
Advanced Computing and Information Systems laboratory

Distributed File System 
Support for Virtual Machines 

in Grid Computing

Ming Zhao, Jian Zhang, Renato Figueiredo

Advanced Computing and Information Systems
Electrical and Computer Engineering

University of Florida



Advanced Computing and Information Systems laboratory 2

Overview

Goal: Support virtual machines (VMs) as 
execution environments for Grid computing

Challenge: Efficient and on-demand transfer of 
large VM state in Grids

Contribution: User-level extensions to 
distributed file system, optimized for VM state 
transfer, supporting unmodified VM technology
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Grid Computing on Virtual Machines

Fundamental goal of Grid computing:
• Seamlessly multiplexing distributed computational 

resources of providers among users

Key challenge to Grid middleware:
• The provisioning of execution environments that have 

flexible, customizable configurations and allow for secure
execution of untrusted code from Grid users 

Virtual Machines for Grid Computing [ICDCS’03]
• Resource security and user isolation
• Flexible customization and legacy support
• Site independent deployment and migration



Advanced Computing and Information Systems laboratory 4

Application-Centric Solution
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Challenge: VM State Transfer
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Dynamic, efficient transfer of large VM state is important
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Outline

Background

Approach

Performance

Summary
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VM State

Defines hardware/software state of a VM
• Includes disk state and memory state
• Stored in file systems by VMMs (VMWare, UML, Xen)

How to transfer?
• VM memory state (order of hundreds of MBytes)

• Entire state needed to resume a VM
• Full file transfer desirable

• VM disk state (order of several GBytes)
• State only partially needed by VM

• “Reboot + run SpecSEIS” accesses <5% of 1.3GB disk state
• Partial file transfer desirable

• Full file transfers: long start-up latencies, unnecessary storage

Both supported by GVFS (Grid Virtual File System)
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Grid Virtual File System (GVFS)
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Map identities;
Forward RPC calls

Logical user accounts [HCW’01] and Virtual file 
system [HPDC’01]
• Shadow account + file account, managed by middleware
• NFS call forwarding via middle tier user-level proxy
• User identities mapped by proxy

Extended to improve support for VM state transfer
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Efficient Access to VM Disk State

User-level disk caching
• Block-based cache, 2nd level to kernel buffer
• Write-back policy for write operations

Per-application caching policy
• Cache size, write policy, etc.
• Enables file-based disk caching by meta-data handling

Middleware-driven consistency models 
• O/S signals for write-back/flushing of cache contents 
• Independent tasks, high-throughput computing

On-demand partial state transfer
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Efficient Access to VM Memory State

Meta-data generated by middleware can be used to 
accelerate data transfers 
• Stored in meta-data file, transparent to application
• Captures application-specific data characteristics
• Defines actions to be processed by GVFS proxy

Meta-data handling for VM memory state 
• Needed in entirety to resume; highly compressible
• Actions: “compress”, “remote copy”, “decompress”, 

and “read locally”
On-demand full state transfer and caching
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User-level Extensions
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Application-specific meta-data handling 
Encrypted file system channels and cross-domain 
authentication [TR-ACIS-03-001]

User-level, leveraging ubiquitous NFS deployments; not 
application-specific but can be application-aware

file-
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cache

disk   mem

VM state
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Experiments: Application Execution

Benchmarks:
• Linux kernel compilation (development environment)
• SPECseis96 (compute- and I/O-intensive)
• LaTeX (interactive environment)

Scenarios:
• Local: VM state stored on a local disk
• Remote (GVFS mounted):

• LAN server
• WAN server
• WAN+Cache
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Experiments: Application Execution
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Linux kernel compilation:
• “Warm” proxy disk cache allows 

WAN+Cache outperforms WAN 
>30%; overhead <9% compared 
to Local

SPECseis96:
• Write-back effectively reduces 

write latency and avoids transfer 
of temporary data; WAN+Cache
is 33% faster than WAN

LaTeX:
• Interactive sessions: small start-

up overhead; response times 
comparable to Local when data 
partially reused across sessions

Execution times (hours:minutes) of 
Linux kernel compilation
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Experiments on VM Cloning

VM cloning:
• Creates a run-time VM instance from stored VM state
• File copy (memory state), symbolic link (disk state)

Scenarios:
• Local: VM state stored on a local disk
• WAN: VM state GVFS-mounted

• single state-sequential (locality)
• different states-sequential (no locality)
• single state-parallel (scalability)
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VMWare VM Cloning
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Sequential VM cloning times (seconds)
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GVFS greatly reduces VM cloning time, and achieves speed close to the 
local disk setup if temporal locality exists across clone requests
Good performance also achieved when VMs cloned in parallel in a cluster 
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User-Mode Linux VM Startup
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The initial overhead of 
WAN / WAN+C is >900% 
compared to Local
Kernel memory buffer 
does not reduce overhead 
significantly
“Warm” proxy disk cache 
brings the overhead down 
to <8 seconds; WAN+C 
outperforms WAN by 
>800%

Booting times of UML (seconds)
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The In-VIGO Approach
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In-VIGO [FGCS’04]: Virtualization middleware for computational Grids

• Machines (VMs)     • Data (GVFS)     • Accounts     • Interface (VNC)
On-demand virtual resources:
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Related work
GridFTP, GASS
• High performance transfer of large files
• GVFS is a file system supporting block-based transfer for 

unmodified applications
Condor, Kangaroo
• Support on-demand remote data access, intermediates
• GVFS supports statically linked applications

Legion, SFS
• Based on the de-facto NFS distributed file system
• GVFS: dynamically, per-user/-application, middleware support, 

user-level extensions
Collective, Internet Suspend/Resume
• VM technology + distributed file system
• GVFS: problem-solving environment, optimization for VM state 

transfer at file system level, support for unmodified VMMs
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Summary

Problem: VM-based Grid computing poses 
challenges on VM state management for Grid 
middleware

Solution: GVFS supports efficient VM state 
transfer at the user-level

Evidence: Experiments on both application 
execution and VM cloning show good 
performance
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Future Work

Efficient checkpointing and migration of 
VM instances
Fine-grained consistency models by 
call-back and use of meta-data
Dynamic profiling of application data 
access behavior
Pre-fetching and high-bandwidth transfers 
using protocols such as GridFTP
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