
Application-Tailored Cache Consistency for Wide-Area File Systems

Ming Zhao Renato J. Figueiredo
 Advanced Computing and Information Systems Laboratory (ACIS)

Electrical and Computer Engineering, University of Florida
{ming, renato}@acis.ufl.edu

Abstract

The inability to perform optimizations based on
application-specific information presents a hurdle to
the deployment of pervasive LAN file systems across
WAN environments. This paper proposes a novel
approach addressing this problem through
application-tailored caching and consistency in wide-
area file systems. It leverages widely available
Network File System (NFS) deployments without any
modifications to kernels nor applications, and employs
middleware to dynamically establish Grid-wide Virtual
File System (GVFS) sessions with application-tailored
cache consistency. Two consistency models are
discussed in this paper: a relaxed model based on
invalidation polling, and a stronger model based on
delegation and callback. Experimental evaluation
based on microbenchmarks and scientific applications
show that with application-tailored cache consistency,
GVFS is able to both improve application runtimes
and reduce server load significantly, compared to
kernel-level NFS in WAN.

1. Introduction

This paper addresses the lack of support in current
Distributed File Systems (DFSs) for application-
tailored caching and consistency models. Central to the
proposed approach is the use of a virtualization layer
based on user-level DFS proxies [12][24], and the role
of middleware as the entity that customizes and creates
Grid-wide Virtual File System (GVFS) sessions on
demand [1][4][12]. The approach is applicable to a
wide variety of systems because it leverages the NFS
[6] de-facto standard, is transparent to applications,
and requires no kernel modifications to be deployed.

The importance of this approach is that it provides
an effective way to support high-performance data
access and consistency in cross-domain wide area
computing environments, e.g. in support of high-

throughput scientific and financial workloads [4]. In
such environments, statically established DFSs are
unable to cater to application-specific needs. In
contrast, related work has shown that virtualized file
system sessions can be scheduled by middleware on
behalf of users [12][22][31]. This paper presents novel
techniques that extend user-level virtualized DFS to
support application-tailored caching with strong or
weak consistency models that overlay native
mechanisms used by NFS. The resulting design
enables a middleware scheduler to control caching and
consistency policies, on a per-session basis.

User-level implementations incur more overhead
compared to kernel-level; however, in many
environments kernel DFS changes tailored to
application needs are not viable. To evaluate the
performance of the proposed techniques in wide area
environments, a series of experiments are reported in
this paper. These consider the performance of several
microbenchmarks and scientific applications. The
results show that with application-tailored cache
consistency, GVFS is able to both improve application
runtimes and reduce server load significantly, in
comparison to kernel-level NFS implementations.

In the rest of the paper, Section 2 describes
background and related work, Section 3 highlights
motivating examples, Section 4 discusses cache
consistency models, Section 5 presents experimental
evaluation, and Section 6 concludes the paper.

2. Background and Related Work

Currently there are no mechanisms that allow a
conventional DFS implementation to be customized to
support application- and user-tailored enhancements.
This presents a hurdle to the deployment of pervasive
LAN file systems (e.g. NFS v2/v3) across WAN
environments, where round-trip latencies are
considerably larger. If DFSs are capable of leveraging
application knowledge, the number of client-server

interactions can be reduced, thereby reducing server
loads and average request latencies. However, typical
DFS implementations are not designed to exploit such
knowledge, for two important reasons.

First, traditionally DFSs are setup by system
administrators with static, long-lived, homogeneous
configurations at the granularity of a collection of
users, rather than dynamic, short-lived, customized
setups at the granularity of an application session.
Second, integrating application-tailored features with
DFS implementations in commonly available kernels is
very difficult in practice. An optimization tailored for
one application (e.g. aggressive pre-fetching of file
contents) may result in performance degradation for
several others (e.g. sparse files, databases). In addition,
kernel-level modifications are difficult to port and
deploy, notably in shared environments.

The lack of support for application-tailored
optimizations has also been recognized as a limitation
by BAD-FS [4]. However, it relies on system-call and
library based interposition agents, and hence does not
support many applications and OSs. Other system-call
and library based extensions have been investigated in
[2], [22]. However, it is hard to duplicate kernel
functionality [17] and present full file system
semantics [24]. In contrast, GVFS is mounted in the
same way as conventional NFS, and supports a wide
range of unmodified applications and OSs.

Several related systems have leveraged user-level
techniques based on loop-back server/client proxies to
extend file system O/S functionality - in essence,
virtualizing DFSs by means of intercepting RPC calls
of protocols such as NFS [6], e.g., the automounter [7],
CFS [5], SFS [14] and LegionFS [31]. This paper
differentiates from these efforts in that Grid
middleware is used to setup, create and destroy DFS
sessions on a per-application basis.

There are related kernel-level DFS solutions that
exploit the advantages of disk caching (AFS [18],
CacheFS [30]), or support different consistency
models for improved performance (NQ-NFS [23],
Spritely NFS [29], NFS v4 [6]) However, these
designs require kernel support that is difficult to
deploy across shared Grid environments, and they are
not able to employ per-user/-application cache policies.

Scalable distributed data storage/delivery has been
pursued in related work, e.g. Pangaea [26] and
OceanStore [20]. Pangaea supports only one
consistency model - eventual consistency; OceanStore
allows for application-specific consistency, but it is not
application-transparent, requiring the use of its API to
achieve this goal. In the context of Web content
caching, a related proxy cache invalidation approach
has been studied in [16]. These systems differ from

this paper in that they are not architected to allow
middleware to dynamically instantiate, configure and
compose proxies for application-tailored data sessions.

3. Motivating Examples

Distributed systems that allow the provisioning of
general-purpose computing as a utility ("Grids" [13])
have the potential to enable on-demand access to
unprecedented computing power. A key challenge
arising in such systems is data management - how to
seamlessly provide data to applications in WAN
environments. DFS-based techniques are key to
supporting applications without modifications to
source code, libraries, or binaries. Examples include
commercial, interactive scientific and engineering tools
and virtual machine monitors that often operate on
large, sparse data sets [19][27][32].

While application transparency is an asset of
approaches based on DFSs, it can also become a
performance liability. Enhancements that target wide-
area DFSs for shared Grid environments are desirable,
but need to be considered in a context where
modifications tailored to this application domain are
unlikely to be implemented in kernels. Nonetheless,
recent work has shown the feasibility of applying user-
level techniques to improve the performance of wide-
area file systems [14][24][32], motivating the pursuit
of user level application-tailored extensions. Potential
uses of application-tailored cache consistency can be
illustrated with three concrete scenarios:

Distributed Virtual Machines: There are growing
interests in employing Virtual Machine (VM) in Grid
computing [11][9]. Typical VM technologies (e.g.
[28][10][3]) encapsulate a VM's state in regular files or
filesystems and thus can leverage DFS support [32]. A
VM with a non-persistent disk state can be used as a
“master” image for the purpose of VM cloning; and
under the management of a VM scheduler [21], such
“clones” can be dedicated to executions of individual
applications. In this scenario, the “master” image can
be read-only shared while each clone has its own redo
log or copy-on-write state. Hence it is reasonable to
enable aggressive caching for both reads and writes.

Software Repositories: Software repositories are
popular in enterprises as a means of sharing software
among users. Such repositories are often setup on a
DFS in an enterprise local network, read-only shared
by organization users and centrally managed by system
administrators. However, as the resources and users
grow, support for wide-area sharing becomes a
challenge to traditional DFS technologies. In this
context, leveraging the processing and disk storage at

the client side to implement file system data caching is
important to improving a repository’s performance.

Scientific Data Processing: Scientific data are
often collected/generated on-site, and processed and
analyzed in an off-site computing center. Using a DFS
to service data provisioning helps the analysis to be
performed over different data ranges or with different
granularities [25]. If temporal locality exists across
consecutive runs of analysis, data caching can
effectively hide network latency, and because of the
producer-consumer model only reads are cached with
support for an application acceptable consistency.

4. Cache Consistency Models
4.1. Overview

GVFS employs user-level proxy clients and servers
to virtualize distributed file systems [12]. They are
placed between native kernel NFS clients and servers
to implement extensions and enhancements, including
client-side disk caches for file attributes and data
blocks [32]. A GVFS session is typically established
by middleware through dynamic creation,
configuration of a proxy server, and one or more proxy
clients and mount points. Multiple sessions share the
physical resources, yet each one can apply independent
optimizations [33]. Figure 1 illustrates two GVFS
sessions that are customized to support data provision
for applications described in the motivating examples.

A consistency model specifies constraints on the
order in which read and write operations appear to be
performed in a distributed system. The choice of a

consistency model in a DFS is an important and
difficult one, because it has implications in the
complexity of developing applications (and the DFS
itself) and in the performance of applications. A
relaxed model may be acceptable (and desirable) to a
simulation application, but may fall short of supporting
database applications that rely on locks. A complex
consistency protocol may be desirable if it delivers
high performance, but undesirable if it is difficult to
implement, test and deploy in existing O/Ss or if it
requires applications to use a consistency-aware API.

GVFS solves this dilemma by providing flexibly
and efficiently customized cache consistency models to
applications. Native NFS protocols (v2/v3) mainly rely
on client-initiated revalidation requests to check for
consistency. GVFS proxies, however, can be
configured to support a variety of models, including
the underlying NFS consistency itself, and alternative
models. This section explains in detail the design and
implementation of these application-tailored models.

4.2. Invalidation Polling Consistency
4.2.1. Protocol

This model employs invalidation buffers that reflect
potential modifications to many files to reduce the rate
at which per-file information is polled. Such an
approach proves effective when modifications to the
file system are infrequent and need to be quickly
propagated to clients. The approach is illustrated in
Figure 2: the proxy server of a GVFS session keeps
track of logically time-stamped file handles that need

S1 S2

C1

C2

Cn

PHYSICAL

VC3

VC5

VS2
GVFS Session 2

VC4

GVFS Session 1

VC1 VC2 VIRTUAL

GVFS clients/servers,
per-session/application
tailored caching and
consistency

NFS clients/servers,
kernel caching and
consistency

VS1

LAN/WAN

C3
Figure 1: GVFS sessions consist of virtual clients (VC1-VC5) and servers (VS1-VS2) implemented by user-
level proxies. They are dynamically established and managed by middleware and overlay shared physical
resources (C1-Cn, S1-S2). Each GVFS session can employ independent application tailored user-level disk
caching and consistency model. E.g., Session 1 applies the delegation callback based model (Section 4.3)
and support a scenario where real-time data are collected on-site (VC1) and processed off-site (VC2);
Session 2 uses the invalidation polling protocol (Section 4.2) to enable read-only sharing of a software
repository (VS2) among WAN users (VC3, VC4), and maintenance update by LAN administrator (VC5).

NFS
server

proxy

S1

WANWAN

NFS
client
NFS

client
proxyproxy

C1
BC1

Native NFS RPCs
GETINV RPCs

NFS
client
NFS

client
proxyproxy

C2

$

$

BC2

Figure 2: A GVFS session using the invalidation
polling consistency protocol between the proxy
clients at C1, C2 and the proxy server at S1. RPCs
issued from kernel NFS clients can be served from
the disk caches, while the proxy clients poll the
proxy server for contents of per-client invalidation
buffers (BC1, BC2) to maintain consistency.

to be invalidated in per-client buffers; the proxy clients
use a new protocol message - GETINV - to request
information related to the invalidation buffer.

Server-side: The proxy server adds file handles
into invalidation buffers when it receives file
modification requests from a client (e.g. CREATE,
WRITE etc.). Multiple invalidations to the same file
can be coalesced. Per-client invalidation buffers are of
finite size and implemented as circular queues. The
timestamps associated with each invalidation entry are
generated by the server, and increase monotonically
with incoming requests. A proxy client’s GETINV
request contains the timestamp of the last invalidation
it has performed, and the proxy server returns the file
handles stored in the buffer which the client needs to
invalidate in its cache. The server can handle protocol
cases where invalidation information is not fully
available by using a flag (force-invalidate) to inform
the client to invalidate its entire attributes cache. The
proxy server processes a GETINV call as follows:

1) If this is the first GETINV call received from the
client: initialize an invalidation buffer for the
client, return updated timestamp and force-
invalidation flag with value 1. Else,

2) If the timestamp in the GETINV request is earlier
than the earliest one in the client's invalidation
buffer: flush buffer and return updated timestamp
and force-invalidation flag with value 1. Else,

3) Return buffer contents (and clear them), updated
timestamp and force-invalidation flag with value
0. If buffer contents do not fit in a single RPC
message, then return a poll-again flag with value
1 along with partial buffer contents.

Client-side: The proxy client polls the server with
GETINV calls for potential invalidations occurred
since its last known timestamp within a short time
window. The polling time window can be fixed, or
vary within a configurable range using an exponential
back-off policy. The received invalidations are
performed by invalidating the cached attributes of the
concerned files, which will cause the proxy client to
revalidate these files when they are accessed again.
The proxy client processes the result from the
GETINV call as follows:

1) Update a local variable holding the last known
server timestamp.

2) If force-invalidation is equal to 1: invalidate its
entire attributes cache. Else,

3) Scan the returned buffer and invalidate the
attributes of the concerned files in its cache. And,

4) If poll-again is equal to 1: send another GETINV
call to the server immediately.

In summary, only the file modifications observed
by the proxy server cause invalidations on the proxy

clients and they are transferred in a small number of
GETINV replies. Only the files that are modified by
other clients during the past polling time window need
to be revalidated by a proxy client, but all the other
per-file consistency checks issued from the kernel NFS
client will be filtered out during the next time window.

4.2.2. Bootstrapping

The protocol uses logical timestamps to manage
invalidation buffers. These are created by proxy server
and used as arguments to GETINV calls by proxy
client. The bootstrapping mechanism that provides an
initial timestamp to a client uses a GETINV call with a
null argument. Another form of bootstrapping takes
place if the server fails or restarts and loses timestamp
information. In this case, a client has a timestamp
which is invalid, and must obtain a new, valid
timestamp. The server handles this case by returning a
new timestamp and a force-invalidation flag to each
client’s first GETINV after it restarts.

4.2.3. Failure Handling

The main factor that facilitates failure handling in
this protocol is that the state stored on proxy server
(invalidation buffers, timestamps) and clients (cached
attributes and timestamps) is soft-state which can be
safely discarded. If the server crashes, once recovered
it can initialize new invalidation buffers from scratch,
bootstrap clients with new timestamps as described
above, and continue to serve the clients’ GETINV calls.
If a client crashes and loses its timestamp, then after
recovery it issues GETINV with a null argument, and
the server returns the latest timestamp with a force-
invalidation flag. The same mechanism can be used if

1. READ2. DELEGATION
4. CALLBACK

3. WRITE

NFS
server

proxy

S1

WANWAN

NFS
client
NFS

client
proxyproxy

C1

NFS
client
NFS

client
proxyproxy

C2
$

$

Figure 3: An example showing the sequence of
interactions happened during a read delegation
and its callback in a GVFS session which consists
of two proxy clients and a proxy server.

the client implements a policy to limit the number of
invalidation handles it should process, effectively
allowing the client to force a self-invalidation.

If a network partition happens, it is possible that the
server's invalidation circular queue for the client has
wrapped-around when it receives a GETINV from the
client again. The server can detect this case by
comparing the client’s current timestamp with the
earliest timestamp in its buffer. If the former one is
earlier, it means that the client has not kept up with the
invalidations, so the server should return the force-
invalidation flag and an updated timestamp.

The invalidation mechanism is intended to provide
relaxed consistency for the benefit of performance, but
inconsistency can occur during the polling time
window: a client may read a stale data block or file
handle. It is appropriate for applications that can
tolerate modest inconsistency (with the help from user
or middleware). In practice, write sharing happens
much less often than read sharing. Therefore this
model is capable of providing applications with good
performance and acceptable consistency. However, if
stronger consistency is required, the delegation
callback based model described below is better suited.

4.3. Delegation Callback Based Consistency
4.3.1. Delegation

A strong consistency model is achieved in GVFS
via delegation and callback mechanisms. A delegation
gives a client the guarantee to perform operations on
the cached data without consistency compromises,
while callback is used by the server to revoke the
delegation in order to avoid potential conflicts.
Delegation and callback decisions are made by the
proxy server on per-file basis. A GVFS session can
realize strong consistency by (1) disabling the kernel
NFS client’s attributes cache and (2) enabling the
GVFS cache’s delegation callback protocol. Two types
of delegations are provided. Read delegation allows a
client to read cached data without revalidation; the
periodic consistency checks issued by kernel NFS
client can be fully handled at client side. With a write
delegation, the proxy client can further delay writes;
both read and write requests to the file can be satisfied
from the GVFS cache without contacting the server.

In the absence of open and close file operations in
NFS (v2/v3), a proxy server speculates about these
operations by tracking a client’s data access. When a
read or write request is received the corresponding file
is considered “opened” by the client. In a read sharing
scenario, multiple clients can have read delegations on
the same file at the same time. But write delegation can
be granted only if no other clients have the file opened.

When there is no sharing conflict a client obtains a
delegation automatically with its first read/write
request for the file. Otherwise, the conflicting request
triggers the proxy server to recall the file’s existing
delegations and make it temporarily non-cacheable.

On the other hand, when a file has not been
accessed by a client for a while, it is speculated closed
by the client and the proxy server issues callback if this
client has a delegation on the file. To allow a client to
automatically renew a delegation, the proxy client
periodically let a request for the file bypass the cache.
The delegation’s expiration and renew periods are both
configurable per session, e.g. 10 minutes and 8
minutes respectively. The callback ensures the
correctness of consistency even if the clocks of the
server and client are badly skewed.

For the above mentioned proxy server-to-client
interactions, the delegation and cacheability decisions
are either piggybacked on the native NFS reply
message, or enclosed in the GVFS callback calls.
Figure 3 shows an example of these interactions.

4.3.2. Callback

A callback requires a server-to-client RPC call,
which is inherently supported in GVFS because a
proxy works as both RPC client and server. A proxy
client encapsulates its listening port number along with
its identification in regular RPC requests, so the proxy
server knows how to connect an authenticated client
for callbacks. To avoid deadlocks, the proxies are
multithreaded to serve both NFS RPCs and GVFS
callbacks. Correspondingly, independent queues are
also maintained to buffer these two types of calls.

Callback of a read delegation invalidates the file’s
attributes in the proxy client’s cache, which eventually
causes revalidation of the file’s cached data, while
callback of a write delegation also forces the write

back of cached dirty data. In a simple implementation,
the callback does not return until all the data have been
submitted to the server. However, the volume of dirty
data can be very large and thus the callback as well as
the other client’s request which triggers this callback
have to be blocked for a long time and may eventually
time out. Note that this is still safe because both NFS
and callback requests can be simply retried. But it is
not desirable if the application which waits on the
write back perceives a substantial response delay.

Since a request to a single block does not have to
wait for the entire file being written back, the protocol
is optimized as follows. If the number of cached dirty
blocks is considerably large (e.g. more than 1k blocks),
the proxy client returns a list of these blocks’ offsets
for the received callback. The block that is requested
by the other client is immediately written back (if it is
indeed dirty), but the other blocks are submitted
afterwards. (To realize this, the requested block’s
offset is sent along with the file’s handle in the
callback.) Upon receiving the block list and the first
block, the proxy server considers the write delegation
revoked. However it needs to monitor the progress of
the write-back and update the list accordingly until it
completes. Meanwhile, requests from other clients to
the blocks that are not written back will still generate
callbacks to force the client to submit them promptly.

4.3.3. State Maintenance

The proxy server manages a GVFS session’s state
using a list for participating clients and a hash table for
opened files. Client identification is provided by
unique session keys encapsulated by proxy clients in
every RPC request [32]. The client list stores their IDs
and callback ports. Each opened file has an entry in the
hash table to record its current state and sharers’ IDs.
A timestamp is also kept along with a client ID and
updated every time the file is accessed by the client.
Once the file is considered closed by a client, the
client’s information is removed from the file’s entry;
an entry is deleted from the hash table when the file is
not opened by any client any more.

The expiration time determining whether a client
has closed a file or not presents a tradeoff. Its value
cannot be too small; otherwise delegations are given
out so often that needs many callbacks to maintain the
consistency. In contrast a long expiration time snags a
client from getting delegations and possibly hurts its
performance, and the proxy server also needs to track a
large number of files and sharers. In the latter case, the
proxy server can reduce the amount of state by
proactively issuing callbacks on the least recently
accessed files and then evicting their entries.

4.3.4. Failure Handling

Failure handling is more important to this
consistency protocol than the invalidation-polling
based model, because the state stored at the proxy
server is crucial to strong consistency. But delegations
also provide the proxy clients opportunities to continue
serving application data requests even in presence of
server crash or network partition. After the server
comes back it can reconstruct the session’s state by
issuing special callbacks to all the known participating
clients. To realize this, the client list data structure
mentioned above is always stored directly in disk.

This type of callback is different because it targets
at the entire cache rather than a specific file. The read
delegation holders will invalidate all the cached
attributes and thus require revalidation of every cached
file when it is reaccessed. A proxy client that has write
delegations will also reply the callback with a list of
locally modified files so that the proxy server can
rebuild the hash table. Note that before every client has
answered the callback, the proxy server should block
all the incoming requests. However, this grace period
is considerably short because it only requires a single
multicasted callback to the clients.

The nature of disk caching guarantees that a proxy
client would not lose anything after it recovers from a
crash and it can easily reconstruct the list of dirty
blocks by scanning the entire cache once. However, it
needs to contact the server to reconcile any conflicts
happened during its crash. Therefore, it invalidates the
entire attributes cache to force revalidation. And for
the files that have dirty data cached, it tries to write
back a single block for each file. This helps the client
to reacquire the delegations if the files are not modified
by others during the crash; otherwise, the cached dirty
data are considered corrupted, and an NFS error will
be reported when the application tries to use them.

5. Experimental Evaluation

The proposed approach is evaluated in this section
by experiments on both microbenchmarks and
application benchmarks. Microbenchmarks exercise
GVFS with simple programs to demonstrate its
performance compared to conventional DFSs, while
application benchmarks use real scientific tools to
investigate GVFS in typical Grid computing scenarios.

The emphasis of the experiments is in wide area
environments, which are emulated using NIST Net [8].
Each link between the file system clients and server is
configured with a typical wide-area RTT of 40ms and
bandwidth of 4Mbps. Six file system clients and one
file system server are set up on VMware-based VMs,

which are hosted on two physical servers. Each
physical server has dual 2.4GHz hyper-threaded Xeon
processors and 1.5GB memory. Each VM is
configured with 256MB memory and runs SUSE
LINUX 9.2. The use of network emulator and VMs
facilitates the quick deployment of a controllable,
duplicable experimental setup. However, timekeeping
within a VM is often inaccurate, so the system clock
on a physical server is used to measure time, which
suffices the granularity required by this evaluation.

The experiments are mainly conducted on file
systems mounted through native NFS v3 and NFS v3
based GVFS both with ACL disabled. The file system
server exports the file system with write delay and
synchronous access. Every experiment is started with
cold kernel buffer and GVFS disk caches by
unmouting the file system and flushing the disk cache.

5.1. Microbenchmarks
5.1.1. Single Client Scenario

The first benchmark demonstrates the performance
edge of GVFS caching in a single client scenario. It
runs "make" on an application's source code
(Tcl/Tk8.4.5), similar to the Andrew benchmark [18].
The make takes 357 C sources and 103 headers to
generate 168 objects. It is executed on a file system
mounted from the server via three different setups:
native NFS (NFS), GVFS with read-only caching
(GVFS) and GVFS with write-back caching (GVFS-
WB). This benchmark mainly exercises the GETATTR,
LOOKUP, READ and WRITE RPCs. The execution
times and RPC counts are reported in Figure 4.

The data from executions on NFS show that,
although the make only accesses hundreds of files, it
generates tens of thousands of cache consistency

checks (GETATTR calls) in the process of cross-
referencing existing files to generate new objects.
However, the results from GVFS prove that the disk
cache can virtually satisfy all of them with its
consistency model. When the client uses invalidation-
polling with a typical period (e.g. 30 seconds), only
tens of GETINV calls are required; with delegation
callback based consistency there are no extra calls. The
larger capacity of the disk cache also substantially
reduces the number of LOOKUP calls, and the use of
write-back further decreases the number of READs
and WRITEs. Consequently, in WAN environment
GVFS runs the benchmark three times faster than NFS.

The runtimes of the benchmark in a 100Mbps LAN
is also measured to investigate the performance penalty
for RPC interception and cache management in GVFS.
The results show that the overhead is very small: only
4% with read-only caching and 8% when write-back is
also used. As network latency grows GVFS caching’s
overhead should be overcome by the gain from saving
network trips. This is confirmed by experiments on a
file system benchmark, PostMark [15].

The benchmark is executed on NFS and GVFS in
different network environments by varying the end-to-
end latency. Two GVFS setups are used: one with the
default kernel NFS buffer configuration (GVFS1), on
which the invalidation-polling consistency model can
be overlaid; the other with kernel attributes caching
disabled (GVFS2), which gives GVFS the base to
realize strong consistency with delegation and callback.
Figure 5 shows that both GVFS setups outperform
NFS after the RTT exceeds 10ms and they achieve
more than 2-fold speedup when the latency is 40ms as
in a typical WAN environment.

0

2

4

6

8

10

12

14

16

NFS GVFS GVFS-

WB

N
u
m

b
e
r

o
f

R

P
C

s

(
K

)
WRITE

READ

LOOKUP

GETATTR

(a)

0

100

200

300

400

500

600

700

800

900

NFS GVFS GVFS-

WB

NFS GVFS GVFS-

WB

R
u
n
t
i
m

e

(
s
e
c
o
n
d
s
)

LAN WAN

(b)

Figure 4: The number of RPCs transferred over the
network (a) and the runtime (b) of the Make
benchmark executed on NFS, GVFS with read-only
caching (GVFS) and GVFS with write-back caching
(GVFS-WB).

0

100

200

300

400

500

600

700

800

0.5 5 10 20 40

Network Round-Trip Time (milliseconds)

R
u

n
t
im

e

(
s
e

c
o

n
d

s
)

NFS GVFS1 GVFS2

PostMark setup:

Number of files: 600

Number of transactions: 600

File size: 32KB ~ 640KB

Number of subdirectories: 100

Block size: 32KB (read and write)

Biases: read/append=9,

 create/delete=5

Figure 5: The runtime of PostMark in various
network setups over NFS, GVFS with default
kernel buffer setup (GVFS1) and GVFS with kernel
attributes caching disabled (GVFS2).

0

1

2

3

4

5

6

7

8

9

10

11

GVFS-

inv

NFS-

inv

GVFS-

cb

NFS-

noac

N
u

m
b
e
r

o
f

R

P
C

s

(
K

)

CALLBACK

GETINV

LOOKUP

GETATTR

(a)

550

600

650

700

750

GVFS-

inv

NFS-

inv

GVFS-

cb

NFS-

noac

AFS

R
u
n
t
i
m

e

(
s
e
c
o
n
d

s
)

(b)
Figure 6: The number of RPCs transferred over the
network (a) and the runtime (b) of the Lock
benchmark executed across WAN with different
setups: NFS with 30s revalidation period (NFS-inv),
NFS with no attributes cache (NFS-noac), GVFS
with 30s invalidation period (GVFS-inv), GVFS with
delegation and callback (GVFS-cb), and AFS. The
RPC counts used by AFS are not shown because it
uses a different RPC protocol and not comparable.

5.1.2. Multiple Clients Scenario

This benchmark studies the behavior of GVFS’
different consistency models when supporting
cooperative, multiple-client workloads. It uses a
popular mutual exclusion mechanism on file systems:
file-based locks. In the experiment, six distributed
clients compete for a lock by creating an independent
temporary file and attempting to hard-link it to the
shared lock file. If a client gets the lock, it pauses for a
period of ten seconds and then releases the lock by
unlinking the lock file. Otherwise, it pauses for a
second and tries for the lock again. After a client
releases the lock, it also pauses for a second and then
rejoins the competition till it succeeds for ten times.

This experiment is conducted in WAN with
different consistency models. It serves as a good
example of the tradeoff between consistency and
performance. When consistency is relaxed, a client
may not see the release of lock immediately, and the
previous owner of lock tends to get the lock again. On
the other hand, stronger consistency provides better
fairness among the clients but also consumes more
bandwidth and generates higher server loads due to
large number of consistency calls. To demonstrate the
first case, the benchmark is executed on NFS and
GVFS both with a revalidation/invalidation period of
30 seconds (NFS-inv and GVFS-inv). For the second
case, the experiment is conducted with NFS with no
attributes cache (NFS-noac) and GVFS with delegation
and callback (GVFS-cb).

By analyzing the distribution of lock acquires from
the experimental results, it is confirmed that fairness
can be achieved with the strong consistency models
but not with the weak ones. Further, Figure 6 shows
that, in the latter case the benchmark takes nearly twice
longer to execute, also because of the delay for a lock
release being realized by other clients.

The overhead involved in achieving the same level
of consistency is significantly different between NFS
and GVFS. GVFS’ client polling protocol uses 44%
less consistency checks (GETATTR, GETINV) than
NFS (GETATTR). In the stronger consistency case the
difference between NFS and GVFS is even more
dramatic. The consistency related calls issued by NFS
(GETATTR) outnumbers that of GVFS (GETATTR,
CALLBACK) by more than 10-fold. Hence substantial
bandwidth and load are saved by using GVFS.

Note that although the benchmark runs faster on
GVFS than on NFS, the advantage is not so large as in
the number of RPCs. This is because most of the extra
RPCs’ latencies are overlapped with lock owners’
pausing times during the execution.

As a reference, another traditional DFS that delivers
strong consistency, AFS (OpenAFS 1.2.11), is also
tested with the benchmark. The above experiments
prove that GVFS can flexibly and efficiently provide
different application-tailored consistency models,
which is difficult to achieve with traditional DFSs.

5.2. Applications Benchmarks
5.2.1. Software Repository

The wide-area shared software repository scenario
discussed in Section 3 is studied with NanoMOS, a 2-
D n-MOSFET simulator. This is a compute-intensive
application and benefits from parallel execution on
Grid resources. A wide-area file system supports it by
allowing the WAN users to read-share the application
and its required software, including MATLAB with the
MPI toolbox (MPITB), and also allowing the local
administrator to maintain the repository at the same
time. The experiment executes NanoMOS in parallel
on six machines for eight iterations, while between the
fourth and fifth run a software update happens. Two
cases are considered: update to MPITB only, and to the
entire MATLAB package. The repository is shared
among these servers via native NFS, or GVFS with
invalidation polling based consistency. The runtimes
of the NanoMOS executions are shown in Figure 7.

NanoMOS’ working dataset is relatively small
(about 30MB per client), so both NFS and GVFS
clients can cache it and reduce the runtime since the
second run. But the difference is that the NFS client
has to frequently check consistency for the cached data

(about 2.7K GETATTRs per client per run), which can
be almost eliminated by the GVFS client with its cache
consistency. As result, GVFS delivers more than 2-
fold speedup compared to NFS. When an update
happens, the NFS client cannot know how many files
are affected (the MATLAB package consists of 14K
files/directories, while MPITB has only 540), so it has
to always issue the same volume of consistency checks
for the entire package. However, the GVFS client only
uses invalidations proportional to the size of the update
and batches them together in a few transactions
(MATLAB update needs about 30 GETINV calls per
client; MPITB update needs only two calls per client).

5.2.2. Scientific Data Processing

Another benchmark uses a coastal ocean
hydrodynamics modeling application CH1D. It works
in a scenario as discussed in Section 3, where real-time
data are accumulated on coastal observation sites, and
meanwhile processed on off-site computing centers. A
wide-area file system helps the programs to share data
naturally without explicitly transferring data back and
forth. In the experiment, the data-producing program
runs consecutively for 15 times, and each run gives the
data-processing program 30 more input files. The data
are shared between the programs via native NFS, or
GVFS with delegation and callback.

Similar to the previous benchmark, the input dataset
to the data-processing program is small and even 15
runs of data can still fit into its NFS client’s kernel
buffer. However, as the dataset grows the amount of
consistency that the kernel client has to maintain also
increases accordingly. The runtimes of the application
(Figure 8) clearly demonstrate this trend: the overhead

of cache consistency increases linearly as the size of
the dataset. In contrast, with GVFS’ consistency model
this overhead is much smaller and remains almost
constant for each run (only 30 callbacks). Accordingly,
the performance speedup achieved by GVFS also
grows as the dataset does and at the 15th run the
benchmark runs already 5 times faster than on NFS.

Previous work has studied the above applications in
different setups (e.g. single-client based NanoMOS
execution). The experiments in this paper further prove
the effectiveness and scalability of GVFS consistency
models. In addition, previous results from comparison
with NFS v2 show larger speedup than those compared
with NFS v3 in this paper, because v3 does a better job
than v2 by reducing the number of consistency checks
[6]. But as demonstrated by the above experiments, it
is still considerably less efficient than GVFS in wide
area. Finally, it is also conceivable that a GVFS
implementation overlaid on top of NFS v4 can take
advantage of the available open/close operations and
compound calls, and further provide good performance
and consistency with the application-tailored models.

6. Conclusions

This paper shows that application-tailored cache

consistency models and performance enhancements
can be implemented in a manner that overlays existing
DFS client/server implementations at the user level. A
relaxed consistency model based on invalidation
polling and a strong one based on delegation callback
are evaluated in wide area environments.
Microbenchmark and application based experiments
show that large numbers of long-latency consistency-

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15

Execution Iteration

R
u

n
t
im

e

(
s
e

c
o

n
d

s
)

NFS GVFS

Figure 8: CH1D runtime. Data generation and
processing are performed across WAN, where data
are shared via native NFS, or GVFS with delegation
callback based consistency. The data-processing
program starts each run with 30 more input files
from the data-producing program.

0

100

200

300

400

500

R
u

n
t
im

e

(
s
e

c
o

n
d

s
)

NFS GVFS (a)

0

100

200

300

400

1 2 3 4 5 6 7 8

Execution Iteration

NFS GVFS
(b)

Figure 7: The runtime of parallel NanoMOS
executions on six WAN resources. The software is
shared via native NFS, or GVFS with 30s
invalidation period. Between the 4th and 5th run an
update happens on: (a) the entire MATLAB
directory; (b) the MPITB directory only.

related calls can be avoided, and order-of-magnitude
application-perceived speedups are achieved.

Solutions of this type are important in situations
where applications designed in local area environments
are scheduled by distributed/Grid computing
middleware to execute in resources available across
wide area networks. Through the use of virtualization,
the DFS interface presented to applications is
preserved and existing LAN implementations are
leveraged, while WAN-specific features (encryption,
identity mapping, latency-hiding [12][32]) are handled
by middleware aware of application characteristics. In
particular, WSRF-compliant data management services
[33] can be used to realize the scheduling, customizing
and isolating independent GVFS sessions with cache
and consistency tailored to the data sharing patterns
and application requirements.

7. Acknowledgement

This research is sponsored by NSF under grants
EIA-0224442, EEC-0228390, ACI-0219925, ANI-
0301108 and SCI-0438246. The authors also
acknowledge a SUR grant from IBM, and Justin Davis
and Peter Sheng for providing access to a benchmark
application. Any opinions, findings and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the sponsors.

8. References

[1] S. Adabala et al, “From Virtualized Resources to Virtual

Computing Grids: The In-VIGO System”, Future
Generation Computing Systems, Vol. 21/6, 2005.

[2] A. Alexandrov et al, “UFO: A Personal Global File
System Based on User-level Extensions to the Operating
System”, ACM TOCS, Vol. 16, pp. 207-233, 1998.

[3] P. Barham et al, “Xen and the Art of Virtualization”,
Proc. ACM SOSP, October 2003.

[4] J. Bent et al, “Explicit Control in a Batch-Aware
Distributed File System”, Proc. 1st NSDI, 2004.

[5] M. Blaze, “A Cryptographic File System for Unix”,
Proc. 1st ACM Conference on CCS, pp. 9-16, 1993.

[6] B. Callaghan, NFS Illustrated, Addison-Wesley, 2002.
[7] B. Callaghan, T. Lyon, “The Automouner”, Proceedings

of the Winter 1989 USENIX Conference, 1989, pp 43-51.
[8] M. Carson, D. Santay, “NIST Net: A Linux-based

Network Emulation Tool”, ACM SIGCOMM Computer
Communication Review, Vol. 33, No. 3, July 2003.

[9] B. Chun et al, “PlanetLab: An Overlay Testbed for
Broad-Coverage Services”, ACM SIGCOMM Computer
Communications Review, Vol. 33, No. 3, July 2003.

[10] J. Dike, “A User-mode Port of the Linux Kernel”, Proc.
4th Annual Linux Showcase and Conference, 2000.

[11] R. Figueiredo et al, “A Case for Grid Computing on
Virtual Machines”, Proc. 23rd ICDCS, 2003.

[12] R. Figueiredo et al, “The PUNCH Virtual File System:
Seamless Access to Decentralized Storage Services in a
Computational Grid”, Proc. 10th HPDC, August 2001.

[13] I. Foster et al, “The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems
Integration”, OGSI WG, GGF, June 22, 2002.

[14] K. Fu et al, “Fast and Secure Distributed Read-Only File
System”, ACM TOS, Vol. 20, No. 1, 2002.

[15] J. Katcher, “PostMark: A New File System Benehmark”,
Technical Report TR-3022, Network Appliance, 1997.

[16] B. Krishnamurthy and C. E. Wills, “Study of Piggyback
Cache Validation for Proxy Caches in the World Wide
Web”, Proc. USITS’97, pp. 1-12, December 1997.

[17] T. Garfinkel, “Traps and Pitfalls: Practical Problems in
System Call Interposition Based Security Tools”, Proc.
Network and Distributed Systems Security Symp., 2003.

[18] J. Howard et al, “Scale and Performance in a Distributed
File System”, ACM TOCS, Vol. 6, Issue 1, 1998.

[19] M. Kozuch, M. Satyanarayanan, “Internet
Suspend/Resume”, Proc. 4th WMCSA, 2002.

[20] J. Kubiatowicz et al, “OceanStore: An Architecture for
Global-Scale Persistent Storage”, Proc. ASPLOS, 2000.

[21] I. Krsul et al, “VMPlants: Providing and Managing
Virtual Machine Execution Environments for Grid
Computing”, Proc. Supercomputing, November 2004.

[22] M. Litzkow et al, “Condor: a Hunter of Idle
Workstations”, Proc. 8th ICDCS, pp104-111, June 1988.

[23] R. Macklem, “Not Quite NFS, Soft Cache Consistency
for NFS”, Proc. USENIX Winter Technical Conf., 1994.

[24] D. Mazières, “A Toolkit for User-level File Systems”,
Proc. 2001 USENIX Technical Conference, June 2001.

[25] J. Paladugula et al, “Support for Data-Intensive,
Variable-Granularity Grid Applications via Distributed
File System Virtualization - A Case Study of Light
Scattering Spectroscopy”, Proc. 1st CLADE, June 2004.

[26] Y. Saito et al, “Taming Aggressive Replication in the
Pangaea Wide-area File System”, Proc. 5th OSDI, 2002.

[27] C. Sapuntzakis et al, “Virtual Appliances for Deploying
and Maintaining Software”, Proc. 17th LISA, 2003.

[28] J. Sugerman et al, “Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor”, Proc.
USENIX Annual Technical Conference, 2001.

[29] V. Srinivasan and J. Mogul, “Spritely NFS:
Experiements with Cache-Consistency Protocols”, Proc.
12th SOSP, December 3-6, 1989, pages 45-57.

[30] SunSoft, “Cache File System (CacheFS)”, White-Paper,
Sun Microsystems, Incorporated, February 1994.

[31] B. White et al, “LegionFS: A Secure and Scalable File
System Supporting Cross-Domain High-Performance
Applications”, Proc. Supercomputing Conference, 2001.

[32] M. Zhao, J. Zhang and R. J. Figueiredo, “Distributed
File System Virtualization Techniques Supporting On-
Demand Virtual Machine Environments for Grid
Computing”, Cluster Computing, Vol. 9, Issue 1, 2006.

[33] M. Zhao, V. Chadha and R. J. Figueiredo, “Supporting
Application-Tailored Grid File System Sessions with
WSRF-Based Services”, Proc. 14th HPDC, July 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

