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Abstract 
 

This paper presents novel service-based Grid data 
management middleware that leverages standards 
defined by WSRF specifications to create and manage 
dynamic Grid file system sessions. A unique aspect of 
the service is that the sessions it creates can be 
customized to address application data transfer needs. 
Application-tailored configurations enable selection of 
both performance-related features (block-based partial 
file transfers and/or whole-file transfers, cache 
parameters and consistency models) and reliability 
features (file system copy-on-write checkpointing to 
aid recovery of client-side failures; replication, 
autonomous failure detection and data access 
redirection for server-side failures). These 
enhancements, in addition to cross-domain user 
identity mapping and encrypted communication, are 
implemented via user level proxies managed by the 
service, requiring no changes to existing kernels. 
Sessions established using the service are mounted as 
distributed file systems and can be used transparently 
by unmodified binary applications. The paper analyzes 
the use of the service to support virtual machine based 
Grid systems and workflow execution, and also reports 
on the performance and reliability of service managed 
wide-area file system sessions with experiments based 
on scientific applications (NanoMOS/Matlab, CH1D, 
GAUSS and SPECseis). 
 
1. Introduction 

Grid systems that allow the provisioning of general-
purpose computing as a utility have the potential to 
enable on-demand access to unprecedented computing 
power [14]. A key middleware functionality required 
from such systems is data management – how to 
seamlessly provide data to applications that execute in 
wide-area environments crossing administrative 

domain boundaries. This paper addresses the challenge 
of data provisioning through the use of a service-
oriented architecture for establishing application-
tailored Grid file system sessions. 

The approach taken in this paper focuses on two 
application-centric data needs. First, application 
transparency is desirable to facilitate the Grid-enabling 
of a wide range of programs. Second, application-
tailored performance and reliability enhancements are 
desirable because applications have diverse 
requirements, for example in terms of their data access 
patterns, acceptable caching and consistency policies, 
and fault tolerance requirements. These two needs are 
not conflicting, however, and can be addressed by 
building upon a virtualization layer (providing 
application-transparent data access [11]) and by 
enforcing isolation among independent virtualized 
sessions (allowing for per-application customization). 
To this end, this paper makes two contributions. 

First, we describe a novel WSRF [12] based service  
middleware architecture that enables the provisioning 
of data to applications by controlling the configuration, 
creation and tear-down of virtualized file system data 
access sessions. The architecture also supports data 
transfers based on file uploads/downloads. A novel 
aspect of this approach is the flexibility it provides in 
controlling caching, consistency and reliability 
requirements tailored to application needs. The three 
proposed data management services (data scheduling, 
file system and data replication) allow Grid users and 
job schedulers to: 

• Create, customize, monitor and destroy virtual 
distributed file system [11] sessions for 
applications with complex data access patterns. 
Specifically, sessions that leverage unmodified, 
widely available Network File System (NFS [25]) 
implementations can be configured by the 
middleware to support: cross-domain identity 
mapping, encrypted communication, user-level 



client caching and weak consistency models; 
autonomous session redirection to replica servers 
in the event of a server failure; and checkpointing 
of file system modifications for consistent 
application restarts in the event of a client failure. 

• Coordinate the movement of whole files for 
applications with well-defined file transfer 
patterns, using protocols such as GridFTP [3]. 

Second, this paper analyzes the performance and 
reliability enhancements from using this architecture 
through experiments with a prototype service and 
benchmark applications. In one experiment, a user-
level weak consistency model that overlays NFS kernel 
clients/servers is investigated. It is shown to improve 
the performance of read-biased wide-area NFS 
sessions by speedup factors of up to 5 (CH1D coupled-
hydrodynamics simulation and post-processing) and 23 
(MATLAB-based NanoMOS nano-electronics 
simulator with network-mounted software repository).  

An experiment using the GAUSS computational 
chemistry tool shows that user-level copy-on-write 
(COW), in combination with virtual machine (VM) 
technologies, supports consistent checkpoint and roll-
back of legacy programs that operate on NFS-mounted 
file systems, a fault-tolerance capability unique to this 
approach. Another experiment shows that a running 
application (SPECseis96) is able to continue execution 
and complete successfully while a server failure is 
handled by the service transparently via redirection. 

The rest of this paper is organized as follows. 
Section 2 discusses background and related work. 
Section 3 describes the service architecture. Sections 4 
and 5 describe the application-tailored enhancements 
and usage examples. Section 6 presents analyses of 
experimental results and Section 7 concludes the paper. 
 
2. Background and Related Work 

Currently there are three main approaches to Grid 
data management: (a) the use of middleware to 
explicitly transfer files prior to (and after) application 
execution [6], (b) the use of application programming 
interfaces (APIs) that allow an application to explicitly 
control transfers [3], and (c) the use of mechanisms to 
intercept and handle data-related events (e.g. system 
calls [4][22][28] or distributed file system calls 
[11][30]) implicitly and transparently from 
applications. 

Approach (a) is traditionally taken for applications 
with well-defined datasets and flows, such as 
uploading of standard input and downloading of 
standard output. Approach (b) is taken for applications 
where the development cost of incorporating 
specialized APIs is justifiable from a performance 

standpoint. Approach (c) is chosen when applications 
do not have well-defined datasets and access patterns, 
and when application modifications are not possible. 

Experience with network-computing environments 
has shown that there are many applications that need 
solutions based on approach (c) [1][18]. In particular, 
distributed file system-based techniques are key to 
supporting applications that must be deployed without 
modifications to source code, libraries or binaries. 
Examples include commercial, interactive scientific 
and engineering tools and VM monitors that operate on 
large, sparse datasets [10][19][26][31]. 

Wide-area distributed file systems for shared Grid 
environments are desirable, but need to be considered 
in a context where modifications tailored to Grid 
applications are unlikely to be implemented in kernels. 
Nonetheless, recent work has shown the feasibility of 
applying user-level loop-back proxies to build wide-
area file systems on top of existing O/S kernel 
implementations [15][24]. Examples of systems that 
use NFS distributed file system clients to mount Grid 
data are found in the middleware of PUNCH [11][18], 
In-VIGO [31][1], Legion [30] and Avaki’s Data Grid 
Access Servers (DGAS) [16]. 

This paper builds upon related developments in 
NFS proxy-based Grid-wide distributed Virtual File 
Systems (GVFS). Previous work has investigated the 
core mechanisms within a GVFS session to support 
Grid-enabled data flow. This paper, in contrast, 
focuses on a service-oriented model to control creation, 
configuration and management of customized 
independent data sessions. 

NeST [5] is a related storage appliance that services 
requests for data transfers supporting a variety of 
protocols, including NFS and GridFTP. However, only 
a restricted subset and anonymous accesses for NFS 
are available. Furthermore, the system does not 
integrate with unmodified kernel NFS clients, a key 
requirement for application transparency. The BAD-FS 
system [4] has also recognized the advantages of 
exposing caching, consistency and fault tolerance to 
middleware for application-tailored decisions. 
However, because it is based on libraries and 
interposition agents, it does not support important 
applications, including binaries that are not 
dynamically-linked or POSIX-compliant. In contrast, 
the techniques described in this paper enable NFS-
mounted application-tailored Grid file systems. 

WSRF-based Grid middleware has also been 
implemented in [29][8]. The system described in this 
paper focuses on data management and is unique in 
support for dynamic and customizable sessions. 

 



3.  Services for Session Management 
3.1 Overview 

Figure 1 illustrates the overall architecture proposed 
in this paper. It supports on-demand creation of data 
access sessions by means of WS-Resources (the 
control flow, dashed lines), and virtualized distributed 
file systems 1  (the data flow, shaded regions). The 
figure shows examples of data sessions established by 
the data management services. Sessions are 
independently configured and mounted on separate 
directories at the client. Multiple sessions can share the 
same dataset (e.g., sessions II and III in Figure 1). 

Fundamentally, the goal of this architecture is to 
enable flexible, secure resource sharing. This involves 
the establishment of relationships between providers 
and users that are complex (and often conflicting) in 
distributed environments. From a user’s standpoint, 
resources should ideally be customizable to their needs, 
regardless of their location. From a provider’s 
standpoint, resources should ideally be configured in a 

                                                           
 
1 The service also supports file-based data transfers for the data flow, 
as described in Section 4. 

single, consistent way. Otherwise, sharing is hindered 
by a provider’s inability to accommodate individual 
user needs (and associated security risks) and by the 
user’s inability to effectively use systems over which 
they have limited control. 

To this end, the proposed service-oriented approach 
builds upon two key aspects of the WS-Resource 
framework: interoperability in the definition, 
publishing, discovery and interactions of services 
[13][12][20], and state management for controlling 
data access sessions that persist throughout the 
execution of an application. It also builds upon a 
virtualized data access layer that supports user-level 
customization. As a result, the services are deployed 
once by the provider, and can then be accessed by 
authorized users to create and customize independent 
data access sessions.  

The services are intended for use by both end-users 
and middleware brokers (e.g. job schedulers) acting on 
their behalf. In either case, it is assumed that the client 
can authenticate to the service host, directly or 
indirectly through delegation, leveraging 
authentication support at the WSRF layer, and obtain 
access to a local user identity on the host (e.g. via GSI-
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Figure 1: Example of Grid file system sessions established by the data management services on compute 
servers (C1, C2) and file servers (F1, F2). In step 1, the job scheduler requests the DSS (Data Scheduler 
Service) to start a session between C1 and F1; step 2, the DSS queries the DRS (Data Replication Service) 
for replica information; it then requests in step 3 the FSS (File System Service) on F1 to start the proxy 
server (step 4). The DSS also requests the FSS on C1 to start the proxy client and mount the file system 
(steps 5, 6). The job scheduler can then start a task in C1 (step 7), which will have access to data from 
server F1 through session I. Sessions II, III and IV are isolated from session I. 



based Grid-to-local account mappings, or via 
middleware-allocated, “logical” user accounts [17][2]).  

The following techniques are used to enforce 
isolation among data sessions established by the 
service. On the server side, the kernel server “exports” 
one or more base directories to the service’s loop-back 
proxies. Per-session export files are created by the 
service; proxies use these files to enforce that only a 
directory sub-tree authorized to be used for a session 
can be exported. The server-side proxy authenticates 
RPC requests based not only on RPC credentials (as 
conventional NFS servers do) but also by matching a 
128-bit session key that is piggy-backed by the client-
side proxy with an RPC payload. Finally, client/server 
requests are encrypted and tunneled through SSH. 
These techniques are in place to prevent IP spoofing 
and snooping of file handles. More details on session 
isolation techniques are presented in [9]. 

The prototype has been built using WSRF::Lite, a 
Perl-based WSRF implementation that provides 
transport layer security through HTTPS. Session 
information databases (which are maintained 
independently by each service) have been implemented 
using MySQL. The remaining of this section presents 
each service component in detail. 
 
3.2 File System Service (FSS) 

The File System Service runs on every compute and 
file server and controls the local file system proxies. It 
essentially implements the establishment and 
customization of file system sessions. The proxy 
processes are the resources to the service, and the 
service provides the interface to start, configure, 
monitor and kill them. Their properties are stored in 
files on local disk. A client-side proxy is associated 
with a single session; a server-side proxy, however, 
can be involved in more than one session (Figure 1). 

The service customizes a proxy via configurations 
defined in a file and can signal it to dynamically 
reconfigure itself by reloading the file. The 
configuration file holds information including: disk 
cache parameters, cache consistency model and data 
replica location. They are represented as WS-Resource 
Property and can be viewed and modified with 
standard WSRF operations (getResourceProperty and 
setResourceProperty). When the FSS receives a 
request for a session’s status, it signals the proxy to 
report the accumulated statistics (number of RPC calls, 
resource usage etc.) and to issue an NFS NULL call to 
the server to check whether the connection is alive.  
 

3.3 Data Scheduler Service (DSS) 
The Data Scheduler Service is in charge of creation 

and management of Grid file system sessions. These 
sessions are associated to the service as its WS-
Resources, and their properties are stored in a database. 
The service supports the operations of creating, 
configuring, monitoring and tearing down of a session. 

A request to create a session needs to specify the 
two endpoint locations (IP address, client mount point, 
server file system export path) and the desired 
configurations of the session (e.g. caching 
enabled/disabled, copy-on-write enabled/disabled, 
weak consistency model timeouts, as described in 
Section 4). The DSS firstly checks its information 
about other sessions to resolve sharing conflicts. For 
example, if the same dataset is accessed by another 
session with write-delay enabled at its client side, the 
service interacts with the corresponding FSS to force 
the session to write back and disable write delay.  

When there is no conflict, the DSS can proceed to 
start the session (Figure 1). It asks the server-side FSS 
to start the proxy server and the client-side FSS to start 
the proxy client and then establishes the connection. 
Before sending a request to the client-side FSS, the 
DSS also queries the DRS (a service described below). 
If there are replicas for the dataset, their locations are 
also sent along with the request, so that in case of 
failure the session can be redirected to a backup server.  

Note that a session is set up for a particular task. If 
there is an irresolvable conflict when scheduling a 
session (e.g. the dataset is currently under exclusive 
access by another session), the DSS does not establish 
the session and returns an error to the requestor. Cache 
parameters and consistency models can be 
reconfigured during a session. Upon such a request, 
the DSS also needs to resolve possible conflicts with 
other sessions. The DSS associates the endpoint 
reference (EPR) of a session with the EPRs of the 
proxies. When a request to monitor the session is 
received, the DSS asks the FSSs to monitor the proxies. 
 
3.4 Data Replication Service (DRS) 

The Data Replication Service is responsible for 
managing data replication. Its WS-Resources are data 
replicas. The service exposes interfaces for creating, 
destroying and querying a given dataset’s replicas. The 
state of resources is implemented with a relational 
database, which facilitates the query and manipulation 
of information about replicas. The service can be 
queried with the location of a dataset (primary or 
backup one), and it returns the locations of the replicas. 



A request to create a replica needs to specify the 
location of the data and the desired replica. If a replica 
does not already exist at the requested location, the 
DRS then interacts with the DSS to schedule a session 
between the source and the destination, and have the 
data replicated. Whenever a replica is created or 
destroyed, the DRS updates the database accordingly. 
 
4. Application-Tailored Data Sessions 

The data management services are capable of 
creating and managing dynamic Grid file system 
sessions. Unlike traditional distributed file systems 
which are statically set up for general-purpose data 
access, each Grid file system session is established for 
a particular task. Hence the services can apply 
application tailored customizations on these sessions to 
enhance Grid data access in the aspects of performance, 
consistency and fault tolerance (Figure 2). The 
following three subsections describe the choices that 
can currently be made on a per-application basis.  
 
4.1 Grid Data Access and File Transfer 

FTP-based tools can often achieve high 
performance for large-size file movements [3], but the 
application’s data access pattern needs to be well 
defined to employ such utilities. For applications 
which have complex data access patterns and for those 
that operate on sparse datasets, the generic file system 
interface and partial-data transfer supported by GVFS 
are advantageous. Both models are supported by the 
data management services. 

The FSS can configure data access sessions based 
on file system proxies. According to the information 
about the logical user accounts provided by the DSS, 
the FSS dynamically sets up cross-domain identity 
mappings (e.g. remote-to-local Unix IDs) on a per-
session basis. The FSS can also configure the GVFS 
session with disk caching to exploit data locality, and 
SSH tunneling to provide encrypted data transfer. It is 
capable of dynamically reconfiguring a file system 
session based on changed data access patterns, for 
example, when a session’s dataset becomes shared by 
multiple sessions, as discussed in the next section. 

The services can also employ high-performance 
data transfer mechanisms (e.g. GridFTP, SFTP/GSI-
OpenSSH) if it is known in advance that applications 
use whole-file transfers. This scenario can be dealt 
with in two different ways. In the conventional way, a 
user authenticates through the DSS, which requests the 
FSS to transfer files on behalf the user: downloading 
the required inputs and presenting them to the 

application before the execution; uploading the 
specified outputs to the server after the execution.  

The FTP-style data transfer can also be exploited by 
GVFS while maintaining the generic file system 
interface. The proxy client uses this functionality to 
fetch the entirely needed large files to a local cache, 
but the application still operates on the files through 
the kernel NFS client and the proxy client in a block-
based fashion. In this way, the selection of data 
transfer mechanism becomes transparent to 
applications and can be leveraged by unmodified 
applications. Such an application-selective data 
transfer session has been shown to improve the 
performance of instantiating Grid VMs [31] and can 
also be used to support other applications through the 
use of DSS/FSS services.  

 
4.2 Cache Consistency Models 

Different applications can benefit from the 
availability of different caching policies and 
consistency models. The DFS and FSS services enable 
applications to select well-suited strong or weak 
consistency models by dynamically customizing file 
system sessions.  Different cache consistency models 
are overlaid upon the native NFS client polling 
mechanism by the user-level proxies. For instance, an 
overlay invalidation polling mechanism can 
substantially improve performance of wide-area GVFS 
sessions by handling attribute revalidation requests at 
the client side. Other models that focus on stronger 
consistency guarantees rather than higher performance 
can also be realized in this overlay model, e.g. through 
the use of inter-proxy call-backs for cache invalidation. 

 

Figure 2. Application tailored customizations for a 
GVFS session. Read requests are satisfied from 
the remote server or the proxy cache. Writes are 
forwarded to the loopback COW server and stored 
in shadow files. When a request to the remote 
server fails it is redirected to the backup server. 



Typical NFS clients use per-file and per-directory 
timers to determine when to poll a server. This can 
lead to unnecessary traffic if files do not change often 
and timers are set to too small a value on one hand, 
and long delays in updates if timers have large values 
on the other hand. Across wide-area networks, 
revalidation calls contribute to long application-
perceived latencies. In contrast, the overlaid model 
customizes the invalidation frequency or disables the 
consistency checks on a per file system session basis.  

Because the data management services dynamically 
establish sessions that can be independently configured, 
the overlaid consistency model can be selected to 
improve performance when it is applicable. Two 
examples where overlaid consistency models can 
improve performance are described below: 

Single-client sessions: when a task is known to the 
scheduler to be independent (e.g. in high-throughput 
task farm jobs), client-side caching can be enabled for 
both read and write data, and write-back caching can 
be used to achieve the best possible performance. As 
writes are delayed on the client, the data may become 
inconsistent with the server. But from the session’s 
point of view, its data can be guaranteed to be 
consistent by the DSS. Consistency actions that apply 
to a session are initiated through the DSS in two 
occasions: 1) when the task finishes and the session is 
to be terminated, the cached dirty data is automatically 
submitted to the server; 2) when the data is to be 
shared with other sessions, the DSS reconfigures the 
session by forcing it to write back cache contents and 
disable write-delay henceforth. In either case, the DSS 
waits for the write-back to complete before it starts 
another session on the same data. 

Multiple-client, read-biased sessions: For file 
system sessions where exclusive write access to data is 
not necessary, the scheduler can apply relaxed cache 
consistency models on these sessions to improve 
performance. One approach currently implemented by 
GVFS proxies is based on an invalidation polling 
scheme. The basic idea is to have the proxy server 
record the file handles of potentially modified files in 
an invalidation buffer, and the proxy clients poll the 
buffer periodically. Then a proxy client can find out 
what files have possibly been modified by the other 
clients during the last period, and invalidates the 
cached contents of these files. 

Such a model proves effective when modifications 
to the file system are infrequent and need to be quickly 
propagated to clients, for instance, in a scenario where 
a software repository is shared among clients. For 
sessions where data changes more often, the 
invalidation frequency can be set to a higher value; the 
frequency can also adaptively self-adjust in a specified 

range. Such polling time parameters can be customized 
on a per-session basis through the FSS. 
 
4.3 Fault Tolerance 

Reliable execution is crucial for many applications, 
especially long-running computing and simulation 
tasks. The data management services currently provide 
two techniques for improved fault tolerance: client-
side COW assisted checkpointing, and server 
replication and session redirection. 

Copy-on-write file system: The services can enable 
COW on a file system session, so all file system 
modifications produced by the client are transparently 
buffered in local stable storage. In such a session, the 
client proxy splits the data requests across two servers: 
reads go to the remote main server, and writes are 
redirected to a local COW server2. The approach relies 
on the opaque nature of NFS file handles to allow for 
virtual handles that are always returned to the client, 
but map to physical file handles at the main and COW 
servers. A file handle hash table stores such mappings, 
as well as information about client modifications made 
to each file handle. Files whose contents are modified 
by the client have “shadow” files created by the COW 
server in a sparse file, and block-based modifications 
are inserted in-place in the shadow file. 

When an application is checkpointed, the FSS can 
request the checkpointing of all buffered modifications 
in the shadow file system. Then, when recovery from a 
client-side failure is needed, as the application is rolled 
back to the previous saved state, the FSS can also roll 
back the corresponding data state. Without the COW 
mechanism, when the application rolls back the 
modifications on the files since the last checkpointing 
are already reflected on the server. Thus the data state 
becomes inconsistent with the application state, and 
the recovery may not proceed correctly. For instance, 
files deleted on the server may be touched by the client 
when a checkpointed application is rolled back, 
causing the application to fail. A number of 
checkpointing techniques can be employed in this 
approach, including [23][7]. One particular case is 
checkpointing of an entire VM when the application is 
inside it, which is discussed in details in Section 5.1.  

Server replication and session redirection: 
Replication is a common practice for fault tolerance. 
The data management services can support replication 
at the server-side, and transparent failure detection and 
recovery for GVFS sessions as follows. When the DSS 

                                                           
 
2 Reads of file objects that have been modified by the client are 
routed to the COW server, instead of the main server. 



requests the FSS to start a proxy client, it also asks the 
DRS for information about existing data replicas (the 
address of a replica server and the file handle of a 
replica) and passes it to the FSS. During the session, if 
the proxy client notices a RPC times out (the timeout 
value is adjustable at the proxy), it then decides on 
whether to redirect the call to the replica server. 

The proxy tries at first to reestablish the connection 
to the server, in case the failure is caused by a transient 
network or server error, or a closed SSH tunnel. If it 
still fails, the proxy then connects to the replica server, 
and forwards the failed call and the following ones 
through the new connection. It is important to handle 
NFS clients that cache file handles in memory. Hence, 
for each redirected RPC call, the proxy client maps the 
old file handle inside the message to the new one3. 
Therefore the application does not even notice the 
failure4, and the recovery is handled transparently. 

The consistency among the replicas can be dealt 
with in two ways. An active-style replication scheme 
can be used, where each modification request on the 
data is processed by all the replicas. The advantage is 
that recovery can be very fast but it causes extra traffic 
and load on each server. Another scheme is to integrate 
the COW technique described above with the 
replication scheme, so no propagation of modifications 
is necessary, and server failure can be quickly 
recovered by switching to the replica server.  

 
5. Usage Examples 
5.1 VM Based Grid Computing 

VMs have been demonstrated as an effective way to 
provide secure and flexible application execution 
environments in Grids [10]. The dynamic instantiation 
of VMs requires efficient data management: both VM 
state and user/application data need to be provided to 
the machine running a VM, and may be stored in 
remote data servers. Previous work has described a 
VMPlant Grid service to support the selection, cloning 
and instantiation of VMs [21]. The data management 
services provide functionality that complements 
VMPlant to support VM-based Grid systems.  

In this model, the VMPlant service is in charge of 
managing and instantiating VMs, including the VMs 
used for computing (execution of applications), and 
data (storage of application and user data). To 
instantiate a compute VM, the VMPlant service 

                                                           
 
3 Proxy has a file handle to path mapping on stable storage. An old 
file handle is mapped to the new one by the proxy parsing the path 
with LOOKUP calls to the replica server. 
4 The session is hard-mounted. 

requests the DSS to schedule a GVFS session between 
the VM state server and the VM host, and the VM state 
can be transferred in the way discussed in [31]. After 
the VM is instantiated, the VMPlant service requests 
the DSS to schedule another session between the 
compute VM and the data VM, for access to the 
application and user data. Then the application can be 
started inside the compute VM. 

The DRS allows for replication of data VMs for 
improved reliability. VM instances can be 
checkpointed/resumed using the techniques available 
in existing VM monitors (e.g. VMware 
suspend/resume, scrapbook UML, Xen 2.0). With 
COW enabled in the GVFS session, buffered data 
modifications introduced by the application are also 
checkpointed as part of the VM’s saved state. Upon 
failure of the compute VM, a session can be resumed 
from the last checkpoint to a consistent state with 
respect to the data server. 

 
5.2 Workflow Execution 

A workflow typically consists of a series of phases, 
where in each phase a job is executed using inputs that 
may be data-dependent on other phases. Workflow 
data requirements can be managed by the DSS with a 
file system session per phase, and each session can be 
tailored to suit the corresponding job. Furthermore, the 
control over enabling and disabling the consistency 
models and synchronizing client/server write-back 
copies is available via the service interface. Hence 
scheduling middleware can select and steer 
consistency models during the lifetime of a session.  

For instance, a typical workflow in Monte-Carlo 
simulations consists of executing large numbers of 
independent jobs. Outputs are then post-processed to 
provide summary statistics. This two-phase 
workflow’s execution can be supported by the data 
management services with a data flow (Figure 3) such 

…Execute job 1 Execute job n

Barrier

Start

Post-processing

End

Session 1 Session n

Session   
n+1

…

…

Create session 1 to n 
with write-back caching

Force session 1 to n 
to write back and

disable write delay

Create session n+1 
with invalidation polling

Figure 3. A Monte-Carlo workflow and the 
corresponding data flow supported by the data 
management services. 



that (1) a session is created for each independent 
simulation job with an individual cache for read/write 
data, (2) each session is forced to write back and then 
disable write delay as the simulation jobs complete, 
and (3) a new session with invalidation polling 
consistency is created for running the post-processing 
jobs that consume the data produced in step (1). 

Such a workflow can be supported by the In-VIGO 
system [1], where a configuration file is provided by 
the installer to specify the data requirement and 
preferred consistency model for each phase. When it is 
requested by a user via the In-VIGO portal, the virtual 
application manager interacts with the resource 
manager to allocate the necessary resources, interacts 
with the data management services to prepare the 
required file system session, and then submits and 
monitors the execution, for each phase of the workflow. 
 
6. Evaluation 

The service-managed Grid file system sessions have 
been investigated with experiments based on the 
execution of applications in Grid VMs. The VMs are 
based on VMware GSX 2.5; detailed configurations 
are shown in Table 1. The “Compute VM” is the data 
client, and the “Data VM” is the file system server. 
Wide-area setups between University of Florida (UFL) 
and both Northwestern University (NWU) and 
Louisiana State University (LSU) are considered. 

The choice of VM-based environments is motivated 
by two factors. First, experiments in wide- and local-
area networks with consistent execution environments 
can be easily set up by transferring VMs. Second, file 
system checkpointing is a powerful complement to a 
VM monitor’s native checkpointing capability.  
 
6.1 Overlay Weak Cache Consistency  

Two benchmarks are considered in this experiment 
with the VMs described in Setup 1 of Table 1. The 
NanoMOS benchmark models the usage of a shared 
software repository. It runs the parallel version of 
NanoMOS, a 2-D simulator for n-MOSFET transistors. 
The execution requires MATLAB, including the MPI 
toolbox (MPITB), which is read-shared among WAN 

users and also maintained by a LAN user, the 
administrator. A WAN user runs NanoMOS for 8 
iterations, while between the 4th and 5th run the 
administrator performs an update in the repository. 
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Figure 4. NanoMOS benchmark runtimes of 8 
iterations performed across WAN via native NFS, 
and GVFS with 30 seconds invalidation period, and 
on local disk. Between the 4th and 5th run another 
user updates the software, where in (a) (top graph) 
the entire MATLAB is updated, and in (b) (bottom 
graph) only the MPITB is updated. 
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Figure 5. CH1D benchmark runtimes for 10 
iterations on the input data accessed across WAN 
via native NFS, and GVFS with 30s invalidation 
period. Each run has a new data directory 
generated on the data VM and consumed by the 
post-processing program on the compute VM. 

Table 1. Experimental Setup 
 VM VM Configuration Host Configuration Network Between the VMs 

Compute VM Dual-2GHz Xeon processors, 
1.5 GB memory 1 

Data VM 
256MB memory, 4GB disk, 

Linux RedHat 7.3 Dual-2.4GHz Xeon processors,
1.5 GB memory 

WAN between NWU and UFL, 
VNET[27] used between the VMs

Compute VM 2 Data VM 
256MB memory, 4GB disk, 

Linux RedHat 7.3 
Compute VM 3 Data VM 

256MB memory, 3GB disk, 
Linux Debian 3.1 

Dual-3.2GHz Xeon processors,
2.5 GB memory 

WAN between LSU and UFL,  
SSH tunneling used 



Two situations are considered: a major update, where 
the entire MATLAB is updated, and a minor update, 
where only the MPITB is updated. 

Figure 4 shows the runtimes of the benchmark 
when the repository is mounted from the data VM via 
NFS/GVFS, or stored on local disk. With the relaxed 
cache consistency model the GVFS session achieves 
23-fold speedup when its caches are warm, compared 
to native NFS. When updates happen, performance is 
affected depending on the amount of necessary 
invalidations: in (a), the invalidations triggered by the 
major update almost completely flush the cache, so 
iteration 5 only performs 3% better than iteration 1. In 
(b), the iteration after the minor update is still 14-fold 
faster than native NFS. In the common case (in the 
absence of updates), the performance of conventional 
NFS over the WAN is very poor, while the 
performance of the GVFS session with weak 
consistency is very close to local-disk performance. 

Another benchmark used is based on CH1D, a 
hydrodynamics modeling application. It models a 
scenario where real-time data are generated on coastal 
observation sites and processed on off-site computing 
centers. CH1D outputs data into a sequence of 
directories on the data VM, which become the inputs 
to a post-processing program executed on the compute 
VM. The program runs 10 iterations, where in each run 
a new data directory is generated and then consumed 
by the post-processing program. The experiment 
results are shown in Figure 5. It is evident that as the 
input dataset grows the penalty caused by consistency 
checks also grows almost linearly in native NFS, but it 
remains practically constant in GVFS. The 10th run of 
GVFS is already 5 times faster than native NFS. 
 
6.2 File System Checkpointing/Recovery 

This experiment models a scenario where a VM 
running an arbitrary application is checkpointed, 
continues to execute, and later fails.  Before failing, the 
application changes the state of the file server 
irreversibly – e.g. by deleting temporary files. This 
case is tested with the Gaussian computational 
chemistry application running on the compute VM and 
data mounted from the data VM (Setup 2 in Table 1). 
The experiments show that, in native NFS, when the 
compute VM is resumed to its previous checkpointed 
state, the NFS reports a stale file handle error and the 
application aborts. In contrast, with the application-
tailored checkpointing GVFS session, the application 
has been recovered successfully after the VM is 
resumed from the same checkpoint. 

Although it is arguable that for this particular 
example, saving the temporary files on the compute 

VM’s local disk instead of on GVFS can also include a 
consistent data state in the checkpointed VM, it is 
difficult for applications whose temporary data 
generation pattern is not explicitly available or 
controllable. The COW assisted checkpointing is 
important because it can be applied to provide failover 
from client failure for a more general scenario. In fact, 
in combination with a VM, it supports checkpointing 
of legacy programs using data from NFS-mounted file 
systems, a capability unique to this approach. 
 
6.3 Error Detection and Data Redirection 

In this section, the application of the FSS-based 
error detection and data redirection is evaluated with a 
data session established for the SPECseis96 
benchmark application. During its execution, a failure 
is injected by powering off the data VM. The failure is 
detected when a RPC call times out, and is 
immediately recovered by establishing a new 
connection to the replica VM and redirecting the calls. 

The experiment is conducted with the VMs 
described in Setup 3 (Table 1). The benchmark 
finishes successfully, without being aware of the server 
failure and recovery during its execution. The elapsed 
time of such a run (268 seconds) is compared with the 
execution time of the benchmark in a normal GVFS 
session (without injected failure, 258 seconds), and the 
results show that the overhead of the error detection 
and the redirection setup is 5 seconds (plus the timeout 
value - 5 seconds, specified on the proxy). Considering 
a long-running application, the overhead is negligible.  
 
7. Conclusions and Future Work 

Application-transparent data management and the 
capability of improving upon a native distributed file 
system at the user level are key to supporting a variety 
of applications in Grid environments. Previous work 
has shown that virtualization techniques provide a 
framework for establishing isolated data access 
sessions dynamically. This paper shows that a WSRF-
oriented architecture can be used to provide an 
interoperable interface for managing such sessions, 
while supporting configuration of data access/transfer 
styles, caching and consistency, checkpointing and 
replication based on application requirements.  Results 
show that performance enhancements due to user-level 
caching and consistency policies, and reliability 
enhancements due to file system checkpointing and 
redirection are enabled by the service. 

The current service framework can collect 
application profiling information such as NFS RPC 
call statistics. Future work will further leverage this 



information to help optimize Grid data sessions with 
application-tailored consistency models, replication 
management and load balancing schemes. 
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