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Abstract 
 

The inability to perform optimizations based on 
application-specific information presents a hurdle to 
the deployment of pervasive LAN file systems across 
WAN environments. This paper proposes a novel 
approach addressing this problem through 
application-tailored caching and consistency in wide-
area file systems. It leverages widely available 
Network File System (NFS) deployments without any 
modifications to kernels nor applications, and employs 
middleware to dynamically establish Grid-wide Virtual 
File System (GVFS) sessions with application-tailored 
cache consistency. Two consistency models are 
discussed in this paper: a relaxed model based on 
invalidation polling, and a stronger model based on 
delegation and callback. Experimental evaluation 
based on microbenchmarks and scientific applications 
show that with application-tailored cache consistency, 
GVFS is able to both improve application runtimes 
and reduce server load significantly, compared to 
kernel-level NFS in WAN. 
 
1. Introduction 
 

This paper addresses the lack of support in current 
Distributed File Systems (DFSs) for application-
tailored caching and consistency models. Central to the 
proposed approach is the use of a virtualization layer 
based on user-level DFS proxies [12][24], and the role 
of middleware as the entity that customizes and creates 
Grid-wide Virtual File System (GVFS) sessions on 
demand [1][4][12]. The approach is applicable to a 
wide variety of systems because it leverages the NFS 
[6] de-facto standard, is transparent to applications, 
and requires no kernel modifications to be deployed. 

The importance of this approach is that it provides 
an effective way to support high-performance data 
access and consistency in cross-domain wide area 
computing environments, e.g. in support of high-

throughput scientific and financial workloads [4]. In 
such environments, statically established DFSs are 
unable to cater to application-specific needs. In 
contrast, related work has shown that virtualized file 
system sessions can be scheduled by middleware on 
behalf of users [12][22][31]. This paper presents novel 
techniques that extend user-level virtualized DFS to 
support application-tailored caching with strong or 
weak consistency models that overlay native 
mechanisms used by NFS. The resulting design 
enables a middleware scheduler to control caching and 
consistency policies, on a per-session basis. 

User-level implementations incur more overhead 
compared to kernel-level; however, in many 
environments kernel DFS changes tailored to 
application needs are not viable. To evaluate the 
performance of the proposed techniques in wide area 
environments, a series of experiments are reported in 
this paper. These consider the performance of several 
microbenchmarks and scientific applications. The 
results show that with application-tailored cache 
consistency, GVFS is able to both improve application 
runtimes and reduce server load significantly, in 
comparison to kernel-level NFS implementations. 

In the rest of the paper, Section 2 describes 
background and related work, Section 3 highlights 
motivating examples, Section 4 discusses cache 
consistency models, Section 5 presents experimental 
evaluation, and Section 6 concludes the paper. 
 
2. Background and Related Work 
 

Currently there are no mechanisms that allow a 
conventional DFS implementation to be customized to 
support application- and user-tailored enhancements. 
This presents a hurdle to the deployment of pervasive 
LAN file systems (e.g. NFS v2/v3) across WAN 
environments, where round-trip latencies are 
considerably larger. If DFSs are capable of leveraging 
application knowledge, the number of client-server 



interactions can be reduced, thereby reducing server 
loads and average request latencies. However, typical 
DFS implementations are not designed to exploit such 
knowledge, for two important reasons. 

First, traditionally DFSs are setup by system 
administrators with static, long-lived, homogeneous 
configurations at the granularity of a collection of 
users, rather than dynamic, short-lived, customized 
setups at the granularity of an application session. 
Second, integrating application-tailored features with 
DFS implementations in commonly available kernels is 
very difficult in practice. An optimization tailored for 
one application (e.g. aggressive pre-fetching of file 
contents) may result in performance degradation for 
several others (e.g. sparse files, databases). In addition, 
kernel-level modifications are difficult to port and 
deploy, notably in shared environments. 

The lack of support for application-tailored 
optimizations has also been recognized as a limitation 
by BAD-FS [4]. However, it relies on system-call and 
library based interposition agents, and hence does not 
support many applications and OSs. Other system-call 
and library based extensions have been investigated in 
[2], [22]. However, it is hard to duplicate kernel 
functionality [17] and present full file system 
semantics [24]. In contrast, GVFS is mounted in the 
same way as conventional NFS, and supports a wide 
range of unmodified applications and OSs. 

Several related systems have leveraged user-level 
techniques based on loop-back server/client proxies to 
extend file system O/S functionality - in essence, 
virtualizing DFSs by means of intercepting RPC calls 
of protocols such as NFS [6], e.g., the automounter [7], 
CFS [5], SFS [14] and LegionFS [31]. This paper 
differentiates from these efforts in that Grid 
middleware is used to setup, create and destroy DFS 
sessions on a per-application basis. 

There are related kernel-level DFS solutions that 
exploit the advantages of disk caching (AFS [18], 
CacheFS [30]), or support different consistency 
models for improved performance (NQ-NFS [23], 
Spritely NFS [29], NFS v4 [6]) However, these 
designs require kernel support that is difficult to 
deploy across shared Grid environments, and they are 
not able to employ per-user/-application cache policies.  

Scalable distributed data storage/delivery has been 
pursued in related work, e.g. Pangaea [26] and 
OceanStore [20]. Pangaea supports only one 
consistency model - eventual consistency; OceanStore 
allows for application-specific consistency, but it is not 
application-transparent, requiring the use of its API to 
achieve this goal. In the context of Web content 
caching, a related proxy cache invalidation approach 
has been studied in [16]. These systems differ from 

this paper in that they are not architected to allow 
middleware to dynamically instantiate, configure and 
compose proxies for application-tailored data sessions. 

 
3. Motivating Examples 
 

Distributed systems that allow the provisioning of 
general-purpose computing as a utility ("Grids" [13]) 
have the potential to enable on-demand access to 
unprecedented computing power. A key challenge 
arising in such systems is data management - how to 
seamlessly provide data to applications in WAN 
environments. DFS-based techniques are key to 
supporting applications without modifications to 
source code, libraries, or binaries. Examples include 
commercial, interactive scientific and engineering tools 
and virtual machine monitors that often operate on 
large, sparse data sets [19][27][32]. 

While application transparency is an asset of 
approaches based on DFSs, it can also become a 
performance liability. Enhancements that target wide-
area DFSs for shared Grid environments are desirable, 
but need to be considered in a context where 
modifications tailored to this application domain are 
unlikely to be implemented in kernels. Nonetheless, 
recent work has shown the feasibility of applying user-
level techniques to improve the performance of wide-
area file systems [14][24][32], motivating the pursuit 
of user level application-tailored extensions. Potential 
uses of application-tailored cache consistency can be 
illustrated with three concrete scenarios: 

Distributed Virtual Machines: There are growing 
interests in employing Virtual Machine (VM) in Grid 
computing [11][9]. Typical VM technologies (e.g. 
[28][10][3]) encapsulate a VM's state in regular files or 
filesystems and thus can leverage DFS support [32]. A 
VM with a non-persistent disk state can be used as a 
“master” image for the purpose of VM cloning; and 
under the management of a VM scheduler [21], such 
“clones” can be dedicated to executions of individual 
applications. In this scenario, the “master” image can 
be read-only shared while each clone has its own redo 
log or copy-on-write state. Hence it is reasonable to 
enable aggressive caching for both reads and writes. 

Software Repositories: Software repositories are 
popular in enterprises as a means of sharing software 
among users. Such repositories are often setup on a 
DFS in an enterprise local network, read-only shared 
by organization users and centrally managed by system 
administrators. However, as the resources and users 
grow, support for wide-area sharing becomes a 
challenge to traditional DFS technologies. In this 
context, leveraging the processing and disk storage at 



the client side to implement file system data caching is 
important to improving a repository’s performance. 

Scientific Data Processing: Scientific data are 
often collected/generated on-site, and processed and 
analyzed in an off-site computing center. Using a DFS 
to service data provisioning helps the analysis to be 
performed over different data ranges or with different 
granularities [25]. If temporal locality exists across 
consecutive runs of analysis, data caching can 
effectively hide network latency, and because of the 
producer-consumer model only reads are cached with 
support for an application acceptable consistency. 
 
4. Cache Consistency Models 
4.1. Overview 

GVFS employs user-level proxy clients and servers 
to virtualize distributed file systems [12]. They are 
placed between native kernel NFS clients and servers 
to implement extensions and enhancements, including 
client-side disk caches for file attributes and data 
blocks [32]. A GVFS session is typically established 
by middleware through dynamic creation, 
configuration of a proxy server, and one or more proxy 
clients and mount points. Multiple sessions share the 
physical resources, yet each one can apply independent 
optimizations [33]. Figure 1 illustrates two GVFS 
sessions that are customized to support data provision 
for applications described in the motivating examples. 

A consistency model specifies constraints on the 
order in which read and write operations appear to be 
performed in a distributed system. The choice of a 

consistency model in a DFS is an important and 
difficult one, because it has implications in the 
complexity of developing applications (and the DFS 
itself) and in the performance of applications. A 
relaxed model may be acceptable (and desirable) to a 
simulation application, but may fall short of supporting 
database applications that rely on locks. A complex 
consistency protocol may be desirable if it delivers 
high performance, but undesirable if it is difficult to 
implement, test and deploy in existing O/Ss or if it 
requires applications to use a consistency-aware API. 

GVFS solves this dilemma by providing flexibly 
and efficiently customized cache consistency models to 
applications. Native NFS protocols (v2/v3) mainly rely 
on client-initiated revalidation requests to check for 
consistency. GVFS proxies, however, can be 
configured to support a variety of models, including 
the underlying NFS consistency itself, and alternative 
models. This section explains in detail the design and 
implementation of these application-tailored models. 

 
4.2. Invalidation Polling Consistency 
4.2.1. Protocol  

This model employs invalidation buffers that reflect 
potential modifications to many files to reduce the rate 
at which per-file information is polled. Such an 
approach proves effective when modifications to the 
file system are infrequent and need to be quickly 
propagated to clients. The approach is illustrated in 
Figure 2: the proxy server of a GVFS session keeps 
track of logically time-stamped file handles that need 
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Figure 1: GVFS sessions consist of virtual clients (VC1-VC5) and servers (VS1-VS2) implemented by user-
level proxies. They are dynamically established and managed by middleware and overlay shared physical 
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repository (VS2) among WAN users (VC3, VC4), and maintenance update by LAN administrator (VC5). 
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Figure 2: A GVFS session using the invalidation 
polling consistency protocol between the proxy 
clients at C1, C2 and the proxy server at S1. RPCs 
issued from kernel NFS clients can be served from 
the disk caches, while the proxy clients poll the 
proxy server for contents of per-client invalidation 
buffers (BC1, BC2) to maintain consistency. 

to be invalidated in per-client buffers; the proxy clients 
use a new protocol message - GETINV - to request 
information related to the invalidation buffer.  

Server-side: The proxy server adds file handles 
into invalidation buffers when it receives file 
modification requests from a client (e.g. CREATE, 
WRITE etc.). Multiple invalidations to the same file 
can be coalesced. Per-client invalidation buffers are of 
finite size and implemented as circular queues. The 
timestamps associated with each invalidation entry are 
generated by the server, and increase monotonically 
with incoming requests. A proxy client’s GETINV 
request contains the timestamp of the last invalidation 
it has performed, and the proxy server returns the file 
handles stored in the buffer which the client needs to 
invalidate in its cache. The server can handle protocol 
cases where invalidation information is not fully 
available by using a flag (force-invalidate) to inform 
the client to invalidate its entire attributes cache. The 
proxy server processes a GETINV call as follows: 

1) If this is the first GETINV call received from the 
client: initialize an invalidation buffer for the 
client, return updated timestamp and force-
invalidation flag with value 1. Else, 

2) If the timestamp in the GETINV request is earlier 
than the earliest one in the client's invalidation 
buffer: flush buffer and return updated timestamp 
and force-invalidation flag with value 1. Else, 

3) Return buffer contents (and clear them), updated 
timestamp and force-invalidation flag with value 
0. If buffer contents do not fit in a single RPC 
message, then return a poll-again flag with value 
1 along with partial buffer contents. 

Client-side: The proxy client polls the server with 
GETINV calls for potential invalidations occurred 
since its last known timestamp within a short time 
window. The polling time window can be fixed, or 
vary within a configurable range using an exponential 
back-off policy. The received invalidations are 
performed by invalidating the cached attributes of the 
concerned files, which will cause the proxy client to 
revalidate these files when they are accessed again. 
The proxy client processes the result from the 
GETINV call as follows: 

1) Update a local variable holding the last known 
server timestamp. 

2) If force-invalidation is equal to 1: invalidate its 
entire attributes cache. Else, 

3) Scan the returned buffer and invalidate the 
attributes of the concerned files in its cache. And, 

4) If poll-again is equal to 1: send another GETINV 
call to the server immediately. 

In summary, only the file modifications observed 
by the proxy server cause invalidations on the proxy 

clients and they are transferred in a small number of 
GETINV replies. Only the files that are modified by 
other clients during the past polling time window need 
to be revalidated by a proxy client, but all the other 
per-file consistency checks issued from the kernel NFS 
client will be filtered out during the next time window. 

 
4.2.2. Bootstrapping 

The protocol uses logical timestamps to manage 
invalidation buffers. These are created by proxy server 
and used as arguments to GETINV calls by proxy 
client. The bootstrapping mechanism that provides an 
initial timestamp to a client uses a GETINV call with a 
null argument. Another form of bootstrapping takes 
place if the server fails or restarts and loses timestamp 
information. In this case, a client has a timestamp 
which is invalid, and must obtain a new, valid 
timestamp. The server handles this case by returning a 
new timestamp and a force-invalidation flag to each 
client’s first GETINV after it restarts. 

 
4.2.3. Failure Handling 

The main factor that facilitates failure handling in 
this protocol is that the state stored on proxy server 
(invalidation buffers, timestamps) and clients (cached 
attributes and timestamps) is soft-state which can be 
safely discarded. If the server crashes, once recovered 
it can initialize new invalidation buffers from scratch, 
bootstrap clients with new timestamps as described 
above, and continue to serve the clients’ GETINV calls. 
If a client crashes and loses its timestamp, then after 
recovery it issues GETINV with a null argument, and 
the server returns the latest timestamp with a force-
invalidation flag. The same mechanism can be used if 
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Figure 3: An example showing the sequence of 
interactions happened during a read delegation 
and its callback in a GVFS session which consists 
of two proxy clients and a proxy server. 

the client implements a policy to limit the number of 
invalidation handles it should process, effectively 
allowing the client to force a self-invalidation. 

If a network partition happens, it is possible that the 
server's invalidation circular queue for the client has 
wrapped-around when it receives a GETINV from the 
client again. The server can detect this case by 
comparing the client’s current timestamp with the 
earliest timestamp in its buffer. If the former one is 
earlier, it means that the client has not kept up with the 
invalidations, so the server should return the force-
invalidation flag and an updated timestamp. 

The invalidation mechanism is intended to provide 
relaxed consistency for the benefit of performance, but 
inconsistency can occur during the polling time 
window: a client may read a stale data block or file 
handle. It is appropriate for applications that can 
tolerate modest inconsistency (with the help from user 
or middleware). In practice, write sharing happens 
much less often than read sharing. Therefore this 
model is capable of providing applications with good 
performance and acceptable consistency. However, if 
stronger consistency is required, the delegation 
callback based model described below is better suited. 
 
4.3. Delegation Callback Based Consistency 
4.3.1. Delegation 

A strong consistency model is achieved in GVFS 
via delegation and callback mechanisms. A delegation 
gives a client the guarantee to perform operations on 
the cached data without consistency compromises, 
while callback is used by the server to revoke the 
delegation in order to avoid potential conflicts. 
Delegation and callback decisions are made by the 
proxy server on per-file basis. A GVFS session can 
realize strong consistency by (1) disabling the kernel 
NFS client’s attributes cache and (2) enabling the 
GVFS cache’s delegation callback protocol. Two types 
of delegations are provided. Read delegation allows a 
client to read cached data without revalidation; the 
periodic consistency checks issued by kernel NFS 
client can be fully handled at client side. With a write 
delegation, the proxy client can further delay writes; 
both read and write requests to the file can be satisfied 
from the GVFS cache without contacting the server. 

In the absence of open and close file operations in 
NFS (v2/v3), a proxy server speculates about these 
operations by tracking a client’s data access. When a 
read or write request is received the corresponding file 
is considered “opened” by the client. In a read sharing 
scenario, multiple clients can have read delegations on 
the same file at the same time. But write delegation can 
be granted only if no other clients have the file opened. 

When there is no sharing conflict a client obtains a 
delegation automatically with its first read/write 
request for the file. Otherwise, the conflicting request 
triggers the proxy server to recall the file’s existing 
delegations and make it temporarily non-cacheable.  

On the other hand, when a file has not been 
accessed by a client for a while, it is speculated closed 
by the client and the proxy server issues callback if this 
client has a delegation on the file. To allow a client to 
automatically renew a delegation, the proxy client 
periodically let a request for the file bypass the cache. 
The delegation’s expiration and renew periods are both 
configurable per session, e.g. 10 minutes and 8 
minutes respectively. The callback ensures the 
correctness of consistency even if the clocks of the 
server and client are badly skewed. 

For the above mentioned proxy server-to-client 
interactions, the delegation and cacheability decisions 
are either piggybacked on the native NFS reply 
message, or enclosed in the GVFS callback calls. 
Figure 3 shows an example of these interactions. 

 
4.3.2. Callback 

A callback requires a server-to-client RPC call, 
which is inherently supported in GVFS because a 
proxy works as both RPC client and server. A proxy 
client encapsulates its listening port number along with 
its identification in regular RPC requests, so the proxy 
server knows how to connect an authenticated client 
for callbacks. To avoid deadlocks, the proxies are 
multithreaded to serve both NFS RPCs and GVFS 
callbacks. Correspondingly, independent queues are 
also maintained to buffer these two types of calls. 

Callback of a read delegation invalidates the file’s 
attributes in the proxy client’s cache, which eventually 
causes revalidation of the file’s cached data, while 
callback of a write delegation also forces the write 



back of cached dirty data. In a simple implementation, 
the callback does not return until all the data have been 
submitted to the server. However, the volume of dirty 
data can be very large and thus the callback as well as 
the other client’s request which triggers this callback 
have to be blocked for a long time and may eventually 
time out. Note that this is still safe because both NFS 
and callback requests can be simply retried. But it is 
not desirable if the application which waits on the 
write back perceives a substantial response delay. 

Since a request to a single block does not have to 
wait for the entire file being written back, the protocol 
is optimized as follows. If the number of cached dirty 
blocks is considerably large (e.g. more than 1k blocks), 
the proxy client returns a list of these blocks’ offsets 
for the received callback. The block that is requested 
by the other client is immediately written back (if it is 
indeed dirty), but the other blocks are submitted 
afterwards. (To realize this, the requested block’s 
offset is sent along with the file’s handle in the 
callback.) Upon receiving the block list and the first 
block, the proxy server considers the write delegation 
revoked. However it needs to monitor the progress of 
the write-back and update the list accordingly until it 
completes. Meanwhile, requests from other clients to 
the blocks that are not written back will still generate 
callbacks to force the client to submit them promptly.  

 
4.3.3. State Maintenance 

The proxy server manages a GVFS session’s state 
using a list for participating clients and a hash table for 
opened files. Client identification is provided by 
unique session keys encapsulated by proxy clients in 
every RPC request [32]. The client list stores their IDs 
and callback ports. Each opened file has an entry in the 
hash table to record its current state and sharers’ IDs. 
A timestamp is also kept along with a client ID and 
updated every time the file is accessed by the client. 
Once the file is considered closed by a client, the 
client’s information is removed from the file’s entry; 
an entry is deleted from the hash table when the file is 
not opened by any client any more. 

The expiration time determining whether a client 
has closed a file or not presents a tradeoff. Its value 
cannot be too small; otherwise delegations are given 
out so often that needs many callbacks to maintain the 
consistency. In contrast a long expiration time snags a 
client from getting delegations and possibly hurts its 
performance, and the proxy server also needs to track a 
large number of files and sharers. In the latter case, the 
proxy server can reduce the amount of state by 
proactively issuing callbacks on the least recently 
accessed files and then evicting their entries. 

4.3.4. Failure Handling 

Failure handling is more important to this 
consistency protocol than the invalidation-polling 
based model, because the state stored at the proxy 
server is crucial to strong consistency. But delegations 
also provide the proxy clients opportunities to continue 
serving application data requests even in presence of 
server crash or network partition. After the server 
comes back it can reconstruct the session’s state by 
issuing special callbacks to all the known participating 
clients. To realize this, the client list data structure 
mentioned above is always stored directly in disk. 

This type of callback is different because it targets 
at the entire cache rather than a specific file. The read 
delegation holders will invalidate all the cached 
attributes and thus require revalidation of every cached 
file when it is reaccessed. A proxy client that has write 
delegations will also reply the callback with a list of 
locally modified files so that the proxy server can 
rebuild the hash table. Note that before every client has 
answered the callback, the proxy server should block 
all the incoming requests. However, this grace period 
is considerably short because it only requires a single 
multicasted callback to the clients. 

The nature of disk caching guarantees that a proxy 
client would not lose anything after it recovers from a 
crash and it can easily reconstruct the list of dirty 
blocks by scanning the entire cache once. However, it 
needs to contact the server to reconcile any conflicts 
happened during its crash. Therefore, it invalidates the 
entire attributes cache to force revalidation. And for 
the files that have dirty data cached, it tries to write 
back a single block for each file. This helps the client 
to reacquire the delegations if the files are not modified 
by others during the crash; otherwise, the cached dirty 
data are considered corrupted, and an NFS error will 
be reported when the application tries to use them. 
 
5. Experimental Evaluation 
 

The proposed approach is evaluated in this section 
by experiments on both microbenchmarks and 
application benchmarks. Microbenchmarks exercise 
GVFS with simple programs to demonstrate its 
performance compared to conventional DFSs, while 
application benchmarks use real scientific tools to 
investigate GVFS in typical Grid computing scenarios. 

The emphasis of the experiments is in wide area 
environments, which are emulated using NIST Net [8]. 
Each link between the file system clients and server is 
configured with a typical wide-area RTT of 40ms and 
bandwidth of 4Mbps. Six file system clients and one 
file system server are set up on VMware-based VMs, 



which are hosted on two physical servers. Each 
physical server has dual 2.4GHz hyper-threaded Xeon 
processors and 1.5GB memory. Each VM is 
configured with 256MB memory and runs SUSE 
LINUX 9.2. The use of network emulator and VMs 
facilitates the quick deployment of a controllable, 
duplicable experimental setup. However, timekeeping 
within a VM is often inaccurate, so the system clock 
on a physical server is used to measure time, which 
suffices the granularity required by this evaluation. 

The experiments are mainly conducted on file 
systems mounted through native NFS v3 and NFS v3 
based GVFS both with ACL disabled. The file system 
server exports the file system with write delay and 
synchronous access. Every experiment is started with 
cold kernel buffer and GVFS disk caches by 
unmouting the file system and flushing the disk cache. 

 
5.1. Microbenchmarks 
5.1.1. Single Client Scenario 

The first benchmark demonstrates the performance 
edge of GVFS caching in a single client scenario. It 
runs "make" on an application's source code 
(Tcl/Tk8.4.5), similar to the Andrew benchmark [18]. 
The make takes 357 C sources and 103 headers to 
generate 168 objects. It is executed on a file system 
mounted from the server via three different setups: 
native NFS (NFS), GVFS with read-only caching 
(GVFS) and GVFS with write-back caching (GVFS-
WB). This benchmark mainly exercises the GETATTR, 
LOOKUP, READ and WRITE RPCs. The execution 
times and RPC counts are reported in Figure 4. 

The data from executions on NFS show that, 
although the make only accesses hundreds of files, it 
generates tens of thousands of cache consistency 

checks (GETATTR calls) in the process of cross-
referencing existing files to generate new objects. 
However, the results from GVFS prove that the disk 
cache can virtually satisfy all of them with its 
consistency model. When the client uses invalidation-
polling with a typical period (e.g. 30 seconds), only 
tens of GETINV calls are required; with delegation 
callback based consistency there are no extra calls. The 
larger capacity of the disk cache also substantially 
reduces the number of LOOKUP calls, and the use of 
write-back further decreases the number of READs 
and WRITEs. Consequently, in WAN environment 
GVFS runs the benchmark three times faster than NFS. 

The runtimes of the benchmark in a 100Mbps LAN 
is also measured to investigate the performance penalty 
for RPC interception and cache management in GVFS. 
The results show that the overhead is very small: only 
4% with read-only caching and 8% when write-back is 
also used. As network latency grows GVFS caching’s 
overhead should be overcome by the gain from saving 
network trips. This is confirmed by experiments on a 
file system benchmark, PostMark [15].  

The benchmark is executed on NFS and GVFS in 
different network environments by varying the end-to-
end latency. Two GVFS setups are used: one with the 
default kernel NFS buffer configuration (GVFS1), on 
which the invalidation-polling consistency model can 
be overlaid; the other with kernel attributes caching 
disabled (GVFS2), which gives GVFS the base to 
realize strong consistency with delegation and callback. 
Figure 5 shows that both GVFS setups outperform 
NFS after the RTT exceeds 10ms and they achieve 
more than 2-fold speedup when the latency is 40ms as 
in a typical WAN environment. 
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Figure 4: The number of RPCs transferred over the 
network (a) and the runtime (b) of the Make 
benchmark executed on NFS, GVFS with read-only 
caching (GVFS) and GVFS with write-back caching 
(GVFS-WB). 
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Figure 5: The runtime of PostMark in various 
network setups over NFS, GVFS with default 
kernel buffer setup (GVFS1) and GVFS with kernel 
attributes caching disabled (GVFS2). 



0

1

2

3

4

5

6

7

8

9

10

11

GVFS-

inv

NFS-

inv

GVFS-

cb

NFS-

noac

N
u

m
b
e
r
 
o
f
 
R

P
C

s
 
(
K

)

CALLBACK

GETINV

LOOKUP

GETATTR

(a)

550

600

650

700

750

GVFS-

inv

NFS-

inv

GVFS-

cb

NFS-

noac

AFS

R
u
n
t
i
m

e
 
(
s
e
c
o
n
d

s
)

(b)
Figure 6: The number of RPCs transferred over the 
network (a) and the runtime (b) of the Lock 
benchmark executed across WAN with different 
setups: NFS with 30s revalidation period (NFS-inv), 
NFS with no attributes cache (NFS-noac), GVFS 
with 30s invalidation period (GVFS-inv), GVFS with 
delegation and callback (GVFS-cb), and AFS. The 
RPC counts used by AFS are not shown because it 
uses a different RPC protocol and not comparable.    

5.1.2. Multiple Clients Scenario 

This benchmark studies the behavior of GVFS’ 
different consistency models when supporting 
cooperative, multiple-client workloads. It uses a 
popular mutual exclusion mechanism on file systems: 
file-based locks. In the experiment, six distributed 
clients compete for a lock by creating an independent 
temporary file and attempting to hard-link it to the 
shared lock file. If a client gets the lock, it pauses for a 
period of ten seconds and then releases the lock by 
unlinking the lock file. Otherwise, it pauses for a 
second and tries for the lock again. After a client 
releases the lock, it also pauses for a second and then 
rejoins the competition till it succeeds for ten times.  

This experiment is conducted in WAN with 
different consistency models. It serves as a good 
example of the tradeoff between consistency and 
performance. When consistency is relaxed, a client 
may not see the release of lock immediately, and the 
previous owner of lock tends to get the lock again. On 
the other hand, stronger consistency provides better 
fairness among the clients but also consumes more 
bandwidth and generates higher server loads due to 
large number of consistency calls. To demonstrate the 
first case, the benchmark is executed on NFS and 
GVFS both with a revalidation/invalidation period of 
30 seconds (NFS-inv and GVFS-inv). For the second 
case, the experiment is conducted with NFS with no 
attributes cache (NFS-noac) and GVFS with delegation 
and callback (GVFS-cb). 

By analyzing the distribution of lock acquires from 
the experimental results, it is confirmed that fairness 
can be achieved with the strong consistency models 
but not with the weak ones. Further, Figure 6 shows 
that, in the latter case the benchmark takes nearly twice 
longer to execute, also because of the delay for a lock 
release being realized by other clients.  

The overhead involved in achieving the same level 
of consistency is significantly different between NFS 
and GVFS. GVFS’ client polling protocol uses 44% 
less consistency checks (GETATTR, GETINV) than 
NFS (GETATTR). In the stronger consistency case the 
difference between NFS and GVFS is even more 
dramatic. The consistency related calls issued by NFS 
(GETATTR) outnumbers that of GVFS (GETATTR, 
CALLBACK) by more than 10-fold. Hence substantial 
bandwidth and load are saved by using GVFS. 

Note that although the benchmark runs faster on 
GVFS than on NFS, the advantage is not so large as in 
the number of RPCs. This is because most of the extra 
RPCs’ latencies are overlapped with lock owners’ 
pausing times during the execution.  

As a reference, another traditional DFS that delivers 
strong consistency, AFS (OpenAFS 1.2.11), is also 
tested with the benchmark. The above experiments 
prove that GVFS can flexibly and efficiently provide 
different application-tailored consistency models, 
which is difficult to achieve with traditional DFSs. 

 
5.2. Applications Benchmarks 
5.2.1. Software Repository 

The wide-area shared software repository scenario 
discussed in Section 3 is studied with NanoMOS, a 2-
D n-MOSFET simulator. This is a compute-intensive 
application and benefits from parallel execution on 
Grid resources. A wide-area file system supports it by 
allowing the WAN users to read-share the application 
and its required software, including MATLAB with the 
MPI toolbox (MPITB), and also allowing the local 
administrator to maintain the repository at the same 
time. The experiment executes NanoMOS in parallel 
on six machines for eight iterations, while between the 
fourth and fifth run a software update happens. Two 
cases are considered: update to MPITB only, and to the 
entire MATLAB package. The repository is shared 
among these servers via native NFS, or GVFS with 
invalidation polling based consistency. The runtimes 
of the NanoMOS executions are shown in Figure 7. 

NanoMOS’ working dataset is relatively small 
(about 30MB per client), so both NFS and GVFS 
clients can cache it and reduce the runtime since the 
second run. But the difference is that the NFS client 
has to frequently check consistency for the cached data 



(about 2.7K GETATTRs per client per run), which can 
be almost eliminated by the GVFS client with its cache 
consistency. As result, GVFS delivers more than 2-
fold speedup compared to NFS. When an update 
happens, the NFS client cannot know how many files 
are affected (the MATLAB package consists of 14K 
files/directories, while MPITB has only 540), so it has 
to always issue the same volume of consistency checks 
for the entire package. However, the GVFS client only 
uses invalidations proportional to the size of the update 
and batches them together in a few transactions 
(MATLAB update needs about 30 GETINV calls per 
client; MPITB update needs only two calls per client). 

 
5.2.2. Scientific Data Processing 

Another benchmark uses a coastal ocean 
hydrodynamics modeling application CH1D. It works 
in a scenario as discussed in Section 3, where real-time 
data are accumulated on coastal observation sites, and 
meanwhile processed on off-site computing centers. A 
wide-area file system helps the programs to share data 
naturally without explicitly transferring data back and 
forth. In the experiment, the data-producing program 
runs consecutively for 15 times, and each run gives the 
data-processing program 30 more input files. The data 
are shared between the programs via native NFS, or 
GVFS with delegation and callback. 

Similar to the previous benchmark, the input dataset 
to the data-processing program is small and even 15 
runs of data can still fit into its NFS client’s kernel 
buffer. However, as the dataset grows the amount of 
consistency that the kernel client has to maintain also 
increases accordingly. The runtimes of the application 
(Figure 8) clearly demonstrate this trend: the overhead 

of cache consistency increases linearly as the size of 
the dataset. In contrast, with GVFS’ consistency model 
this overhead is much smaller and remains almost 
constant for each run (only 30 callbacks). Accordingly, 
the performance speedup achieved by GVFS also 
grows as the dataset does and at the 15th run the 
benchmark runs already 5 times faster than on NFS. 

Previous work has studied the above applications in 
different setups (e.g. single-client based NanoMOS 
execution). The experiments in this paper further prove 
the effectiveness and scalability of GVFS consistency 
models. In addition, previous results from comparison 
with NFS v2 show larger speedup than those compared 
with NFS v3 in this paper, because v3 does a better job 
than v2 by reducing the number of consistency checks 
[6]. But as demonstrated by the above experiments, it 
is still considerably less efficient than GVFS in wide 
area. Finally, it is also conceivable that a GVFS 
implementation overlaid on top of NFS v4 can take 
advantage of the available open/close operations and 
compound calls, and further provide good performance 
and consistency with the application-tailored models. 

 
6. Conclusions 

 
This paper shows that application-tailored cache 

consistency models and performance enhancements 
can be implemented in a manner that overlays existing 
DFS client/server implementations at the user level. A 
relaxed consistency model based on invalidation 
polling and a strong one based on delegation callback 
are evaluated in wide area environments. 
Microbenchmark and application based experiments 
show that large numbers of long-latency consistency-
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Figure 8: CH1D runtime. Data generation and 
processing are performed across WAN, where data 
are shared via native NFS, or GVFS with delegation 
callback based consistency. The data-processing 
program starts each run with 30 more input files 
from the data-producing program. 
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Figure 7: The runtime of parallel NanoMOS 
executions on six WAN resources. The software is 
shared via native NFS, or GVFS with 30s 
invalidation period. Between the 4th and 5th run an 
update happens on: (a) the entire MATLAB 
directory; (b) the MPITB directory only. 



related calls can be avoided, and order-of-magnitude 
application-perceived speedups are achieved. 

Solutions of this type are important in situations 
where applications designed in local area environments 
are scheduled by distributed/Grid computing 
middleware to execute in resources available across 
wide area networks. Through the use of virtualization, 
the DFS interface presented to applications is 
preserved and existing LAN implementations are 
leveraged, while WAN-specific features (encryption, 
identity mapping, latency-hiding [12][32]) are handled 
by middleware aware of application characteristics. In 
particular, WSRF-compliant data management services 
[33] can be used to realize the scheduling, customizing 
and isolating independent GVFS sessions with cache 
and consistency tailored to the data sharing patterns 
and application requirements. 
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