
On the Use of Fuzzy Modeling in Virtualized Data Center Management

Jing Xu*, Ming Zhao*, José Fortes*, Robert Carpenter , Mazin Yousif
*University of Florida, {jxu, ming, fortes}@acis.ufl.edu

Intel Corporation, {robert.e.carpenter, mazin.s.yousif}@intel.com

Abstract

One of the most important goals of data-center

management is to reduce cost through efficient use of
resources. Virtualization techniques provide the
opportunity of carving individual physical servers into
multiple virtual containers that can be run and
managed separately. A key challenge that comes with
virtualization is the simultaneous on-demand
provisioning of shared resources to virtual containers
and the management of their capacities to meet service
quality targets at the least cost. This paper proposes a
two-level resource management system with local
controllers at the virtual-container level and a global
controller at the resource-pool level. Autonomic
resource allocation is realized through the interaction
of the local and global controllers. A novelty of the
controller designs is their use of fuzzy logic to
efficiently and robustly deal with the complexity of the
virtualized data center and the uncertainties of the
dynamically changing workloads. Experimental results
obtained through a prototype implementation
demonstrate that, for the scenarios under
consideration, the proposed resource management
system can significantly reduce resource consumption
while still achieving application performance targets.

1. Introduction

The need to manage multiple applications in shared
data centers creates the challenge (and also the
opportunity) of on-demand resource provisioning and
allocation in response to dynamically changing
workloads. It is often desirable for application
providers to be able to lease data-center resources
under a “pay-as-you-go” model, and for the data-center
providers to be able to multiplex shared resources in a
way that guarantees the expected performance of
applications. To realize this, the data center must
provide flexible and manageable execution
environments that are specialized for each application
without compromising its ability to share resources

among applications and delivering to them the
necessary performance, security and isolation.

Virtualization is key to this vision, by allowing
physical servers to be carved into multiple virtual
resource containers, and enabling a virtualized data
center where applications are hosted and managed in
their dedicated virtualized containers. In particular,
virtual machines (e.g. [15][7][2]), which provide
strong isolation, security and customizability, can be
dynamically created to serve as virtual containers;
while the management of these containers, e.g.
lifecycle management and resource allocation, can be
conducted through the interface provided by the
virtualization platform.

Applications served by a data center are usually
business-critical applications with Quality of Service
(QoS) requirements, e.g. e-commerce services. Such
applications have time-varying resource demands with
typically high peak-to-mean ratios, leading to low
resource utilization if over-provisioning is used to
meet peak demands. The resource allocation needs to
not only guarantee that a virtual container always has
enough resources to meet its application’s performance
goals, but also prevent over-provisioning in order to
reduce cost and allow the concurrent hosting of many
applications. Static allocation approaches that consider
a fixed set of applications and resources cannot be
used because of changing workload mixes, and
solutions that only consider runtime behavior
individual applications fail to capture the competition
for shared resources by virtualized containers.

This paper presents a two-level autonomic resource
management system that enables automatic and
adaptive resource provisioning in accordance with
Service Level Agreements (SLA) specifying dynamic
tradeoffs of service quality and cost. Resource control
functions are integrated in a data center at two
different levels of abstraction: virtual containers and
resource pools. A local controller, created per virtual
container, is responsible for determining the resources
needed by its application and making resource requests
accordingly. By doing so, the local controller
minimizes leasing costs by avoiding over-provisioning

for the application running on the container. A global
controller manages the virtual containers hosted on the
same physical resources. It responds to the local
controllers’ requests and allocates the shared resources
to them in a way that maximizes the total profit (by
leasing resources to a large number of containers).

The key to cost-effective resource allocation is the
ability to efficiently find the minimum amount of
resources that an application needs to meet the desired
QoS. The paper presents a fuzzy-logic-based control
system that applies fuzzy modeling to characterize the
relationship between application workload and
resource demand. A prototype of the proposed two-
level resource management system has been deployed
on a virtualized data center testbed. Typical e-business
applications with synthetic workloads and real-world
traces were used to evaluate the fuzzy modeling in the
local controller and the resource allocation in the
global controller. The results show that the proposed
approach can effectively allocate resources to virtual
containers under dynamically changing workloads, and
significantly reduce resource cost while still achieving
desired application performance.

The rest of this paper is organized as follows.
Section 2 provides an overview of the two-level
resource management system. Section 3 and Section 4
describe in detail the designs of the local controller and
the global controller. Section 5 presents an evaluation
of the prototype. Section 6 examines related work and
Section 7 concludes the paper。

2. Two-level Autonomic Resource Control

A data center, illustrated in Figure 1, serves a
number of applications. Each delivers a distinct service
to its customers using (virtual) resources provided by
its dedicated container, which is a virtual machine to
host the application. The data center’s resource pool
allocates the physical resources to its virtual containers
based on their applications’ resource needs.

To achieve performance isolation and guarantee an
Application SLA (between an application provider and

the client) independently of the load on other
containers, a local resource controller is employed in
each virtual container to estimate the resources needed
by the application’s workload and to make resource
requests accordingly. The global controller makes
resource allocation decisions among competing
requests, trying to avoid violations of Resource SLAs
(between application providers and data center). The
underlying assumption is that if the global controller
does not allocate enough physical resources requested
by the local controller resulting in application’s SLA
violation, the data center provider will be penalized
instead of the application provider.

This two-level resource control system is preferred
over the more obvious centralized approach in which
all the control functions are implemented at one
centralized location. Since local containers are
independent of each other, heterogeneous local
controllers’ implementations are possible. All of the
internal complexities of control functions in virtual
containers are compressed by local controllers into
straightforward resource requests, which specify the
amount of resources needed. This approach makes it
easy to add, change or remove virtual containers and
their local controllers without affecting the global
controller.

The system handles two different types of
optimizations independently. The local controller tries
to minimize the resource consumed by the virtual
container to reduce the resource cost while still
satisfying SLAs of its clients. The global controller
seeks to maximize its own profit, which is the revenue
received from allocating its resources among virtual
containers minus the cost of penalties incurred from
resource SLA violations. The following sections
explain our approach to the design of the local and
global controllers.

3. Local Resource Controller

Interaction between the local and global controllers
enables a virtual container to augment its resources in

Virtual Container1

Data Center
Resource Pool

Workload1

consume requestprovide

Local
Controller1

Global controller

Application
SLA1

W2

VC2

…

Application1 A2

Resource
SLA

Local
Controller2

Application
SLA2

Local
Controller3

Application
SLA3

…
W3

VC3

A3

Figure 1. Data center with virtual resource containers to host applications, and a two-level controller
architecture to allocate physical resources to containers.

response to increased workload, and to reduce its
resources when no longer needed. The main task of the
local controller is to optimize the set of resources
needed by an application running in the container. Our
approach to the design of such a controller is based on
fuzzy modeling, as discussed next.

3.1. Background

Fuzzy logic [19] is a tool to deal with uncertain,
imprecise, or qualitative decision-making problems.
Unlike in Boolean logic, where an element x either
belongs or does not belong to a set A, the membership
of x in A has a degree value in a continuous interval
between 0 and 1. Fuzzy sets are defined by
membership functions that map set elements into the
interval [0 1].

One of the most important applications of fuzzy
logic is the design of fuzzy rule-based systems. These
systems use “IF-THEN” rules (fuzzy rules) whose
antecedents and consequents use fuzzy-logic
statements to represent the knowledge or control
strategies of the system. A fuzzy model is a qualitative
model constructed from a set of fuzzy rules to describe
the relationship between system input and output [14].

The process of applying fuzzy rules on the system
is called inference mechanism. Because fuzzy rules
describe the relationship between system variables in
fuzzy values, two functions are necessary for
translating between numeric values and fuzzy values.
The process of translating input values into one or
more fuzzy sets is called fuzzification. Defuzzification
is the inverse transformation which derives a single
numeric value that best represents the inferred fuzzy
values of the output variables.

3.2. Modeling based on Fuzzy Logic

To determine the resource needs of an application
hosted in a virtual container, the local controller needs
to learn the behavior of the virtual container under
dynamically changing workloads. Figure 2 shows the
abstracted inputs and outputs of a virtual container that

hosts a running application. The virtual container
receives the application workload from its clients, and
utilizes the physical resources provided by data center
resource pool to process the workload. The achieved
QoS of the application depends on the amount of
allocated resources and the workload. The goal is to
find the relationship between workload and resource
usage for acceptable QoS.

The proposed approach uses fuzzy logic to model
the behavior of a virtual container from its input-output
data without requiring a-priori knowledge about the
system, which is a so-called “black box” approach. It
automatically learns the relationship between workload
and the corresponding resource demand needed to
achieve desired QoS. Figure 3 (in Page 4) illustrates
the key functions used to construct and apply fuzzy
models in the local controller. The data monitored by
the virtual container sensors are first processed by the
filtering and clustering functions. Then the produced
data clusters are used by the modeling function to
create IF-THEN rules which are stored in a rule base.
The cluster centers and ranges are used to determine
the fuzzy model’s parameters and are also stored in a
database. Finally, the fuzzy inference functions take
this learned model to determine the resource needs
from the currently monitored workload. The rest of
this section explains these functions in detail.

3.3. Online Monitoring and Data Filtering

Monitoring sensors periodically measure the
workload (W), the application performance (P), and
the resource usage (U) of a virtual container. For a
typical data center application, its workload can
usually be described by the rate and mixture of the
requests. For instance, a Web server’s workload can be
characterized by the HTTP request rate as well as the
ratio between the requests to static and dynamic Web
content. The metrics for performance measurement are
often directly taken from the SLA, e.g. the throughput
(number of completed transactions per second) and/or
average service response time.

The metrics for resource utilization are associated
with the different types of consumed physical
resources, including CPU percentage, memory size,
disk storage, disk I/O rate and network bandwidth.
However, an application’s virtual resource usage (the
values collected inside of the virtual container) does
not necessarily represent its physical resource
consumption. For example, an application’s network
I/O consumes not only the physical network bandwidth,
but also the physical CPU cycles. In the proposed
approach, an application’s resource usage is obtained
by directly monitoring the physical resource

Virtual
Container

Workload
sensor

Resource
sensor

QoS
sensor

Application
workload

Resource usage

QoS

Given physical
capacity

to local controller
Figure 2. Inputs and outputs of a virtual container.

consumption of its virtual container. This is sensible
because in the envisioned data center a virtual
container is dedicated to an application’s service.

A sequence of data points (W, U, P) are produced
by the sensors at constant time intervals (20 seconds in
our experiments), and then filtered to generate a subset
of points to be used to learn the fuzzy model that
captures the relationship between workload and
resource demand under a certain SLA. The data points
are kept or filtered out depending on whether the
measured performance satisfies the SLA or not,
respectively. A data point’s P is satisfactory, only if
the resource capacity allocated to the virtual container
at that point is sufficient for the corresponding
workload for the given SLA. In this case, the
monitored resource utilization represents the actual
resource needs, and thus the data (W, U) can be used
for model learning. On the contrary, an SLA violation
indicates that the allocated resources are not enough to
achieve the SLA target. In this case, the resource
consumption is capped by the allocated capacity, so the
monitored values are less than the desired resources
and cannot be used in fuzzy modeling.

3.4. Data Clustering and Fuzzy Modeling

After the collection of a certain amount of paired
data (W, U) are collected, the mapping between
workload and resource demand can be learned by first
clustering the data points and then building the fuzzy
model based on the data clusters. The purpose of
clustering is to produce a concise representation of the
system’s behavior. Several classic clustering
algorithms can be used, e.g. hierarchical and k-means
clustering. In the proposed local controller design,
subtractive clustering [5] is chosen for its speed and
robustness.

This clustering method assumes that each data point
is a potential cluster center and chooses the data center
based on the density of surrounding data points. The
algorithm selects the data point with the highest
potential to be the first cluster center and then removes
all data points in the vicinity of the first cluster center

in order to determine the next data cluster and its
center location. This process continues until all of the
data is within radius of a cluster center. The variable
radius represents a cluster center's range of influence
in each of the data dimensions, assuming the data falls
within a unit hyperbox. Small radius values generally
result in finding a large number of small clusters. This
value is set to 0.5 in the local controller’s
implementation.

Since each cluster exemplifies a characteristic of
system behavior it can be used as the basis of a fuzzy
IF-THEN rule that describes system behavior. If n data
clusters are formed, n rules can be produced in which
the ith rule is expressed as:

Rule i: IF input data w is close to cluster i, THEN
output data u is close to cluster i.

Each cluster specifies a fuzzy set with its
membership functions determined by cluster center
and range. Using the Gaussian membership function,

2

2

2
)(

)(i

icw

i ex σμ
−

−

= ,
the center of the membership function ic for fuzzy set
i equals the center of cluster i and the weight of
membership function iσ equals the radius of cluster i.

The model described by the above fuzzy rule is
called zero-order Sugeno-type fuzzy model [14]. The
modeling accuracy can be improved significantly by
using the first-order Sugeno model, in which the
output of each rule is a linear function of the input
variables. The rules are rewritten as follows,

Rule i: IF input data w is close to cluster i, THEN
output data u = aw +b.

The parameters a and b in the linear equations are
estimated by the least-squares method. This model is
implemented in the local controller’s fuzzy modeling
function.

3.5. Fuzzy Inference

Once the fuzzy model relating workload to resource
demand is learned from the selected data relating
workload to resource usage, it can be used in a rule-

ClusteringFilter Modeling

Fuzzy inference engineFuzzification Defuzzification

(W,U,P)

W

Database Rule base

Fuzzy inferenceSensors

Local controller

Knowledge base

Fuzzy modeling
(W,U)

U

Figure 3. Fuzzy modeling and inference functions in a local resource controller.

based fuzzy inference module which, given the
application’s workload (W), produces the estimated
resource demand (U) for the application’s container.

The fuzzy controller consists of four basic functions
(Figure 3). The knowledge base includes a database
which contains the membership functions of the fuzzy
sets and a rule base where the fuzzy rules are specified.
In the fuzzification function, the input (W) collected
from the sensor is mapped to fuzzy values using the
membership functions. A decision-making unit, called
the fuzzy inference engine, infers from a fuzzy inputs
to resulting fuzzy outputs according to the rules stored
in the knowledge base. The defuzzification function
aggregates the outputs and converts them to a crisp
output. The final output (U) of the system is the
weighted average of all rule outputs with the weight of
ith rule being the membership value of the input in
cluster i.

In summary, using fuzzy modeling and fuzzy
inference shown in Figure 3, the local controller
estimates the resource needs for the current workload
measured by the sensor, and sends requests to the
global controller to either ask for more resources if the
current allocation is not sufficient to satisfy the SLA or
to withdraw resources when no longer needed.

3.6. Adaptive Modeling

The discussion so far has only considered offline
model learning from collected data. As the workload
or system condition changes, the model describing the
system’s behavior needs to capture the changes
accordingly. The adaptive modeling is employed by
the local controller in which the model is repeatedly
updated based on online monitored information.

The clustering function takes new data into
consideration as soon as they arrive (after the filtering)
and keeps updating, so that up-to-date clusters are
always provided for the modeling. Whenever the data
clusters are updated, the fuzzy model’ parameters are
changed accordingly in the database. If a new cluster is
added, a corresponding rule is then added into the rule
base; and similarly, if a cluster no longer exists, the
rule associated with it is removed from the rule base.

In the case when the allocated resources are
insufficient for the workload, the monitored data
becomes disqualified and is filtered out because of the
performance degradation. The shortage of qualified
data will hurt the model’s learning speed and quality.
To avoid this situation, whenever the filter function
detects that the percentage of qualified data is less than
50%, the controller asks for an additional predefined
percentage (10% is used in our prototype) of current
resource allocation from the global controller to

improve the application’s performance back to the
desired level.

4. Global Resource Controller

The global controller receives requests for physical
resources from local controllers and allocates the
resources among them. It seeks to make allocations
that maximize its own profit, which is the revenue
received from allocating its resources minus the
penalties due to resource SLA violations.

Suppose that K virtual containers are concurrently
active in the data center. Let dk denote the resource
demand from container k, and ck be the amount of
resources granted to it. The global controller receives
revenue of rk for every allocated resource unit. But if
the global controller cannot satisfy the requested dk, it
also pays a penalty of pk per unit of unmet resource
demand, according to the resource SLA. The profit that
can be made by the global controller’s allocation is,

IcCdcts

cdpcrcccprofit

K

k
kkk

K

k
kkkkkk

≤=≤≤

−−=

∑

∑

=

=

1

1
,21

 ,0 ..

 ,)]([),,(L

where C is the total amount of resources allocated to
the virtual containers, and I is total available resource
capacity in the data center.

The profit equation can be rewritten as follows,

∑∑
==

−+=
K

k
kk

K

k
kkkk dpcprcccprofit

11
,21)(),,(L

Consider kk pr + as the profit rate for the virtual
container k and assume that the global controller can
allocate any resource fraction to the virtual containers,
a greedy algorithm that allocates resources in the order
of decreasing profit rates is an optimal allocation (this
is similar to the case of a fractional knapsack problem
[10]).

5. Experimental Evaluation

This section summarizes the experimental
evaluation of the suitability of the proposed two-level
control system for dynamic resource allocation in a
data center environment with time-varying workloads.
Section 5.2 discusses experiments that evaluate the
ability of the local controller to track the resource
needs of changing workloads. Section 5.3 considers
the maximal profit approach of Section 4 when the
global controller must share limited resources among
several containers.

5.1. Setup
5.1.1. Data Center Environment

The testbed consists of a pool of servers that
provide virtual containers for applications, and several
workload-generating clients. VMware ESX Server
3.0.1 is installed in each server node which has dual
hyperthreaded Intel Xeon 3.2GHz CPUs and 4GB
memory. Virtual machines are created on the servers
and used as virtual containers to host applications. The
clients are created on VMware-Server-1.0.0-based
virtual machines, hosted on another cluster of dual-
2.4GHz hyperthreaded Intel Xeon nodes. Workloads
are generated by the clients and issued to the
applications across a Gigabit Ethernet network.

5.1.2. Application and Workload

The Java Pet Store [24] is chosen to represent a
typical e-business application, which implements an
online store that allows users to browse and make
orders, and managers to manage orders, suppliers and
inventory. It is a reference application that has been
developed on various Java EE platforms. The version
of Java Pet Store used in the experiments is 1.3.1 and
built with J2EE 1.3.1.

Synthetic HTTP workloads that mimic the key
aspects of real-world workloads are created with
various client sessions generated by httperf [11]. Each
individual session consists of a sequence of requests
generated by repeating and mixing the following
customer actions: go to the storefront, sign in, browse
products, add some products to shopping cart, and
checkout. Two key parameters can be adjusted to vary
a session’s workload on the application: the user think
time (the time between two consecutive requests) can
be changed to generate different request rates; the ratio
of dynamic requests (e.g., sign in, check out and search
product) versus static requests (e.g., browse static Web
pages and view images) can be varied to impact a
session’s workload characteristics. A Perl program is
developed to create different workloads and drive
httperf to issue the requests.

Traces collected from ‘98 World Cup sites are also
used in the experiments to represent real-world
workloads. The logs provided by an Internet repository
[23] consist of about 1.3 million requests made to the
‘98 World Cup Web site between April 30, 1998 and
July 26, 1998. A real-time log replayer is used to
generate workloads according to the trace [22].

5.1.3. Controller Prototype

The virtual containers are monitored and controlled
through the Web-service-based management interface
provided by VMware ESX Server. It allows the

allocation of a server’s available physical resources
among its hosted virtual machines (e.g. setting the
minimum, maximum and proportional resource shares
of a virtual machine), and also the real-time monitoring
of a virtual machine’s resource utilization.

The proposed two-level controllers are implemented
in Java, running along with the virtual containers.
Every virtual machine has a local controller to manage
the virtual container it provides, and every ESX server
node has a global controller to manage the shared
resources for the virtual containers hosted on it. The
sensors, also developed in Java, monitor the workload
(request rate and mixture), the application throughput
(reply rate), and the resource consumption (CPU
usage). The monitoring period is set to 20 seconds.
Because the concerned workloads are mostly CPU
intensive, the experiments focus on the utilization and
allocation of CPU resources.

5.2. Experiment on Local Controller
5.2.1. Workload with Static Web Requests

In the first experiment, the workload generator
issues a new session to the Pet Store every 10 seconds,
up to a total of 15 sessions. The sessions only issue
static Web page requests with a user think-time
between 0.1 to 1 second, and each session lasts around
1 minute. After a group of 15 sessions are completed,
another group is generated similarly but with a
decreasing average think-time (and hence an
increasing request rate). This setup emulates the
burstyness of workloads in real world. The entire
experiment lasts for 4000 seconds.

The workloads used in this experiment consist of
only static Web requests. In this case, the CPU usage is
highly correlated with request rate, which is used as
the only parameter to characterize the workload. The
first 50 pairs of data points (the request rate and CPU
usage) collected from the sensors are used to initialize
the learning of the fuzzy model. Afterwards, the model
is continuously updated every 200 seconds (in which
10 new data points become available from the sensors).
Figure 4 illustrates the model learned at the beginning
and the end of the experiment, which shows an
approximate linear relationship between the request
rate and CPU usage 1 in the range of 0 to 100
requests/second.

The local controller continuously estimates the CPU
demand based on the current workload and the latest
learned fuzzy model, and dynamically adjusts the CPU
requests to the global controller. Because the available

1 In VMware ESX Server, the amount of CPU allocation and
usage can be expressed in CPU frequencies (Hz).

resources are sufficient in this experiment, the global
controller always allocates to the virtual container the
exact amount of CPU requested by the local controller.
To prove the accuracy of the fuzzy modeling, the same
experiment is repeated on the virtual container which
is statically allocated with a large amount of CPU
(3.2GHz) in order to obtain the ideal throughput for
the same workload.

The throughputs from these two runs are compared
in Figure 5, indicating that the actual throughput
obtained by using the local controller is almost
identical to the ideal throughput. Compared to the
static allocation of CPU with the peak value
(overprovision based on the highest load), the dynamic
approach saves about 55% of CPU cycles otherwise
needed for this experiment. It proves that the online
fuzzy modeling can accurately learn the relationship
between the workload and resource demand, and
effectively guide the resource allocation for the virtual
container.

5.2.2. Workload with Dynamic Web Requests

In the second experiment, the workloads are
generated similarly to the previous one, except that
dynamic Web requests are also considered. Every
group of sessions differs not only in the request rate
but also the proportion of dynamic requests in the

workload: the ratio of dynamic to static requests grows
from 0 to 1 across the groups. Servicing dynamic Web
content requires processing by the application server
and database, and thus typically consumes more
resources than servicing static Web content. If the
fuzzy modeling still uses only request rate as the input,
the resulting model cannot effectively represent the
actual relationship between workload and resource
demand. The experiment results (observed but not
shown here) also confirm that the throughput achieved
by using such a model is much worse than the ideal
throughput for the workload.

In contrast, using both the request rate and
dynamic/static request ratio to characterize the
workload, a 3D fuzzy model can be constructed to
describe the relationship between workload and
resource demand more accurately. Figure 6 shows the
surface of the model learned at the end of the
experiment. One of the advantages of fuzzy modeling
demonstrated by the above experiments is that fuzzy
models can effectively learn simple as well as non-
linear and complex relationships between inputs and
outputs.

Figure 7 compares the application’s throughput to
the ideal throughput obtainable for the workload. The
graph shows that the throughput achieved is again very
close to its ideal level (the difference is under 6%). It is

Figure 4. Fuzzy model learned from the workload
with static Web requests at the beginning
(model1) and the end (model2) of the experiment.

Figure 6. The surface of the fuzzy model learned
from the workload with dynamic Web requests.

Figure 5. Comparison of the throughput achieved
by using local controller and the ideal throughput
for the workload with static Web requests.

Figure 7. Comparison of the throughput achieved
by using local controller and the ideal throughput
for the workload with dynamic Web requests.

also noticeable that when the workload is high the
difference becomes relatively larger. This is because of
the delay between the change of workload and
resource allocation, which is largely due to the
granularity of the online monitoring and control. When
the workload is heavy, this delay causes the
application’s throughput to fluctuate a little around the
ideal one. However, the overall error is still very low.
About 33% of CPU cycles are saved by this dynamic
allocation, compared to a fixed allocation where
overprovision is based on the highest load.

5.2.3. Trace-Driven Workload

In the third experiment, the ‘98 World Cup Web
site trace collected on May 31 from 5am to 5pm (local
time in Paris) is used to generate workload, and it is
played at 12X speedup to enhance its intensity. All the
documents requested by the trace are created by the log
replayer tool based on the sizes recorded in the trace.
Because only static Web pages are requested in the
trace replaying, the workload is characterized by the
request rate.

During the experiment, the first 30 measurements of
workload and CPU consumption are used to initialize
the fuzzy model. After that, the model is updated every
200 seconds. Figure 8 illustrates the model learned at
the beginning and the end of the experiment. Figure 9

shows that the application’s throughput achieved by
using the local controller is close to the ideal
throughput obtainable for the workload (the difference
is within 5%), indicating the effectiveness of the fuzzy
approach under real-world workloads. The dynamic
allocation uses less than 75% of the CPU cycles used
by a static approach that allocates maximum CPU
fraction based on the highest workload.

5.3. Experiments on Global Controller

The last set of experiments investigates the global
controller’s allocation of limited resources among
multiple virtual containers. Two virtual containers
(VC1, VC2) running on the same server node compete
for the available CPU cycles (1GHz). VC1 serves a
fixed workload, which has a constant request rate of 30

Figure 8. Fuzzy model learned from the trace-based
workload at the beginning (model1) and the end
(model2) of the experiment.

Figure 9. Comparison of the throughput achieved
by using local controller and the ideal throughput
for the trace-based workload.

Figure 10. CPU requests from two virtual
containers (VC1, VC2) that share limited
resources.

Figure 11. CPU allocation that favors VC2.

Figure 12. CPU allocation that favors VC1.

requests/sec; while VC2 receives an increasing
workload with a request rate rising from 10 up to 60
requests/sec. The workloads used in this experiment
only consider static Web requests.

Both local controllers of these two containers
employ the fuzzy modeling approach to dynamically
estimate their CPU demands for the workloads, and the
amounts of resources requested during the experiment
are plotted in Figure 10. The local controller of VC1
requests around 500MHz of CPU throughout the entire
experiment; while VC2 increases its CPU request from
about 200MHz to more than 800MHz as its workload
grows.

When the CPU needed by VC2 goes beyond
500MHz, the global controller responds to the resource
shortage by reducing the allocation to VC1 or VC2.
The allocation policy of the global controller is to
maximize its profit by employing the greedy algorithm
discussed in Section 4. Two simple scenarios are
considered in the experiments. In the first case, the
profit rate of VC2 is higher than VC1; therefore, the
global controller decides to satisfy the resource
requests from VC2 by reducing the allocation for VC1
whenever a CPU shortage happens. Figure 11 shows
the actual CPU allocations for the two containers
throughout the experiment. The second case considers
the opposite situation where VC1 has a higher profit
rate and thus is favored in the resource allocation. In
this case, VC2 suffers from the resource shortage when
the global controller cannot allocate enough resources
for both containers (Figure 12).

6. Related Work

To the best of our knowledge there is no prior work
using a fuzzy modeling approach to data center
resource management. The following briefly
summarizes other work with some common elements
with this paper’s approach.

Rule-based systems: This approach uses a set of
event-condition-action rules (defined by system
experts) that are triggered when some precondition is
satisfied (e.g., when some metrics exceed a predefined
threshold). For example, the HP-UX Workload
Manager [21] allows the relative CPU utilization of a
resource partition to be controlled within a user-
specified range, and the approach of Rolia et al. [12]
observes resource utilization (consumption) by an
application workload and uses some “fixed” threshold
to decide whether current allocation is sufficient or not
for the workload. With the growing complexity of
systems, even experts are finding it difficult to define
thresholds and corrective actions for all possible
system states.

Control theory: Approaches based on control theory
have been applied to resource management to achieve
performance guarantees. Most of the work assumes a
linear relationship between the QoS parameters and the
control parameters, and involves a training phase with
a given workload to perform system identification.
Typically, control parameters must be specified or
configured offline and on a per-workload basis.
Abdelzaher et al. [1] investigated this approach for
QoS adaptation in Web servers. In [17][20], a
nonlinear relation between response time and CPU
allocation to a Web server is studied, and a bimodal
model is used to switch between underload and
overload operating regions. To deal with time-varying
workloads, more recent work applies adaptive control
theory, in which models are automatically adapted to
changes using online system identification.

Model-based: Previous research efforts
[4][8][13][18][16] have been trying to model computer
systems from different perspectives. Bennani et al. [3]
predicts the response time and throughput for both
online and batch workloads using multiclass open
queueing networks. Liu et al. [9] uses AR models to
map CPU entitlement percentage to the mean response
time with a fixed workload. Chandra et al. [4] models
the resource using a time-domain queueing model
which relates the resource requirements to its workload.
Some of these approaches make simplifying
assumptions such as using a single queue to model the
whole system, which may fail to capture complexities
of the relationship between application workload and
resource usage. Some models are validated only using
simulations.

Fuzzy control: Diao et al. [6] proposed a profit-
oriented feedback control system for maximizing SLA
profits in Web server systems. The control system
applies fuzzy control to automate the admission control
decisions in a way that balances the loss of revenue
due to rejected work against the penalties incurred if
admitted work has excessive response time.

The proposed resource management system differs
from the prior work in the following aspects:

 The resource control functions are separated
between resource provider and application provider,
which makes the design of data center resource
management more flexible and robust. Each local
controller tries to maximize its profits by
requesting adequate resources for satisfying
application SLAs as well as reducing unnecessary
resource cost. The global controller takes into
account the tradeoff between revenue obtained
from satisfied resource requests and cost from
violations of resource SLAs.

 Fuzzy modeling provides a generic approach to
representing the relationship between system
variables. It can be easily applied to any type of
applications hosted in virtual containers. This
approach makes no underlying assumption of the
workload characteristics, and can learn any type of
relationship very fast. Especially, the fuzzy system
is well suited for modeling the nonlinear system
with dynamically changing operating conditions.

 The resource management process is automatically
done without any human intervention. The fuzzy
modeling relates the application resource
requirements to their dynamically changing
workload characteristics using online monitored
data. The learned model is updated continuously as
new data arrives, which enables the model to
capture transient or unexpected workload changes.

7. Conclusions

This paper presents a flexible two-level resource
management system that is able to provide high quality
of service with much lower resource allocation costs
than worst-case provisioning. To accurately estimate
resource demands, fuzzy models are used by the
controllers to learn the relationship between the
workload and resource needs of virtual containers and
to guide resource allocation based on online
measurements. Our approach, in conjunction with
virtualization techniques, can provide application
isolation and performance guarantees in the presence
of changing workloads by dynamically allocating
resources at fine time granularity, which results in high
utilization and low cost as well. The proposed resource
management system is implemented on a virtualized
data center testbed and evaluated using applications
that are representative of e-business and Web-content
delivery scenarios. Both synthetic and real-world Web
workloads are used to evaluate the effectiveness of the
approach. The experimental results show that the
system can significantly reduce resource cost while
still guaranteeing application QoS in various scenarios.

8. Acknowledgements

This work was supported in part by an Intel grant
(IT R Council), National Science Foundation grant
CNS-0540304, the BellSouth Foundation and
equipment awards from DURIP and IBM. Any
opinions, findings and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the National Science Foundation, BellSouth
Foundation, Intel, IBM, or VMware.

9. References
[1] T. Abdelzaher et al., “Performance Guarantees for Web

Server End-Systems: A Control-Theoretical Approach”,
IEEE Trans. on Parallel and Distributed Systems, 2002.

[2] P. Barham et al., “Xen and the Art of Virtualization”,
Proc. Symp. on Operating Systems Principles, 2003.

[3] M. N. Bennani, D. A. Menascé, “Resource Allocation
for Autonomic Data Centers using Analytic
Performance Models”, ICAC, 2005.

[4] A. Chandra, W. Gong, P. Shenoy, “Dynamic Resource
Allocation for Shared Data Centers Using Online
Measurements”, IWQoS, June 2003.

[5] S. Chiu, “Fuzzy Model Identification Based on Cluster
Estimation”, J. of Intell. & Fuzzy Systems, Vol. 2, 1994.

[6] Y. Diao, J. L. Hellerstein, and S. Parekh, “Using Fuzzy
Control To Maximize Profits In Service Level
Management”, IBM Syst. J., Vol. 41, No. 3, 2002.

[7] J. Dike, “A User-mode Port of the Linux Kernel”, 4th
Linux Showcase and Conference, USENIX 2000.

[8] R. Doyle et al., “Model-Based Resource Provisioning in
a Web Service Utility”, USENIX Symp. on Internet
Technologies and Systems, Mar 2003.

[9] X. Liu et al., “Adaptive Entitlement Control Of
Resource Containers On Shared Servers”, IFIP/IEEE
Intl. Symp. on Integrated Network Management, 2005.

[10] S. Martello, P. Toth, “Knapsack Problems: Algorithms
and Computer Implementations”, John Wiley & Sons.

[11] D. Mosberger, T. Jin, “httperf: A Tool for Measuring
Web Server Performance”, First Workshop on Internet
Server Performance, 1998.

[12] J. Rolia et al., “Configuring Workload Manager Control
Parameters for Resource Pools”, 10th IEEE/IFIP
Network Operations and Management Symposium,
2006.

[13] L. Sha, et al., “Queueing Model Based Network Server
Performance Control”, Real-Time Systems Symp., 2002.

[14] M. Sugeno, T. Yasukawa, “A Fuzzy-Logic-Based
Approach to Qualitative Modeling”, IEEE Transactions
on Fuzzy Systems, Vol. 1, Issue. 1, 1993.

[15] J. Sugerman et al., “Virtualizing I/O Devices on
VMware Workstation’s Hosted Virtual Machine
Monitor”, Proc. USENIX Annual Technical Conf., 2001.

[16] B. Urgaonkar et al., “An Analytical Model for Multi-
tier Internet Services and its Applications”, ACM
SIGMETRICS, Jun 2005.

[17] Z. Wang et al., “Utilization and SLO-Based Control for
Dynamic Sizing Of Resource Partitions”, DSOM 2005.

[18] W. Xu et al., “Predictive Control for Dynamic Resource
Allocation in Enterprise Data Centers”, NOMS, 2006.

[19] L. A. Zadeh, “Fuzzy Sets”, Info. & Ctl., Vol. 8, 1965.
[20] X. Zhu, Z. Wang, S. Singhal, “Utility-Driven Workload

Management using Nested Control Design”, American
Control Conference, June 2006.

[21] HP-UX Workload Manager,
http://docs.hp.com/en/5990-8153/ch05s12.html

[22] http://www.cs.virginia.edu/~rz5b/software/software.htm
[23] http://ita.ee.lbl.gov/html/contrib/WorldCup.html
[24] https://blueprints.dev.java.net/petstore/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

