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Chapter 15

Stacks and Queues
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tos (-1)

tos (0)

tos (1)

tos (0)

How the stack routines work: empty stack, push(A)

push(B) , pop

148
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makeEmpty()
size=0
enqueue(A)
size=1
enqueue(B)
size=2
dequeue()
size=1
dequeue()
size=0

Basic array implementation of the queue

back

front
back
A
front
back
A B
front
back
B
front
back
front
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back
After 3 enqueues C D E
size =3 front
back
enqueue(F) F C D E
size=4 front
back
dequeue( ) F D E
size =3 front
back
dequeue() F E
size =2 front
back
dequeue() F
size=1 front

Array implementation of the queue with wraparound
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topOfStack

Linked list implementation of the stack
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front back

— T

| | | |
Ay +—» B | +—» C | +——p» D | 4
| | | =

Linked list implementation of the queue
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Before

After :
|

engueue operation for linked-list-based implementation
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Chapter 16
Linked Lists
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frontOfList

Basic linked list
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|
—» A - — B | —»
| 'R}

/

current ,
tmp

Insertion into a linked list: create new node (IMp), copy in

X, settmp’s next reference, set current 's next
reference
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| | |
—» A (-4 X -/ B | 1+ »
N | |
current

Deletion from a linked list
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header

Using a header node for the linked list
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header

Empty list when header node is used
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e

\ head tail /‘

Doubly linked list
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-

hea:\ %;I

Empty doubly linked list
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i

Insertion into a doubly linked list by getting new node and
then changing references in order indicated
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- A — A
A B ] ...C L. D
| - - - — <
»
first

Circular doubly linked list
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Chapter 17

Trees
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A tree
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Tree viewed recursively
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First child/next sibling representation of tree in Figure 17.1
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mark*

books* courses* Jogin

dsﬂcp*\ipps* copi%\cop%%*

chl ch2 chl ch2 chl ch2 syl syl

Unix directory

168
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mark
books
dsaa
chl
ch2
ecp
chl
ch2
ipps
chl
ch2
courses
cop3223
syl
cop3530
syl
Jogin

The directory listing for tree in Figure 17.4
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books*y) coursesfyy .loginy,

dsaaty ecp¥y) ipps¥1y  cop32237y) cop35307y)

ch 1(9) Ch2(7) Ch1(4) Ch2(6) ch 1(3) Ch2(8) Sy|(2) Sy|(3)

Unix directory with file sizes

170
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chl 9
ch2 7
dsaa 17
chl 4
ch2 6
ecp 11
chl 3
ch2 8
ipps 12
books 41
syl 2
cop3223 3
syl 3
cop3530 4
courses 8
Jogin 2
mark 52

Trace of the Sizeé method
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Uses of binary trees: left is an expression tree and right is a
Huffman coding tree
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roo

tl.root t2.root

Result of a naive merge operation
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oldRoot
oldT1.Root
N T2.root

Aliasing problems in the merge operation; T1 is also the
current object
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Recursive view used to calculate the size of a tree:
ST: SL + SR + 1
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A A
H +1 * * Hgr+1
HL Hg
Y + v ¥

Recursive view of node height calculation:
HT: maX( HL+1, HR +1 )
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&® 2® @ ®

Preorder, postorder, and inorder visitation routes
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do dl d?2
b0 b1l b2 b2 b2 b2
ao al al al al al al al
b
e0 el e 2
cO cl cl cl cl c?2
az2 az2 az2 az2 az2 az2 az2
e C a

Stack states during postorder traversal
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Chapter 18

Binary Search Trees
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Two binary trees (only the left tree is a search tree)
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Binary search trees before and after inserting 6
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Deletion of node 5 with one child, before and after
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Deletion of node 2 with two children, before and after
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AN AWARAN.

K<§ +1 K==§ +1 K>S +1

Using the Size data field to implement findKth



Copyright] 1998 by Addison-Wesley Publishing Company 185

Balanced tree on the left has a depth of log N; unbalanced
tree on the right has a depth of N-1
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IRAR O

Binary search trees that can result from inserting a permu-
tation 1, 2, and 3; the balanced tree in the middle is twice
as likely as any other
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Two binary search trees: the left tree is an AVL tree, but
the right tree is not (unbalanced nodes are darkened)
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Minimum tree of height H
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Single rotation to fix case 1
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Single rotation fixes AVL tree after insertion of 1
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Symmetric single rotation to fix case 4
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Single rotation does not fix case 2
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Left-right double rotation to fix case 2
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Double rotation fixes AVL tree after insertion of 5
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Left-right double rotation to fix case 3
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A red-black tree is a binary search tree with the following ordering properties:

1. Every node is colored either red or black.

2. The root is black.

3. Ifanode is red, its children must be black.

4. Every path from a node tonalll reference must contain the same number
of black nodes.

Red-black tree properties
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Example of a red-black tree; insertion sequence is 10, 85,
15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55)
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If Sis black, then a single rotation between the parent and
grandparent, with appropriate color changes, restores
property 3 if Xis an outside grandchild
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If Sis black, then a double rotation involving X, the parent,
and the grandparent, with appropriate color changes,
restores property 3 if X'is an inside grandchild
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If Sis red, then a single rotation between the parent and
grandparent, with appropriate color changes, restores
property 3 between X and P
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Color flip; only if X’s parent is red do we continue with a
rotation
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Color flip at 50 induces a violation; because it is outside, a
single rotation fixes it
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Result of single rotation that fixes violation at node 50
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Insertion of 45 as a red node
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Deletion: X has two black children, and both of its sibling’s
children are black; do a color flip
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Deletion: X has two black children, and the outer child of its
sibling is red; do a single rotation
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Deletion: X has two black children, and the inner child of its
sibling is red; do a double rotation
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(P)
—P —P
SHENO
B C B C @

X s black and at least one child is red; if we fall through to
next level and land on a red child, everything is good; if not,
we rotate a sibling and parent
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The level of a node is

* One if the node is a leaf
» The level of its parent, if the node is red
* One less than the level of its parent, if the node is black

1.
2.

3.
4.

Horizontal links are right pointers (because only right children may be red).

There may not be two consecutive horizontal links (because there cannot be
consecutive red nodes).

Nodes at level 2 or higher must have two children.

If a node does not have a right horizontal link, then its two children are at the
same level.

AA-tree properties
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30

AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60,
30, 50, 65, 80, 90, 40, 5, 55, 35
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skew is a simple rotation between X and P
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AWA AWA

split  is a simple rotation between X and R; note that
R’s level increases
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30

After inserting 45 into sample tree; consecutive horizontal
links are introduced starting at 35

After split  at 35; introduces a left horizontal link at 50

After skew at 50: introduces consecutive horizontal nodes
starting at 40
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After split  at 40; 50 is now on the same level as 70,
thus inducing an illegal left horizontal link

After skew at 70: this introduces consecutive horizontal
links at 30

After split  at 30; insertion is complete
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(2 (3)
ONORORORC

When 1 is deleted, all nodes become level 1, introducing
horizontal left links
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Five-ary tree of 31 nodes has only three levels
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41| 66{|| 874

10| |20 | 28| | 36| |42 [49| |52| |56 68| |73||79| |84 89| 93| |98
12| 122| (30 | 37| |44| |50] |53| |58 69| |74{(81||85 90| [95] |99
14|24/ 31| |38| |46 59 70| |76

B-tree of order 5
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A B-tree of ordeM is anM-ary tree with the following properties:

1.
2.

3.
4.
5.

The data items are stored at leaves.

The nonleaf nodes store upMb- 1 keys to guide the searchinigrdqee-
sents the smallest key in subtieel

The root is either a leaf or has between 2Mrahildren.

All nonleaf nodes (except the root) have betwelr 2] Mcdildren.
All leaves are at the same depth and have betiviega | L critdiren,
for somel.

B-tree properties
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41| 66| 871

10| |20 | 28| | 36| |42| |49| |52 |56 68| |73||79| |84 89| (93|98
12|122| 30| |37| |44||50| [53| |57 69| |74||81| |85 90| [95| |99
14|24 |31||38| |46 58 70( |76
16 32|39 59

B-tree after insertion of 57 into tree in Figure 18.70
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41),| 64| 81
v v :
81/ 18| 2q,| 3% 48, 51| 54| 51 72)|| 78||| 83 92| 97
y y y y y y y
2||8||18||26||35||41||48||51||54||57||66||72||78||83 87|92 |97
4 (110]||20||28||36||42| 49| |52| 55| |58] |68||73||79||84 89| 193 |98
6 ||12||22| |30 |37| |44 50| |53 |56 59| |69||74| 81| |85 90| [95| |99
14(|24||31||38| |46 70|76
16 32|39

Insertion of 55 in B-tree in Figure 18.71 causes a split into

two leaves

220
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24,141 66| 8|
v v v v v
| 8 | 1€| |35| 38| |4E| 51| 511 ST |72| 78| 81 |92| 9T
211811 2639138 41|48 (51 |54 (57166 |72 |78 |83 87929
411102 28134139 42149 (5255 (58169 |73 |79 |84 8993 |9
6|12 |2 30(37 40 44 (50 (53 |56 (59169 |74 |81 |85 90 (95 |9
14 |2 3 46 7017

Insertion of 40 in B-tree in Figure 18.72 causes a split into
two leaves and then a split of the parent node
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2q(41 | 6%| 88

v y A 4
8|18 39)| 38 48| 51| 54| 5 74|79 87| 94
LT i e O [
| Lol ]
2(18]|1 26|39 |3 41 |48 (511|154 |5766 |72 |78 838719
41110 |2 28134 |3 42149 (52|59 |58 |68 |73 |79 84 8919
6((12|2 30 (3714 44150 153 |56 [59 (69 |74 |81 85190/ [9
142 3 46 9|7 9
_1 3 H H NN H __9

B-tree after deletion of 99 from Figure 18.73



