Publishing Company 208

(P)
—P —P
SHENO
B C B C @

X s black and at least one child is red; if we fall through to
next level and land on a red child, everything is good; if not,
we rotate a sibling and parent

Copyright] 1998 by Addison-Wesley Publishing Company 209

The level of a node is

* One if the node is a leaf
» The level of its parent, if the node is red
* One less than the level of its parent, if the node is black

1.
2.

3.
4.

Horizontal links are right pointers (because only right children may be red).

There may not be two consecutive horizontal links (because there cannot be
consecutive red nodes).

Nodes at level 2 or higher must have two children.

If a node does not have a right horizontal link, then its two children are at the
same level.

AA-tree properties

Copyright] 1998 by Addison-Wesley Publishing Company 210

30

AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60,
30, 50, 65, 80, 90, 40, 5, 55, 35

Copyright] 1998 by Addison-Wesley Publishing Company 211

skew is a simple rotation between X and P

Copyright] 1998 by Addison-Wesley Publishing Company 212

AWA AWA

split is a simple rotation between X and R; note that
R’s level increases

Copyright] 1998 by Addison-Wesley Publishing Company 213

30

After inserting 45 into sample tree; consecutive horizontal
links are introduced starting at 35

After split at 35; introduces a left horizontal link at 50

After skew at 50: introduces consecutive horizontal nodes
starting at 40

Copyright] 1998 by Addison-Wesley Publishing Company 214

After split at 40; 50 is now on the same level as 70,
thus inducing an illegal left horizontal link

After skew at 70: this introduces consecutive horizontal
links at 30

After split at 30; insertion is complete

Copyright] 1998 by Addison-Wesley Publishing Company 215

(2 (3)
ONORORORC

When 1 is deleted, all nodes become level 1, introducing
horizontal left links

Copyright] 1998 by Addison-Wesley Publishing Company 216

Five-ary tree of 31 nodes has only three levels

Copyright] 1998 by Addison-Wesley Publishing Company 217

41| 66{|| 874

10| |20 | 28| | 36| |42 [49| |52| |56 68| |73||79| |84 89| 93| |98
12| 122| (30 | 37| |44| |50] |53| |58 69| |74{(81||85 90| [95] |99
14|24/ 31| |38| |46 59 70| |76

B-tree of order 5

Copyright] 1998 by Addison-Wesley Publishing Company 218

A B-tree of ordeM is anM-ary tree with the following properties:

1.
2.

3.
4.
5.

The data items are stored at leaves.

The nonleaf nodes store upMb- 1 keys to guide the searchinigrdqee-
sents the smallest key in subtieel

The root is either a leaf or has between 2Mrahildren.

All nonleaf nodes (except the root) have betwelr 2] Mcdildren.
All leaves are at the same depth and have betiviega | L critdiren,
for somel.

B-tree properties

Copyright] 1998 by Addison-Wesley Publishing Company 219

41| 66| 871

10| |20 | 28| | 36| |42| |49| |52 |56 68| |73||79| |84 89| (93|98
12|122| 30| |37| |44||50| [53| |57 69| |74||81| |85 90| [95| |99
14|24 |31||38| |46 58 70(|76
16 32|39 59

B-tree after insertion of 57 into tree in Figure 18.70

Copyright] 1998 by Addison-Wesley Publishing Company

41),| 64| 81
v v :
81/ 18| 2q,| 3% 48, 51| 54| 51 72)|| 78||| 83 92| 97
y y y y y y y
2||8||18||26||35||41||48||51||54||57||66||72||78||83 87|92 |97
4 (110]||20||28||36||42| 49| |52| 55| |58] |68||73||79||84 89| 193 |98
6 ||12||22| |30 |37| |44 50| |53 |56 59| |69||74| 81| |85 90| [95| |99
14(|24||31||38| |46 70|76
16 32|39

Insertion of 55 in B-tree in Figure 18.71 causes a split into

two leaves

220

Copyright] 1998 by Addison-Wesley Publishing Company 221

24,141 66| 8|
v v v v v
| 8 | 1€| |35| 38| |4E| 51| 511 ST |72| 78| 81 |92| 9T
211811 2639138 41|48 (51 |54 (57166 |72 |78 |83 87929
411102 28134139 42149 (5255 (58169 |73 |79 |84 8993 |9
6|12 |2 30(37 40 44 (50 (53 |56 (59169 |74 |81 |85 90 (95 |9
14 |2 3 46 7017

Insertion of 40 in B-tree in Figure 18.72 causes a split into
two leaves and then a split of the parent node

Copyright] 1998 by Addison-Wesley Publishing Company 222

2q(41 | 6%| 88

v y A 4
8|18 39)| 38 48| 51| 54| 5 74|79 87| 94
LT i e O [
| Lol]
2(18]|1 26|39 |3 41 |48 (511|154 |5766 |72 |78 838719
41110 |2 28134 |3 42149 (52|59 |58 |68 |73 |79 84 8919
6((12|2 30 (3714 44150 153 |56 [59 (69 |74 |81 85190/ [9
142 3 46 9|7 9
_1 3 H H NN H __9

B-tree after deletion of 99 from Figure 18.73

