
Advanced Computing and Information Systems laboratory

Distributed File System
Support for Virtual Machines

in Grid Computing

Ming Zhao, Jian Zhang, Renato Figueiredo

Advanced Computing and Information Systems
Electrical and Computer Engineering

University of Florida

Advanced Computing and Information Systems laboratory 2

Overview

Goal: Support virtual machines (VMs) as
execution environments for Grid computing

Challenge: Efficient and on-demand transfer of
large VM state in Grids

Contribution: User-level extensions to
distributed file system, optimized for VM state
transfer, supporting unmodified VM technology

Advanced Computing and Information Systems laboratory 3

Grid Computing on Virtual Machines

Fundamental goal of Grid computing:
• Seamlessly multiplexing distributed computational

resources of providers among users

Key challenge to Grid middleware:
• The provisioning of execution environments that have

flexible, customizable configurations and allow for secure
execution of untrusted code from Grid users

Virtual Machines for Grid Computing [ICDCS’03]
• Resource security and user isolation
• Flexible customization and legacy support
• Site independent deployment and migration

Advanced Computing and Information Systems laboratory 4

Application-Centric Solution

Ocean

+CH3D
+ArcView

Compute Server Compute Server Compute Server

Compute Server

Compute ServerCompute Server

Grid

Advanced Computing and Information Systems laboratory 5

Application-Centric Solution

Compute Server Compute Server Compute Server

Compute Server

Compute ServerCompute Server

+CH3D
VM

+ArcView
VM

GridMiddleware

+CH3D

+CH3D +CH3D

+ArcView

+CH3DOcean

+ArcView

+ArcView

+ArcView
+CH3D

+ArcView

http://www.microsoft.com/windows/windowsmedia/community/relcom.aspx
http://www.microsoft.com/windows/windowsmedia/community/relcom.aspx
http://www.microsoft.com/windows/windowsmedia/community/relcom.aspx
http://www.microsoft.com/windows/windowsmedia/community/relcom.aspx

Advanced Computing and Information Systems laboratory 6

Challenge: VM State Transfer

Compute Server Compute Server Compute Server

Compute Server

+CH3D
VM

+ArcView
VM

GridMiddleware

VM State Servers
+ ArcView

Ocean

+ CH3D

+CH3D
+ArcView

+CH3D

+ArcView

+CH3D
+ArcView

Dynamic, efficient transfer of large VM state is important

Advanced Computing and Information Systems laboratory 7

Outline

Background

Approach

Performance

Summary

Advanced Computing and Information Systems laboratory 8

VM State

Defines hardware/software state of a VM
• Includes disk state and memory state
• Stored in file systems by VMMs (VMWare, UML, Xen)

How to transfer?
• VM memory state (order of hundreds of MBytes)

• Entire state needed to resume a VM
• Full file transfer desirable

• VM disk state (order of several GBytes)
• State only partially needed by VM

• “Reboot + run SpecSEIS” accesses <5% of 1.3GB disk state
• Partial file transfer desirable

• Full file transfers: long start-up latencies, unnecessary storage

Both supported by GVFS (Grid Virtual File System)

Advanced Computing and Information Systems laboratory 9

Grid Virtual File System (GVFS)

kernel NFS
server

proxy

VM state server S

WAN

Compute server C

VM
stateVMM

Map identities;
Forward RPC calls

Logical user accounts [HCW’01] and Virtual file
system [HPDC’01]
• Shadow account + file account, managed by middleware
• NFS call forwarding via middle tier user-level proxy
• User identities mapped by proxy

Extended to improve support for VM state transfer

Advanced Computing and Information Systems laboratory 10

Efficient Access to VM Disk State

User-level disk caching
• Block-based cache, 2nd level to kernel buffer
• Write-back policy for write operations

Per-application caching policy
• Cache size, write policy, etc.
• Enables file-based disk caching by meta-data handling

Middleware-driven consistency models
• O/S signals for write-back/flushing of cache contents
• Independent tasks, high-throughput computing

On-demand partial state transfer

Advanced Computing and Information Systems laboratory 11

Efficient Access to VM Memory State

Meta-data generated by middleware can be used to
accelerate data transfers
• Stored in meta-data file, transparent to application
• Captures application-specific data characteristics
• Defines actions to be processed by GVFS proxy

Meta-data handling for VM memory state
• Needed in entirety to resume; highly compressible
• Actions: “compress”, “remote copy”, “decompress”,

and “read locally”
On-demand full state transfer and caching

Advanced Computing and Information Systems laboratory 12

User-level Extensions

kernel NFS
server

proxy

VM state server S

WAN

Compute server C

VMM

Client-side proxy disk caching

buffer
block-
based
cache

proxy

Application-specific meta-data handling
Encrypted file system channels and cross-domain
authentication [TR-ACIS-03-001]

User-level, leveraging ubiquitous NFS deployments; not
application-specific but can be application-aware

file-
based
cache

disk mem

VM state

Advanced Computing and Information Systems laboratory 13

Experiments: Application Execution

Benchmarks:
• Linux kernel compilation (development environment)
• SPECseis96 (compute- and I/O-intensive)
• LaTeX (interactive environment)

Scenarios:
• Local: VM state stored on a local disk
• Remote (GVFS mounted):

• LAN server
• WAN server
• WAN+Cache

Advanced Computing and Information Systems laboratory 14

Experiments: Application Execution

0:00

0:20

0:40

1:00

1:20

1:40

make dep make bzImage

make modules make modules_install

F irst run

Local

Second run

LAN WAN WAN+C Local LAN WAN WAN+C

Linux kernel compilation:
• “Warm” proxy disk cache allows

WAN+Cache outperforms WAN
>30%; overhead <9% compared
to Local

SPECseis96:
• Write-back effectively reduces

write latency and avoids transfer
of temporary data; WAN+Cache
is 33% faster than WAN

LaTeX:
• Interactive sessions: small start-

up overhead; response times
comparable to Local when data
partially reused across sessions

Execution times (hours:minutes) of
Linux kernel compilation

Advanced Computing and Information Systems laboratory 15

Experiments on VM Cloning

VM cloning:
• Creates a run-time VM instance from stored VM state
• File copy (memory state), symbolic link (disk state)

Scenarios:
• Local: VM state stored on a local disk
• WAN: VM state GVFS-mounted

• single state-sequential (locality)
• different states-sequential (no locality)
• single state-parallel (scalability)

Advanced Computing and Information Systems laboratory 16

VMWare VM Cloning

Total time
when caches

are cold

Total time
when caches

are warm

WAN-
single
state-

sequential

1056 seconds 200 seconds

WAN-
single
state-

parallel

150.3 seconds 32 seconds

Sequential VM cloning times (seconds)
Sequential cloning time vs. parallel

cloning time for eight VMs

0
20
40
60
80

100
120
140
160

1 2 3 4 5 6 7 8

Local WAN-single state WAN-different states

GVFS greatly reduces VM cloning time, and achieves speed close to the
local disk setup if temporal locality exists across clone requests
Good performance also achieved when VMs cloned in parallel in a cluster

Advanced Computing and Information Systems laboratory 17

User-Mode Linux VM Startup

0

50

100

150

200

250

Local LAN WAN WAN+C

First run Second run

The initial overhead of
WAN / WAN+C is >900%
compared to Local
Kernel memory buffer
does not reduce overhead
significantly
“Warm” proxy disk cache
brings the overhead down
to <8 seconds; WAN+C
outperforms WAN by
>800%

Booting times of UML (seconds)

Advanced Computing and Information Systems laboratory 18

The In-VIGO Approach

User
Portal

+ App

Compute Server

+ User Data

VM

Data Servers

User Data

VM State Servers

+ App

Grid - In-VIGO

VNC

GVFS

Compute Server

GVFS

In-VIGO [FGCS’04]: Virtualization middleware for computational Grids

• Machines (VMs) • Data (GVFS) • Accounts • Interface (VNC)
On-demand virtual resources:

Advanced Computing and Information Systems laboratory 19

Related work
GridFTP, GASS
• High performance transfer of large files
• GVFS is a file system supporting block-based transfer for

unmodified applications
Condor, Kangaroo
• Support on-demand remote data access, intermediates
• GVFS supports statically linked applications

Legion, SFS
• Based on the de-facto NFS distributed file system
• GVFS: dynamically, per-user/-application, middleware support,

user-level extensions
Collective, Internet Suspend/Resume
• VM technology + distributed file system
• GVFS: problem-solving environment, optimization for VM state

transfer at file system level, support for unmodified VMMs

Advanced Computing and Information Systems laboratory 20

Summary

Problem: VM-based Grid computing poses
challenges on VM state management for Grid
middleware

Solution: GVFS supports efficient VM state
transfer at the user-level

Evidence: Experiments on both application
execution and VM cloning show good
performance

Advanced Computing and Information Systems laboratory 21

Future Work

Efficient checkpointing and migration of
VM instances
Fine-grained consistency models by
call-back and use of meta-data
Dynamic profiling of application data
access behavior
Pre-fetching and high-bandwidth transfers
using protocols such as GridFTP

Advanced Computing and Information Systems laboratory 22

Acknowledgments

In-VIGO team at UFL
• http://invigo.acis.ufl.edu

Dr. Peter Dinda and Virtuoso team at NWU
• http://virtuoso.cs.northwestern.edu

NSF Middleware Initiative
• http://www.nsf-middleware.org

NSF Research Resources
IBM Shared University Research
VMWare

Advanced Computing and Information Systems laboratory 23

References
[ICDCS’03] R. Figueiredo, P. A. Dinda, J. A. B. Fortes, “A Case for Grid Computing

on Virtual Machines”, Proc. International Conference on Distributed
Computing Systems (ICDCS), May 2003.

[FGCS’04] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul, A.
Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu.
“From Virtualized Resources to Virtual Computing Grids: The In-
VIGO System”, to appear, Future Generation Computing Systems (in
press), 04/2004 .

[HCW’01] N. Kapadia, R. Figueiredo and J. A. B. Fortes, “Enhancing the Scalability
and Usability of Computational Grids via Logical User Accounts and
Virtual File Systems”, Proceedings of HCW at IPDPS, April 2001.

[HPDC’01] R. Figueiredo, N. Kapadia and J. A. B. Fortes. "The PUNCH Virtual File
System: Seamless Access to Decentralized Storage Services in a
Computational Grid", Proceedings of HPDC, August 2001.

[TR-ACIS-03-001] R. Figueiredo, “VP/GFS: An Architecture for Virtual Private Grid
File Systems”. In Technical Report TR-ACIS-03-001, ACIS
Laboratory, Department of Electrical and Computer Engineering,
University of Florida, 05/2003.

In-VIGO prototype can be accessed from
http://invigo.acis.ufl.edu; courtesy accounts
available.

	Distributed File System Support for Virtual Machines in Grid Computing
	Overview
	Grid Computing on Virtual Machines
	Application-Centric Solution
	Application-Centric Solution
	Challenge: VM State Transfer
	Outline
	VM State
	Grid Virtual File System (GVFS)
	Efficient Access to VM Disk State
	Efficient Access to VM Memory State
	User-level Extensions
	Experiments: Application Execution
	Experiments: Application Execution
	Experiments on VM Cloning
	VMWare VM Cloning
	User-Mode Linux VM Startup
	The In-VIGO Approach
	Related work
	Summary
	Future Work
	Acknowledgments
	References

