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Abstract 

 
One of the most important goals of data-center 

management is to reduce cost through efficient use of 
resources. Virtualization techniques provide the 
opportunity of carving individual physical servers into 
multiple virtual containers that can be run and 
managed separately. A key challenge that comes with 
virtualization is the simultaneous on-demand 
provisioning of shared resources to virtual containers 
and the management of their capacities to meet service 
quality targets at the least cost. This paper proposes a 
two-level resource management system with local 
controllers at the virtual-container level and a global 
controller at the resource-pool level. Autonomic 
resource allocation is realized through the interaction 
of the local and global controllers. A novelty of the 
controller designs is their use of fuzzy logic to 
efficiently and robustly deal with the complexity of the 
virtualized data center and the uncertainties of the 
dynamically changing workloads. Experimental results 
obtained through a prototype implementation 
demonstrate that, for the scenarios under 
consideration, the proposed resource management 
system can significantly reduce resource consumption 
while still achieving application performance targets. 

 
1. Introduction 

The need to manage multiple applications in shared 
data centers creates the challenge (and also the 
opportunity) of on-demand resource provisioning and 
allocation in response to dynamically changing 
workloads. It is often desirable for application 
providers to be able to lease data-center resources 
under a “pay-as-you-go” model, and for the data-center 
providers to be able to multiplex shared resources in a 
way that guarantees the expected performance of 
applications. To realize this, the data center must 
provide flexible and manageable execution 
environments that are specialized for each application 
without compromising its ability to share resources 

among applications and delivering to them the 
necessary performance, security and isolation.  

Virtualization is key to this vision, by allowing 
physical servers to be carved into multiple virtual 
resource containers, and enabling a virtualized data 
center where applications are hosted and managed in 
their dedicated virtualized containers. In particular, 
virtual machines (e.g. [15][7][2]), which provide 
strong isolation, security and customizability, can be 
dynamically created to serve as virtual containers; 
while the management of these containers, e.g. 
lifecycle management and resource allocation, can be 
conducted through the interface provided by the 
virtualization platform. 

Applications served by a data center are usually 
business-critical applications with Quality of Service 
(QoS) requirements, e.g. e-commerce services. Such 
applications have time-varying resource demands with 
typically high peak-to-mean ratios, leading to low 
resource utilization if over-provisioning is used to 
meet peak demands. The resource allocation needs to 
not only guarantee that a virtual container always has 
enough resources to meet its application’s performance 
goals, but also prevent over-provisioning in order to 
reduce cost and allow the concurrent hosting of many 
applications. Static allocation approaches that consider 
a fixed set of applications and resources cannot be 
used because of changing workload mixes, and 
solutions that only consider runtime behavior 
individual applications fail to capture the competition 
for shared resources by virtualized containers. 

This paper presents a two-level autonomic resource 
management system that enables automatic and 
adaptive resource provisioning in accordance with 
Service Level Agreements (SLA) specifying dynamic 
tradeoffs of service quality and cost. Resource control 
functions are integrated in a data center at two 
different levels of abstraction: virtual containers and 
resource pools. A local controller, created per virtual 
container, is responsible for determining the resources 
needed by its application and making resource requests 
accordingly. By doing so, the local controller 
minimizes leasing costs by avoiding over-provisioning 



for the application running on the container. A global 
controller manages the virtual containers hosted on the 
same physical resources. It responds to the local 
controllers’ requests and allocates the shared resources 
to them in a way that maximizes the total profit (by 
leasing resources to a large number of containers).  

The key to cost-effective resource allocation is the 
ability to efficiently find the minimum amount of 
resources that an application needs to meet the desired 
QoS. The paper presents a fuzzy-logic-based control 
system that applies fuzzy modeling to characterize the 
relationship between application workload and 
resource demand. A prototype of the proposed two-
level resource management system has been deployed 
on a virtualized data center testbed. Typical e-business 
applications with synthetic workloads and real-world 
traces were used to evaluate the fuzzy modeling in the 
local controller and the resource allocation in the 
global controller. The results show that the proposed 
approach can effectively allocate resources to virtual 
containers under dynamically changing workloads, and 
significantly reduce resource cost while still achieving 
desired application performance. 

The rest of this paper is organized as follows. 
Section 2 provides an overview of the two-level 
resource management system. Section 3 and Section 4 
describe in detail the designs of the local controller and 
the global controller. Section 5 presents an evaluation 
of the prototype. Section 6 examines related work and 
Section 7 concludes the paper。  

  
2. Two-level Autonomic Resource Control  

A data center, illustrated in Figure 1, serves a 
number of applications. Each delivers a distinct service 
to its customers using (virtual) resources provided by 
its dedicated container, which is a virtual machine to 
host the application. The data center’s resource pool 
allocates the physical resources to its virtual containers 
based on their applications’ resource needs.  

To achieve performance isolation and guarantee an 
Application SLA (between an application provider and 

the client) independently of the load on other 
containers, a local resource controller is employed in 
each virtual container to estimate the resources needed 
by the application’s workload and to make resource 
requests accordingly. The global controller makes 
resource allocation decisions among competing 
requests, trying to avoid violations of Resource SLAs 
(between application providers and data center). The 
underlying assumption is that if the global controller 
does not allocate enough physical resources requested 
by the local controller resulting in application’s SLA 
violation, the data center provider will be penalized 
instead of the application provider.  

This two-level resource control system is preferred 
over the more obvious centralized approach in which 
all the control functions are implemented at one 
centralized location. Since local containers are 
independent of each other, heterogeneous local 
controllers’ implementations are possible. All of the 
internal complexities of control functions in virtual 
containers are compressed by local controllers into 
straightforward resource requests, which specify the 
amount of resources needed. This approach makes it 
easy to add, change or remove virtual containers and 
their local controllers without affecting the global 
controller. 

The system handles two different types of 
optimizations independently. The local controller tries 
to minimize the resource consumed by the virtual 
container to reduce the resource cost while still 
satisfying SLAs of its clients. The global controller 
seeks to maximize its own profit, which is the revenue 
received from allocating its resources among virtual 
containers minus the cost of penalties incurred from 
resource SLA violations. The following sections 
explain our approach to the design of the local and 
global controllers. 
 
3. Local Resource Controller 

Interaction between the local and global controllers 
enables a virtual container to augment its resources in 
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Figure 1. Data center with virtual resource containers to host applications, and a two-level controller 
architecture to allocate physical resources to containers. 



response to increased workload, and to reduce its 
resources when no longer needed. The main task of the 
local controller is to optimize the set of resources 
needed by an application running in the container. Our 
approach to the design of such a controller is based on 
fuzzy modeling, as discussed next. 
 
3.1. Background 

Fuzzy logic [19] is a tool to deal with uncertain, 
imprecise, or qualitative decision-making problems. 
Unlike in Boolean logic, where an element x either 
belongs or does not belong to a set A, the membership 
of x in A has a degree value in a continuous interval 
between 0 and 1. Fuzzy sets are defined by 
membership functions that map set elements into the 
interval [0 1].   

One of the most important applications of fuzzy 
logic is the design of fuzzy rule-based systems. These 
systems use “IF-THEN” rules (fuzzy rules) whose 
antecedents and consequents use fuzzy-logic 
statements to represent the knowledge or control 
strategies of the system. A fuzzy model is a qualitative 
model constructed from a set of fuzzy rules to describe 
the relationship between system input and output [14]. 

The process of applying fuzzy rules on the system 
is called inference mechanism. Because fuzzy rules 
describe the relationship between system variables in 
fuzzy values, two functions are necessary for 
translating between numeric values and fuzzy values. 
The process of translating input values into one or 
more fuzzy sets is called fuzzification. Defuzzification 
is the inverse transformation which derives a single 
numeric value that best represents the inferred fuzzy 
values of the output variables.  

 
3.2. Modeling based on Fuzzy Logic 

To determine the resource needs of an application 
hosted in a virtual container, the local controller needs 
to learn the behavior of the virtual container under 
dynamically changing workloads. Figure 2 shows the 
abstracted inputs and outputs of a virtual container that 

hosts a running application. The virtual container 
receives the application workload from its clients, and 
utilizes the physical resources provided by data center 
resource pool to process the workload. The achieved 
QoS of the application depends on the amount of 
allocated resources and the workload. The goal is to 
find the relationship between workload and resource 
usage for acceptable QoS.  

The proposed approach uses fuzzy logic to model 
the behavior of a virtual container from its input-output 
data without requiring a-priori knowledge about the 
system, which is a so-called “black box” approach. It 
automatically learns the relationship between workload 
and the corresponding resource demand needed to 
achieve desired QoS. Figure 3 (in Page 4) illustrates 
the key functions used to construct and apply fuzzy 
models in the local controller. The data monitored by 
the virtual container sensors are first processed by the 
filtering and clustering functions. Then the produced 
data clusters are used by the modeling function to 
create IF-THEN rules which are stored in a rule base. 
The cluster centers and ranges are used to determine 
the fuzzy model’s parameters and are also stored in a 
database. Finally, the fuzzy inference functions take 
this learned model to determine the resource needs 
from the currently monitored workload. The rest of 
this section explains these functions in detail. 
 
3.3. Online Monitoring and Data Filtering 

Monitoring sensors periodically measure the 
workload (W), the application performance (P), and 
the resource usage (U) of a virtual container. For a 
typical data center application, its workload can 
usually be described by the rate and mixture of the 
requests. For instance, a Web server’s workload can be 
characterized by the HTTP request rate as well as the 
ratio between the requests to static and dynamic Web 
content. The metrics for performance measurement are 
often directly taken from the SLA, e.g. the throughput 
(number of completed transactions per second) and/or 
average service response time.  

The metrics for resource utilization are associated 
with the different types of consumed physical 
resources, including CPU percentage, memory size, 
disk storage, disk I/O rate and network bandwidth. 
However, an application’s virtual resource usage (the 
values collected inside of the virtual container) does 
not necessarily represent its physical resource 
consumption. For example, an application’s network 
I/O consumes not only the physical network bandwidth, 
but also the physical CPU cycles. In the proposed 
approach, an application’s resource usage is obtained 
by directly monitoring the physical resource 
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Figure 2. Inputs and outputs of a virtual container. 



consumption of its virtual container. This is sensible 
because in the envisioned data center a virtual 
container is dedicated to an application’s service. 

A sequence of data points (W, U, P) are produced 
by the sensors at constant time intervals (20 seconds in 
our experiments), and then filtered to generate a subset 
of points to be used to learn the fuzzy model that 
captures the relationship between workload and 
resource demand under a certain SLA. The data points 
are kept or filtered out depending on whether the 
measured performance satisfies the SLA or not, 
respectively. A data point’s P is satisfactory, only if 
the resource capacity allocated to the virtual container 
at that point is sufficient for the corresponding 
workload for the given SLA. In this case, the 
monitored resource utilization represents the actual 
resource needs, and thus the data (W, U) can be used 
for model learning. On the contrary, an SLA violation 
indicates that the allocated resources are not enough to 
achieve the SLA target. In this case, the resource 
consumption is capped by the allocated capacity, so the 
monitored values are less than the desired resources 
and cannot be used in fuzzy modeling. 
 
3.4. Data Clustering and Fuzzy Modeling 

After the collection of a certain amount of paired 
data (W, U) are collected, the mapping between 
workload and resource demand can be learned by first 
clustering the data points and then building the fuzzy 
model based on the data clusters. The purpose of 
clustering is to produce a concise representation of the 
system’s behavior. Several classic clustering 
algorithms can be used, e.g. hierarchical and k-means 
clustering. In the proposed local controller design, 
subtractive clustering [5] is chosen for its speed and 
robustness.  

This clustering method assumes that each data point 
is a potential cluster center and chooses the data center 
based on the density of surrounding data points. The 
algorithm selects the data point with the highest 
potential to be the first cluster center and then removes 
all data points in the vicinity of the first cluster center 

in order to determine the next data cluster and its 
center location. This process continues until all of the 
data is within radius of a cluster center. The variable 
radius represents a cluster center's range of influence 
in each of the data dimensions, assuming the data falls 
within a unit hyperbox. Small radius values generally 
result in finding a large number of small clusters. This 
value is set to 0.5 in the local controller’s 
implementation.  

Since each cluster exemplifies a characteristic of 
system behavior it can be used as the basis of a fuzzy 
IF-THEN rule that describes system behavior. If n data 
clusters are formed, n rules can be produced in which 
the ith rule is expressed as:  

Rule i: IF input data w is close to cluster i, THEN 
output data u is close to cluster i. 

Each cluster specifies a fuzzy set with its 
membership functions determined by cluster center 
and range. Using the Gaussian membership function, 
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the center of the membership function ic  for fuzzy set 
i equals the center of cluster i and the weight of 
membership function iσ  equals the radius of cluster i.  

The model described by the above fuzzy rule is 
called zero-order Sugeno-type fuzzy model [14]. The 
modeling accuracy can be improved significantly by 
using the first-order Sugeno model, in which the 
output of each rule is a linear function of the input 
variables. The rules are rewritten as follows, 

Rule i: IF input data w is close to cluster i, THEN 
output data u = aw +b. 

The parameters a and b in the linear equations are 
estimated by the least-squares method. This model is 
implemented in the local controller’s fuzzy modeling 
function. 

 
3.5. Fuzzy Inference 

Once the fuzzy model relating workload to resource 
demand is learned from the selected data relating 
workload to resource usage, it can be used in a rule-
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Figure 3.  Fuzzy modeling and inference functions in a local resource controller. 



based fuzzy inference module which, given the 
application’s workload (W), produces the estimated 
resource demand (U) for the application’s container.  

The fuzzy controller consists of four basic functions 
(Figure 3). The knowledge base includes a database 
which contains the membership functions of the fuzzy 
sets and a rule base where the fuzzy rules are specified.  
In the fuzzification function, the input (W) collected 
from the sensor is mapped to fuzzy values using the 
membership functions. A decision-making unit, called 
the fuzzy inference engine, infers from a fuzzy inputs 
to resulting fuzzy outputs according to the rules stored 
in the knowledge base. The defuzzification function 
aggregates the outputs and converts them to a crisp 
output. The final output (U) of the system is the 
weighted average of all rule outputs with the weight of 
ith rule being the membership value of the input in 
cluster i. 

In summary, using fuzzy modeling and fuzzy 
inference shown in Figure 3, the local controller 
estimates the resource needs for the current workload 
measured by the sensor, and sends requests to the 
global controller to either ask for more resources if the 
current allocation is not sufficient to satisfy the SLA or 
to withdraw resources when no longer needed.  
 
3.6. Adaptive Modeling 

The discussion so far has only considered offline 
model learning from collected data. As the workload 
or system condition changes, the model describing the 
system’s behavior needs to capture the changes 
accordingly. The adaptive modeling is employed by 
the local controller in which the model is repeatedly 
updated based on online monitored information.  

The clustering function takes new data into 
consideration as soon as they arrive (after the filtering) 
and keeps updating, so that up-to-date clusters are 
always provided for the modeling. Whenever the data 
clusters are updated, the fuzzy model’ parameters are 
changed accordingly in the database. If a new cluster is 
added, a corresponding rule is then added into the rule 
base; and similarly, if a cluster no longer exists, the 
rule associated with it is removed from the rule base. 

In the case when the allocated resources are 
insufficient for the workload, the monitored data 
becomes disqualified and is filtered out because of the 
performance degradation. The shortage of qualified 
data will hurt the model’s learning speed and quality.  
To avoid this situation, whenever the filter function 
detects that the percentage of qualified data is less than 
50%, the controller asks for an additional predefined 
percentage (10% is used in our prototype) of current 
resource allocation from the global controller to 

improve the application’s performance back to the 
desired level.   
 
4. Global Resource Controller  

The global controller receives requests for physical 
resources from local controllers and allocates the 
resources among them. It seeks to make allocations 
that maximize its own profit, which is the revenue 
received from allocating its resources minus the 
penalties due to resource SLA violations.  

Suppose that K virtual containers are concurrently 
active in the data center. Let dk denote the resource 
demand from container k, and ck be the amount of 
resources granted to it. The global controller receives 
revenue of rk for every allocated resource unit. But if 
the global controller cannot satisfy the requested dk, it 
also pays a penalty of pk per unit of unmet resource 
demand, according to the resource SLA. The profit that 
can be made by the global controller’s allocation is, 
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where C is the total amount of resources allocated to 
the virtual containers, and I is total available resource 
capacity in the data center.  

The profit equation can be rewritten as follows, 
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Consider kk pr +  as the profit rate for the virtual 
container k and assume that the global controller can 
allocate any resource fraction to the virtual containers, 
a greedy algorithm that allocates resources in the order 
of decreasing profit rates is an optimal allocation (this 
is similar to the case of a fractional knapsack problem 
[10]).  
 
5. Experimental Evaluation 

This section summarizes the experimental 
evaluation of the suitability of the proposed two-level 
control system for dynamic resource allocation in a 
data center environment with time-varying workloads. 
Section 5.2 discusses experiments that evaluate the 
ability of the local controller to track the resource 
needs of changing workloads. Section 5.3 considers 
the maximal profit approach of Section 4 when the 
global controller must share limited resources among 
several containers. 
 



5.1. Setup 
5.1.1. Data Center Environment 

The testbed consists of a pool of servers that 
provide virtual containers for applications, and several 
workload-generating clients. VMware ESX Server 
3.0.1 is installed in each server node which has dual 
hyperthreaded Intel Xeon 3.2GHz CPUs and 4GB 
memory. Virtual machines are created on the servers 
and used as virtual containers to host applications. The 
clients are created on VMware-Server-1.0.0-based 
virtual machines, hosted on another cluster of dual-
2.4GHz hyperthreaded Intel Xeon nodes. Workloads 
are generated by the clients and issued to the 
applications across a Gigabit Ethernet network. 

 
5.1.2. Application and Workload 

The Java Pet Store [24] is chosen to represent a 
typical e-business application, which implements an 
online store that allows users to browse and make 
orders, and managers to manage orders, suppliers and 
inventory. It is a reference application that has been 
developed on various Java EE platforms. The version 
of Java Pet Store used in the experiments is 1.3.1 and 
built with J2EE 1.3.1.  

Synthetic HTTP workloads that mimic the key 
aspects of real-world workloads are created with 
various client sessions generated by httperf [11]. Each 
individual session consists of a sequence of requests 
generated by repeating and mixing the following 
customer actions: go to the storefront, sign in, browse 
products, add some products to shopping cart, and 
checkout. Two key parameters can be adjusted to vary 
a session’s workload on the application: the user think 
time (the time between two consecutive requests) can 
be changed to generate different request rates; the ratio 
of dynamic requests (e.g., sign in, check out and search 
product) versus static requests (e.g., browse static Web 
pages and view images) can be varied to impact a 
session’s workload characteristics. A Perl program is 
developed to create different workloads and drive 
httperf to issue the requests.  

Traces collected from ‘98 World Cup sites are also 
used in the experiments to represent real-world 
workloads. The logs provided by an Internet repository 
[23] consist of about 1.3 million requests made to the 
‘98 World Cup Web site between April 30, 1998 and 
July 26, 1998. A real-time log replayer is used to 
generate workloads according to the trace [22].  

 
5.1.3. Controller Prototype 

The virtual containers are monitored and controlled 
through the Web-service-based management interface 
provided by VMware ESX Server. It allows the 

allocation of a server’s available physical resources 
among its hosted virtual machines (e.g. setting the 
minimum, maximum and proportional resource shares 
of a virtual machine), and also the real-time monitoring 
of a virtual machine’s resource utilization.  

The proposed two-level controllers are implemented 
in Java, running along with the virtual containers. 
Every virtual machine has a local controller to manage 
the virtual container it provides, and every ESX server 
node has a global controller to manage the shared 
resources for the virtual containers hosted on it. The 
sensors, also developed in Java, monitor the workload 
(request rate and mixture), the application throughput 
(reply rate), and the resource consumption (CPU 
usage). The monitoring period is set to 20 seconds. 
Because the concerned workloads are mostly CPU 
intensive, the experiments focus on the utilization and 
allocation of CPU resources. 

 
5.2. Experiment on Local Controller 
5.2.1. Workload with Static Web Requests 

In the first experiment, the workload generator 
issues a new session to the Pet Store every 10 seconds, 
up to a total of 15 sessions. The sessions only issue 
static Web page requests with a user think-time 
between 0.1 to 1 second, and each session lasts around 
1 minute. After a group of 15 sessions are completed, 
another group is generated similarly but with a 
decreasing average think-time (and hence an 
increasing request rate). This setup emulates the 
burstyness of workloads in real world. The entire 
experiment lasts for 4000 seconds. 

The workloads used in this experiment consist of 
only static Web requests. In this case, the CPU usage is 
highly correlated with request rate, which is used as 
the only parameter to characterize the workload. The 
first 50 pairs of data points (the request rate and CPU 
usage) collected from the sensors are used to initialize 
the learning of the fuzzy model. Afterwards, the model 
is continuously updated every 200 seconds (in which 
10 new data points become available from the sensors). 
Figure 4 illustrates the model learned at the beginning 
and the end of the experiment, which shows an 
approximate linear relationship between the request 
rate and CPU usage 1  in the range of 0 to 100 
requests/second. 

The local controller continuously estimates the CPU 
demand based on the current workload and the latest 
learned fuzzy model, and dynamically adjusts the CPU 
requests to the global controller. Because the available 

                                                           
1 In VMware ESX Server, the amount of CPU allocation and 
usage can be expressed in CPU frequencies (Hz).  



resources are sufficient in this experiment, the global 
controller always allocates to the virtual container the 
exact amount of CPU requested by the local controller. 
To prove the accuracy of the fuzzy modeling, the same 
experiment is repeated on the virtual container which 
is statically allocated with a large amount of CPU 
(3.2GHz) in order to obtain the ideal throughput for 
the same workload.  

The throughputs from these two runs are compared 
in Figure 5, indicating that the actual throughput 
obtained by using the local controller is almost 
identical to the ideal throughput. Compared to the 
static allocation of CPU with the peak value 
(overprovision based on the highest load), the dynamic 
approach saves about 55% of CPU cycles otherwise 
needed for this experiment. It proves that the online 
fuzzy modeling can accurately learn the relationship 
between the workload and resource demand, and 
effectively guide the resource allocation for the virtual 
container.  

 
5.2.2. Workload with Dynamic Web Requests 

In the second experiment, the workloads are 
generated similarly to the previous one, except that 
dynamic Web requests are also considered. Every 
group of sessions differs not only in the request rate 
but also the proportion of dynamic requests in the 

workload: the ratio of dynamic to static requests grows 
from 0 to 1 across the groups. Servicing dynamic Web 
content requires processing by the application server 
and database, and thus typically consumes more 
resources than servicing static Web content. If the 
fuzzy modeling still uses only request rate as the input, 
the resulting model cannot effectively represent the 
actual relationship between workload and resource 
demand. The experiment results (observed but not 
shown here) also confirm that the throughput achieved 
by using such a model is much worse than the ideal 
throughput for the workload. 

In contrast, using both the request rate and 
dynamic/static request ratio to characterize the 
workload, a 3D fuzzy model can be constructed to 
describe the relationship between workload and 
resource demand more accurately. Figure 6 shows the 
surface of the model learned at the end of the 
experiment. One of the advantages of fuzzy modeling 
demonstrated by the above experiments is that fuzzy 
models can effectively learn simple as well as non-
linear and complex relationships between inputs and 
outputs. 

Figure 7 compares the application’s throughput to 
the ideal throughput obtainable for the workload. The 
graph shows that the throughput achieved is again very 
close to its ideal level (the difference is under 6%). It is 

   
Figure 4. Fuzzy model learned from the workload 
with static Web requests at the beginning 
(model1) and the end (model2) of the experiment.  

Figure 6. The surface of the fuzzy model learned 
from the workload with dynamic Web requests. 

Figure 5. Comparison of the throughput achieved 
by using local controller and the ideal throughput 
for the workload with static Web requests. 

Figure 7. Comparison of the throughput achieved 
by using local controller and the ideal throughput 
for the workload with dynamic Web requests. 



also noticeable that when the workload is high the 
difference becomes relatively larger. This is because of 
the delay between the change of workload and 
resource allocation, which is largely due to the 
granularity of the online monitoring and control. When 
the workload is heavy, this delay causes the 
application’s throughput to fluctuate a little around the 
ideal one. However, the overall error is still very low. 
About 33% of CPU cycles are saved by this dynamic 
allocation, compared to a fixed allocation where 
overprovision is based on the highest load.  

 
5.2.3. Trace-Driven Workload 

In the third experiment, the ‘98 World Cup Web 
site trace collected on May 31 from 5am to 5pm (local 
time in Paris) is used to generate workload, and it is 
played at 12X speedup to enhance its intensity. All the 
documents requested by the trace are created by the log 
replayer tool based on the sizes recorded in the trace. 
Because only static Web pages are requested in the 
trace replaying, the workload is characterized by the 
request rate.  

During the experiment, the first 30 measurements of 
workload and CPU consumption are used to initialize 
the fuzzy model. After that, the model is updated every 
200 seconds. Figure 8 illustrates the model learned at 
the beginning and the end of the experiment. Figure 9 

shows that the application’s throughput achieved by 
using the local controller is close to the ideal 
throughput obtainable for the workload (the difference 
is within 5%), indicating the effectiveness of the fuzzy 
approach under real-world workloads.  The dynamic 
allocation uses less than 75% of the CPU cycles used 
by a static approach that allocates maximum CPU 
fraction based on the highest workload.  
 
5.3. Experiments on Global Controller 

The last set of experiments investigates the global 
controller’s allocation of limited resources among 
multiple virtual containers. Two virtual containers 
(VC1, VC2) running on the same server node compete 
for the available CPU cycles (1GHz). VC1 serves a 
fixed workload, which has a constant request rate of 30 

Figure 8. Fuzzy model learned from the trace-based 
workload at the beginning (model1) and the end 
(model2) of the experiment. 

Figure 9. Comparison of the throughput achieved 
by using local controller and the ideal throughput 
for the trace-based workload. 

Figure 10. CPU requests from two virtual 
containers (VC1, VC2) that share limited 
resources. 

Figure 11. CPU allocation that favors VC2. 

Figure 12. CPU allocation that favors VC1. 



requests/sec; while VC2 receives an increasing 
workload with a request rate rising from 10 up to 60 
requests/sec. The workloads used in this experiment 
only consider static Web requests. 

Both local controllers of these two containers 
employ the fuzzy modeling approach to dynamically 
estimate their CPU demands for the workloads, and the 
amounts of resources requested during the experiment 
are plotted in Figure 10. The local controller of VC1 
requests around 500MHz of CPU throughout the entire 
experiment; while VC2 increases its CPU request from 
about 200MHz to more than 800MHz as its workload 
grows.  

When the CPU needed by VC2 goes beyond 
500MHz, the global controller responds to the resource 
shortage by reducing the allocation to VC1 or VC2. 
The allocation policy of the global controller is to 
maximize its profit by employing the greedy algorithm 
discussed in Section 4. Two simple scenarios are 
considered in the experiments. In the first case, the 
profit rate of VC2 is higher than VC1; therefore, the 
global controller decides to satisfy the resource 
requests from VC2 by reducing the allocation for VC1 
whenever a CPU shortage happens. Figure 11 shows 
the actual CPU allocations for the two containers 
throughout the experiment. The second case considers 
the opposite situation where VC1 has a higher profit 
rate and thus is favored in the resource allocation. In 
this case, VC2 suffers from the resource shortage when 
the global controller cannot allocate enough resources 
for both containers (Figure 12). 
 
6. Related Work 

To the best of our knowledge there is no prior work 
using a fuzzy modeling approach to data center 
resource management. The following briefly 
summarizes other work with some common elements 
with this paper’s approach. 

Rule-based systems: This approach uses a set of 
event-condition-action rules (defined by system 
experts) that are triggered when some precondition is 
satisfied (e.g., when some metrics exceed a predefined 
threshold). For example, the HP-UX Workload 
Manager [21] allows the relative CPU utilization of a 
resource partition to be controlled within a user-
specified range, and the approach of Rolia et al. [12] 
observes resource utilization (consumption) by an 
application workload and uses some “fixed” threshold 
to decide whether current allocation is sufficient or not 
for the workload. With the growing complexity of 
systems, even experts are finding it difficult to define 
thresholds and corrective actions for all possible 
system states.  

Control theory: Approaches based on control theory 
have been applied to resource management to achieve 
performance guarantees. Most of the work assumes a 
linear relationship between the QoS parameters and the 
control parameters, and involves a training phase with 
a given workload to perform system identification. 
Typically, control parameters must be specified or 
configured offline and on a per-workload basis. 
Abdelzaher et al. [1] investigated this approach for 
QoS adaptation in Web servers.  In [17][20], a 
nonlinear relation between response time and CPU 
allocation to a Web server is studied, and a bimodal 
model is used to switch between underload and 
overload operating regions. To deal with time-varying 
workloads, more recent work applies adaptive control 
theory, in which models are automatically adapted to 
changes using online system identification. 

Model-based: Previous research efforts 
[4][8][13][18][16] have been trying to model computer 
systems from different perspectives. Bennani et al. [3] 
predicts the response time and throughput for both 
online and batch workloads using multiclass open 
queueing networks. Liu et al. [9] uses AR models to 
map CPU entitlement percentage to the mean response 
time with a fixed workload. Chandra et al. [4] models 
the resource using a time-domain queueing model 
which relates the resource requirements to its workload. 
Some of these approaches make simplifying 
assumptions such as using a single queue to model the 
whole system, which may fail to capture complexities 
of the relationship between application workload and 
resource usage. Some models are validated only using 
simulations.  

Fuzzy control: Diao et al. [6] proposed a profit-
oriented feedback control system for maximizing SLA 
profits in Web server systems. The control system 
applies fuzzy control to automate the admission control 
decisions in a way that balances the loss of revenue 
due to rejected work against the penalties incurred if 
admitted work has excessive response time.    

The proposed resource management system differs 
from the prior work in the following aspects:  

 The resource control functions are separated 
between resource provider and application provider, 
which makes the design of data center resource 
management more flexible and robust. Each local 
controller tries to maximize its profits by 
requesting adequate resources for satisfying 
application SLAs as well as reducing unnecessary 
resource cost. The global controller takes into 
account the tradeoff between revenue obtained 
from satisfied resource requests and cost from 
violations of resource SLAs. 



 Fuzzy modeling provides a generic approach to 
representing the relationship between system 
variables. It can be easily applied to any type of 
applications hosted in virtual containers. This 
approach makes no underlying assumption of the 
workload characteristics, and can learn any type of 
relationship very fast. Especially, the fuzzy system 
is well suited for modeling the nonlinear system 
with dynamically changing operating conditions. 

 The resource management process is automatically 
done without any human intervention. The fuzzy 
modeling relates the application resource 
requirements to their dynamically changing 
workload characteristics using online monitored 
data. The learned model is updated continuously as 
new data arrives, which enables the model to 
capture transient or unexpected workload changes.  

 
7. Conclusions 

This paper presents a flexible two-level resource 
management system that is able to provide high quality 
of service with much lower resource allocation costs 
than worst-case provisioning. To accurately estimate 
resource demands, fuzzy models are used by the 
controllers to learn the relationship between the 
workload and resource needs of virtual containers and 
to guide resource allocation based on online 
measurements. Our approach, in conjunction with 
virtualization techniques, can provide application 
isolation and performance guarantees in the presence 
of changing workloads by dynamically allocating 
resources at fine time granularity, which results in high 
utilization and low cost as well. The proposed resource 
management system is implemented on a virtualized 
data center testbed and evaluated using applications 
that are representative of e-business and Web-content 
delivery scenarios. Both synthetic and real-world Web 
workloads are used to evaluate the effectiveness of the 
approach. The experimental results show that the 
system can significantly reduce resource cost while 
still guaranteeing application QoS in various scenarios. 
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