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Abstract— Miss rate curves (MRCs) are a fundamental
concept in determining the impact of caches on an ap-
plication’s performance. In our research, we use MRCs
to provision caches for applications in a consolidated
environment. Current techniques for building MRCs at the
CPU caches level require changes to the applications and
are restricted to a few processor architectures [7], [22].
In this work, we investigate two techniques to partition
shared L2 and L3 caches in a server and build MRCs for
the VMs. These techniques make different trade-offs across
accuracy, flexibility, and intrusiveness dimensions. The first
technique is based on operating system (OS) page coloring
and does not require change in commodity hardware or
application. We improve upon existing page-coloring based
approaches by identifying and overcoming a subtle but
real problem of unequal associative cache sets loading to
implement accurate cache allocation. Our second technique
called CacheGrabber is even less intrusive and requires no
changes in hardware, OS, or application. We present a
comprehensive evaluation of the relative merits of these and
other techniques to estimate MRCs. Our evaluation study
enables a data center administrator to select the technique
most suitable to his (her) specific data center to provision
caches for consolidated applications.

I. INTRODUCTION

Server consolidation via virtualization is gaining ac-

ceptance as the solution to overcome server sprawl

by enabling the replacement of large number of low

utilization servers with a small number of highly utilized

servers. For this model to be successful, virtual machines

(VMs) must be provided the illusion of running as a ded-

icated physical machine: isolated from other machines

and fully protected. Commodity virtualization solutions

enable isolating processing cycles completely and core

memory to a large extent. However, processor caches are

not virtualized. These include on-chip caches (L1 and/or

L2), and off-chip caches (e.g., L3 caches). Improper

management of cache resources can cause unexpected

performance interference in consolidated environments.

For instance, Verma et al. have observed a performance

impact of up to a factor of 4 due to cache-unaware

consolidation for many HPC applications [24]. Koller et

al. extended this observation to enterprise applications

in [12]. Similarly, Lin et al. showed that contention in

a shared cache can lead to a performance degradation

up to 47% [14]. Hence, an accurate characterization of

the amount of cache required for ensuring performance

isolation in a virtualized system is important for the

success of server consolidation.

One of the most popular ways to characterize the

usage of any memory (or cache) resource by an appli-

cation is the classical working set model [6]. The core

of this model is the concept of working set which is

the set of pages accessed by a process in a period of

time. A refinement to this concept is the reuse set which

identifies the set of pages accessed and reused in a period

of time. Notice that the reuse set gives a better idea about

the cache requirements: there is no need to allocate space

for pages that are not reused.

An alternative approach to characterize memory uti-

lization is using miss rate curves (MRC) which has been

widely applied for processor caches. The MRC of an

application models the dependency of the cache miss

rate of the application on the allocated cache size. MRCs

offer an advantage (over the working set) of being able to

model the performance impact of arbitrary sized caches.

MRCs have been derived from the working set using

both analytical techniques [6] as well as an LRU stack

simulator [22], [26].

In a companion paper [13], we propose a unified

model called the Generalized ERSS Tree Model that

comprehensively characterizes working sets across all

phases of an application. The core of the model is a met-

ric called effective reuse set size (ERSS) that accurately

captures the amount of cache required by an application

in a phase to avoid capacity misses. Estimating the cache

requirement for an application would require identifying

all the phases with an ERSS smaller than the largest

processor cache. One can then pick the phase with the

largest ERSS among the selected phases and provision

cache equal to its working set. MRCs, which capture this

behavior for all the phases for an application can be used

to identify the largest cache resident phase to estimate

the amount of cache that needs to be provisioned.

Most existing techniques for identifying phases of

execution or to infer the working set or the MRC of an

application are fairly intrusive, requiring direct access to

the operating system page tables, and/or instrumentation



and recompilation of applications, or binary instrumen-

tation. Techniques that depend on specific hardware

counters are only available on mid range servers (e.g. the

SDAR registers on the POWER6) [22]. However, typical

data centers use commodity hardware and software to

minimize management costs. Furthermore, server con-

solidation engagements are run by data center adminis-

trators with limited access to the hardware, application,

operating system or hypervisor. Consequently, intru-

sive changes are not permissible in such an operating

environment wherein administrators do not even have

kernel level access to individual VM instances. Hence,

a practically usable cache provisioning technique needs

to operate at user level on commodity systems in order

to be viable in a data center.

Paper Contributions.

The first contribution of this work is the creation of

two new techniques for improved estimation of cache

requirements for virtualized workloads. In this regard,

we first improve upon existing OS page-coloring based

approaches by identifying and overcoming a subtle but

real problem of unequal associative cache sets loading

to implement accurate cache allocation. We also design

and implement a CacheGrabber technique to infer the

MRC and an estimate of the cache requirement of

an application at the software level without access to

the application or the operating system. This second

technique can be implemented on commodity hardware

for any application without requiring any hardware, OS,

or application level changes. This technique is valuable

in data centers where applications run as a black box and

application provisioning is done at a middleware level

without direct access to application code or kernel.

The second contribution of this work is a compre-

hensive evaluation of various techniques for estimating

application cache requirement. We discuss their relative

strengths and weaknesses and identify the operating

conditions under which one of the techniques should

be used. We also show that our techniques can be

used to infer MRCs for enterprise applications whose

throughputs vary over time. We show that cache required

for such applications can also be estimated using prior

characterization at different throughput values. Our work

allows server consolidation to be practically employed in

data centers without suffering from performance impact

due to cache contention.

II. RELATED WORK

A. Memory and Cache Usage Models

1) Working Sets: The most popular model for mod-

eling memory resource usage is the classical Working

Set model, made popular by Denning in his seminal

work and refinements [5], [6]. The Working Set model is

based on the concept of resident set, or the set of active

memory pages during an execution window. Once the

resident set for an application is identified, memory or

cache may be allocated to the application accordingly.

2) Miss Rate Curves: A second popular model for

modeling memory or cache usage is the Miss Rate Curve

(MRC) model. This has been a very popular model to

allocate processor caches to applications [20], [22]. A

Miss Rate Curve is composed of multiple points, where

each captures the number of misses for an application for

a fixed amount of memory or cache. The curve captures

the behavior of the application as cache or memory

is varied. The model is built for the lifetime of the

application and provides an aggregate view across all the

phases of an application. MRCs have also been used for

memory allocation by Zhou et al. [26] and Rajkumar

et al. [19] by transforming the processes MRCs into

convex functions (through convex hulls) and then using

a gradient descent algorithm to minimize the sum of

misses for all processes.

3) Phase Hierarchy: The phase behavior of applica-

tions is a third important characteristic of memory or

cache usage of the application. Batson and Madison [4]

define a phase as a maximal interval during which a

given set of segments, each referenced at least once,

remain on top of the LRU stack. A phase transition

indicates that the locality subset has changed, leading

to a fault rate that is 100 to 1000 times higher than

during a phase. They observe that programs have marked

phase behavior and there is little correlation between

locality sets before and after a transition. Another im-

portant observation made by Batson and Madison and

corroborated by others [9], [20] is that phases typically

form a hierarchy.

In a companion work, we present the Generalized

ERSS Tree Model that captures the real cache require-

ment for each phase of the application [13]. The real

cache requirement for an application in each phase is

estimated using a metric called ERSS and the ERSS

of the largest phase is used for provisioning caches. In

this work, we present technique to estimate the MRC of

an application and use it to estimate the ERSS or the

cache required for each phase.

B. Characterization Techniques

There are two popular approaches to infer the Miss

Rate Curve for an application. The first approach creates

the MRC statically by running the application multiple

times, typically in a simulator with different memory

or cache allocations [9], [20], [25]. A second approach



uses a memory trace and a LRU stack simulator [11] to

infer the MRC. MRCs in filesystems can be estimated

using ghost buffers [10], [17]. Estimating the MRC

dynamically for caches is a much more challenging

problem but has been proposed for specific platforms

using fairly intrusive techniques [22], [26].

Detecting phase transitions for taking reconfiguration

actions has been another popular area of research. The

Dynamo system [3] optimizes traces of the program to

generate fragments, stored in a fragment cache, and a

change in the rate of fragment formation increases is

used as an indicator of phase transition. Balasubramo-

nian et al. [18] use the dynamic count of conditional

branches to measure working set changes. Dhodapkar et

al. compute a working set signature and detect a phase

change when the signature changes significantly [7].

Existing mechanisms to infer the memory resource

usage or identify phases operate at the hardware or

operating system level and make intrusive changes. In

our work, we develop new techniques that can infer the

cache usage of an application for various phases at a

user level without requiring any intrusive changes to

the application or the operating system. These user-level

techniques can be easily employed in application staging

environments before deployment.

C. Other Related Work

There have been efforts to estimate the memory usage

of applications at compile time. Malkawi et al. present a

compiler-driven memory management framework, where

memory estimation is also done at compile time [15].

Shared Cache partitioning, both at software and hard-

ware level, has been explored before to demonstrate that

contention can lead to a performance degradation up

to 47% [14]. A popular technique to partition caches

employed by the operating system is page coloring. In

page coloring, different applications are assigned cache-

aligned memory to ensure that they can use only a fixed

number of cache segments [14]. We employ similar ideas

at the application level for cache partitioning and use it

to derive the MRC for the application.

III. FRAMEWORK TO INFER MRCS AND CACHE

REQUIREMENT

We first discuss various alternative approaches to infer

the cache usage of an application. We later use insights

from these approaches to explore new techniques that

are faster and applicable on commodity systems.

A. Cache Simulator Approach

Cache simulators can be used to build the MRCs for

an application and use the MRCs to estimate the cache

requirement for the application. Popular cache simulators

like Valgrind [16] capture various aspects of the cache

(e.g., eviction policy, associativity) and provide detailed

cache statistics like hit and miss rate. In order to build

the MRC, one can run the simulator with various cache

sizes and use the corresponding miss rates to compute

the MRC. Once the MRC is created, we can identify

the phases that fit in the actual processor cache and

pick the phase with the largest cache requirement. In

a consolidated server environment, the estimates for all

the virtual machines placed on the server can be used to

estimate the amount of cache required on the physical

server to ensure that application performance is not

impacted post consolidation.

B. Full System Simulator Approach

Full System Simulators provide a similar and more

accurate approach to estimate the cache requirement for

an application. In this approach, we use a full system

simulator configured with minimal amount of cache. The

application is run on the simulator and all main memory

accesses are tracked to obtain a memory trace. Once the

memory trace is available, it is fed to an LRU cache

simulator. We can obtain the MRC by changing the size

of the simulated cache and use it to estimate the cache

requirement for the application.

C. PMU Sampling approach

A third technique to estimate the cache requirement is

to sample Performance Monitoring Units (PMU) and ob-

tain memory traces from these samples. RapidMRC is a

technique to dynamically create the miss-rate-curves for

an application and is used for online optimizations [22].

The key idea behind RapidMRC is to use data sampling

features available in the performance monitoring units

(PMUs) of some modern servers (e.g., Sampled Data Ad-

dress Register (SDAR) in IBM Power5, IBM Power6).

D. Need for a New Approach

All the existing techniques are based on enforcing

resource limited execution for caches. To elaborate, the

techniques use either a full fledged cache simulator (e.g.,

Valgrind) or obtain a memory trace and feed it through

an LRU stack simulator. In either case, the goal is to

ensure that the application has only a fixed amount of

cache available for its use. Multiple runs of the simulator

with varied amount of resource limit provides us the

behavior of the application with varying sizes of cache

or the MRC of the application.

Any technique that is based on simulation suffers

from the problem of speed (accurate simulators are very

slow) and accuracy. Further, typical simulators do not
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Fig. 1: The first array is the address line as interpreted for cache
line translation in a 2MB cache (4-way associative cache with
4K cache sets and a cache line of 128 bytes). The second
array is the address line as interpreted for translating 1KB

size pages. We restrict the number of cache sets used by the
application by generating only even-numbered pages.

provide an easy way to characterize multi-component

applications. We will also show that simulation based

approaches suffer from a phenomenon called Unequal

Associative Cache Sets Loading that impacts the accu-

racy of the MRC obtained. PMU based techniques solve

the problem of speed but are feasible only on a select set

of hardware and suffer from the problem of accuracy.

IV. RESOURCE LIMITED EXECUTION FOR CACHES

Hardware-based cache partitioning can be achieved

through cache partitioning in simultaneous multi-

threaded (SMT) processors [8], [23]. Software partition-

ing techniques often employ page coloring. State of the

art implementations of the above techniques are typically

not currently available on commodity systems and imple-

menting them is intrusive. In fact, static partitioning of

cache resources using SMT (e.g., SMT implementations

of IBM POWER5 and Intel Pentium4) was the only

technique available in our hardware and kernel. Hence,

we implement basic versions of cache reservation that

can be driven flexibly.

In this work, we explore two different software-

based techniques for cache limited execution which

have different levels of intrusiveness: (i) utilizing cache

associativity properties and page coloring [14], [21],

and (ii) a CacheGrabber probe designed to continuously

consume cache lines. We implemented these methods on

the POWER6 processor and discuss the details of each

below.

A. Associativity-based Partitioning

Page coloring has been traditionally used to partition

CPU caches within the operating system. We use a

similar idea to statically restrict the cache available to an

application at compile time. Caches in modern systems

are designed to be N-way set associative, i.e., a memory

line can only be loaded into a set of N available cache

lines. The set to which a page is mapped is determined

based on a portion of address bits called the index (bits

13 to 24 in POWER6). Partitioning the cache for a

specific application can be achieved by controlling this

index for all the pages allocated to an application. For
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Fig. 2: Sets from the 4MB associative cache are not loaded
equally due to fragmentation and associativity. malloc is the
regular malloc and cmalloc allocates contiguous physical
memory.

instance, allocating pages physically aligned to exactly

double the size of a page can effectively halve the

number of cache lines available to an application. As

shown in Figure 1, this will ensure that bit 21 of physical

memory address references issued by the application will

always get value 0. Pinning a bit of the index to 0 ensures

that the index can no longer take all the 4K values,

reducing the available cache sets to 2K only (using the

other 11 bits). This directly leads to the application using

at most 1MB of the available 2MB cache.

While the page-coloring based technique is seem-

ingly straightforward, some subtleties introduce addi-

tional complexity. Most CPU caches are addressed phys-

ically. Therefore, to have control over the index, the

memory allocator must have control over physical frame

allocation. Moreover, partitioning by controlling index

bits in the physical address is necessary but not sufficient

to create an equally capable subset cache. Particularly,

the lines allocated might not be mapped into the per-

tinent sets of an N-way associate cache with the same

probability leading to wasted space because some sets

of the subset cache are full while others have free lines.

We call this problem unequal associative cache sets

loading which we validated empirically. Figure 2 shows

an application’s performance change as its working-

set changes on a processor with cache 4MB (the solid

malloc line). Performance degrades even when the cache

requirement of the application is 3MB, indicating that the

application is unable to use the full 4MB.

The above problem can be addressed by first allocat-

ing frames contiguously in physical memory and then

allocating pages from this physically contiguous space.

We implemented a user-level allocator (cmalloc) that

allocates memory from a ramdisk using mmap. The

new allocator allocates memory from a contiguous space

ensuring that all the cache lines of the subset cache are

equal candidates for loading physical frames allocated

to the application. As shown in Figure ??, the cmalloc

version of the memory allocator leads to an accurately

partitioned subset cache of size 4MB.
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Fig. 3: CPI of application Vs Probe size. The profiled appli-
cation uses 2 MB of L2 cache.

B. CacheGrabber: A Cache Partitioning Probe

We now present CacheGrabber, a probe that “grabs” a

user-specified cache space, called the probe size, ensur-

ing that the application(s) under study can access only

the remaining amount of cache. CacheGrabber creates

a vector of the required size and continuously accesses

its elements. We increase the size of the vector till we

observe a performance drop for both the probe and the

application, indicating full utilization of the cache, and

use it to infer the cache requirement of the application

under study. We can compute the MRC of an application

by varying the size of the vector and monitoring the

corresponding impact on the hit and miss rate of the

application.

The key to CacheGrabber is to ensure that the cache

lines used by the probe should never be used by the ap-

plication under study. Since cache replacement policies

are variants of LRU, the above requirement can be met

by touching the data set of the probe at a faster rate

than any other application in the system. In other words,

this would ensure that the vector used by the probe

would always be resident in cache. In order to ensure a

really high reuse rate for the probe, we used the DCBT

(Data Cache Block Touch) instruction present in the

PowerPC processors (POWER6 in this case). This

instruction is available on most platforms and is typically

used for prefetching – touch a line before it is going

to be used so it can be loaded into the cache without

incurring the cache latency. The DCBT instruction is

non-blocking and hence the probe does not incur any

access latencies (L1 or L2). With the above design,

CacheGrabber is able to achieve a CPI of 1.4, leading

to a very high reuse rate (i.e. 1 cache access every 1.4

cycles).

We study the partitioning ability of CacheGrabber in

Figure 3, where we examine the number of cache misses

for an application under study as the size of the probe is

reduced. The application has an ERSS of 2MB and

we observe a drastic drop in the performance of the

application with a probe of size 2MB that uses cmalloc.

Further, there is no drop in performance with probe sizes

smaller than 2MB. This allows us to correctly validate

that the application under study has a L2 resident phase

with a 2MB ERSS. We also observe that even if the

probe does not use cmalloc, it is able to infer an ERSS

of 2.1MB, which is very close to the actual ERSS

value. The probe using cmalloc allows it to effectively

use the 2MB and no less (as shown in Figure 2). This

implementation is non-intrusive, completely general, can

be deployed easily in production environment and has

good accuracy.

Cache partitioning techniques make an implicit as-

sumption that the context switches between applications

are reasonably frequent. If there is a significant delay

between context switches, one application may drive

out popular data for all other applications from the

cache. In our experiments, we observed that the context

switches were fairly quick and the applications used

only the required cache. It is interesting to note that

simulator based approaches do not take into account

context switch times. Hence, even if a hypervisor allows

large scheduling slots, a simulator based approach would

compute the same MRC. However, CacheGrabber has

the advantage of running on the real hardware and its

estimates would be impacted accordingly. This ability

of CacheGrabber to run in a real environment enables

it to capture all such operating factors and accurately

estimate the MRC for an application.

V. EXPERIMENTAL VALIDATION

We performed a large number of experiments to

evaluate how well the various techniques can identify

the cache usage of real applications. We first describe

the experimental setup used in our experiments.

A. Experimental Setup

We used the NAS Parallel Benchmark [1] to evaluate

the efficacy of various cache partitioning techniques. We

identified a set of applications from the benchmark that

capture the spectrum of applications from small footprint

to large footprint applications. We used the NPB 3 Serial

version in out study. Some of the larger workload sizes

of the benchmark took an inordinately long time to

complete on the simulators and hence, we used the Class

W workload size in our study.

We evaluate a suite of techniques on their ability

to infer the cache resident working set sizes. Some

of these techniques are implemented on real hardware

and some use a simulator. We use the QEMU simula-

tor [2] for obtaining memory traces using full system

simulation. We used the open source Valgrind simulator

[16] as representative of cache simulators. To evaluate
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Fig. 4: MRCs for the benchmarks using the different techniques

the CacheGrabber and RapidMRC techniques, we im-

plemented them on an IBM Power6 JS22 Bladecenter

cluster. A blade in the cluster has 8GB RAM, 4MB of

L2 cache and 4 IBM Power6 4.2GHz processors. Each

LPAR (VM) was entitled to 2GB RAM and 2 physical

processors for our experiments.

We evaluated the following 5 techniques in our

study. The techniques include QEMU-based full system

simulation memory trace driven simulation using LRU

(FSS-LRU) and Valgrind (FSS-VG), RapidMRC gener-

ated Power6 processor memory traces fed to Valgrind

(RapidMRC), the CacheGrabber (CacheGrabber) tech-

nique, and the Valgrind (Valgrind) simulator directly. We

could not use the associativity-based technique due to

lack of malloc primitive in the Fortran-based applica-

tions, indicating a portability limitation.

B. Comparative Evaluation

In order to compare the various cache partitioning

strategies, we implemented all of them and obtained the

MRCs of the NAS applications using them.

Figure 4 captures the MRCs using the different

strategies. The first observation we make is that the

CacheGrabber technique can plot the MRC only for the

real range of the cache. This is a direct consequence of

the fact that it operates on the real hardware. Further,

the resolution of the CacheGrabber technique is 512K,

which is the granularity at which the probe size is varied.

The resolution of the Valgrind cache-simulation tech-

niques are limited to power of two values of cache

size. This does not impact small sized caches where

the granularity is good. However, as the cache sizes

increase, it is unable to provide a fine resolution MRC.

To take an example, the technique does not provide any

estimates between 2MB and 4MB cache sizes. Hence,

cache simulation is useful for L1 caches but not very

useful for larger caches (L2 or L3).

We also observe that the MRCs from various tech-

niques are not vertically aligned. This is a direct conse-

quence of the fact that the simulation-based techniques

are oblivious of prefetching and provide a higher esti-

mate of misses (all prefetched data is also accounted

as misses). On the other hand, PMU-based technique

(e.g., RapidMRC) provides a lower estimate of the

misses as it is sampling-based. CacheGrabber is the only

technique that is based on real runs and provides an

accurate estimate of the misses. However, an estimate

of the misses is not necessarily required for estimating

the cache required for an application in a phase. This

estimate can be obtained using a change in the number

of misses (or slope of the MRC curve).

The MRC for ua application is a good example to

study the relative strengths and weaknesses of individual

techniques. There are few dominant phases at 100KB,

1.4MB and 9MB and a few less prominent phases.

The CacheGrabber technique has a valid range between

0.5MB to 4MB and is able to clearly identify the phase



App FSS-LRU RapidMRC CacheGrabber

bt 770K, 4.1M 1M 500K,1M,1.5M
cg 610K, 7.25M 512K 1M, 4M
ep 425K, 2.2M 512K 1M, 2.5M
ft 145K, 9M 512K None
is 390K, 4.5M 512K 1MB
lu 530K, 7.25M 1M 1.5M
mg 580K,4.8M,5.8M,7.8M 512K 500K, 1M
sp 153K,2.1M,2.5M,3.9M 512K 1.5M, 2.5M
ua 1.4M, 2.4M, 9M 1M 1.5M, 2M

Fig. 5: Required Cache Estimates for the NAS benchmark with
different techniques. RapidMRC and CacheGrabber run on real
system with 4MB cache.

at 1.4MB (as 1.5MB) as well as the less prominent

phases in this range. The Valgrind based technique is

able to identify the smallest phase but unable to identify

any of the larger phases because of its granularity issues.

The Full System Simulator based approaches are able to

identify the 2 larger phases but does not identify the less

prominent phases. The RapidMRC technique works at a

coarse resolution due to sampling and does not identify

many phases.

We next report an estimate of the cache required for

the dominant phases of the applications in Figure 5 using

different techniques for cache limited execution. We

note that the cache requirement for dominant phases

are usually found by all techniques. The RapidMRC

technique does not find large phases well due to sam-

pling, while the CacheGrabber techniques is unable to

identify small phases. CacheGrabber requires the probe

to have a reuse rate greater than the reuse rate of the

application being profiled. Since phases with very small

cache requirement (relative to cache size) tend to have a

high reuse rate, CacheGrabber may fail to identify them.

While not explored in this work, this can potentially be

addressed by running multiple instances of CacheGrab-

ber simultaneously to ensure sufficient CPU time for

achieving the necessary combined reuse rate relative

to the profiled application. However, CacheGrabber is

very effective in identifying phases in the range between

0.5MB and the size of the cache.

CacheGrabber also has the advantage of very fast

modeling time as the MRC is built using few runs (8

in our experiments) in real time. On the other hand,

the simulator based approaches suffer a slowdown by a

factor upto 100. RapidMRC suffers from a slowdown

of 30% but does not produce fine-grained MRC due

to sampling issues. Associativity-based technique can

also built MRCs quickly but may not be feasible due

to porting issues. Hence, our recommended profiling

strategy is to use CacheGrabber to identify large phases,

and then use either the cache simulator or the Full

System Simulator based technique to identify smaller

phases. Since smaller phases may also be short-lived, the

Technique Accuracy Intrusiveness Overhead

Associativity V. high re-compilation none
kernel module

CacheGrabber High none spare CPU

RapidMRC Medium Access to 1.3x
HW counters

Full System Medium none 10 to 100x
Simulator

Cache Simul. Medium none 30 to 100x

TABLE I: Comparison of Cache Limited Execution Tech-
niques
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Fig. 6: MRCs for RUBiS at multiple throughput

simulator may be run only for a small part in the lifetime

of the application. This would also help overcome the

speed issues with this approach and provide an accurate

estimation of the cache requirement for an application.

C. MRCs for Enterprise Applications

We have presented methods to estimate the MRC

and cache requirement for batch scientific applications.

However, a large variety of enterprise applications do

not process batch requests. Instead, the applications are

request-driven, where the overall throughput or request

rate of the application varies with time. We now in-

vestigate if it is possible to estimate an MRC for such

applications efficiently. Figure 6 capture the MRCs for

Rice University Bidding System (RuBIS), a system that

models e-bay. The application has a web-based front

end where users can submit requests and a database to

store the details about the items. We estimated the L2 hit

and miss rates for the application at different throughput

values and use them to plot the MRC.

We observe that the MRCs of an application retain the

same nature with change in throughput. We do see that

the actual number of misses may vary with throughput

but the cache requirement of the applications does not

change with time. This is a direct consequence of the fact

that the throughput only impacts the amount of disk data

that is streamed by the application. The streaming data is

too large to be cached by processor caches. The working

set cached in processor caches is typical the local state

maintained by worker threads, which is constant for a

given request type (e.g., browsing request type). Hence,



the amount of cache required by the application does

not change with increase or decrease in the number of

requests. Hence, our techniques can be used to estimate

the cache required by enterprise applications as well.

D. Hybrid Strategy

We summarize the relative merits of all the techniques

in Table I. The associativity-based technique, if applica-

ble, is very accurate with no overheads. RapidMRC and

simulator-based techniques, if feasible on the platform

and application under study, are ideally suited to identify

small-sized phases as the overhead for smaller phases

may be acceptable. CacheGrabber is probably the most

flexible technique and works well for provisioning L2

caches. However, it can not identify very small phases

and is not usable for L1 caches. Hence, we propose a

hybrid strategy for fine-grained estimation of the cache

requirement for all phases of an application. We recom-

mend using CacheGrabber to identify coarse phases that

are L2 resident, and then use one of the other approaches

to identify fine-grained phases within the larger phases.

Since the smaller phases are embedded in a larger phase,

simulators can choose to only execute specific portions

of the application, instead of the entire application. Thus,

the hybrid strategy can identify phases for all levels of

cache in an efficient manner.

VI. CONCLUSION

We have presented two new techniques to estimate the

MRC and the cache requirement for an application. In

order to design the techniques, we overcome significant

challenges to accurate memory characterization such as

unequal associate cache sets loading. Our first tech-

nique is based on page coloring and cleanly partitions

cache for an application. However, the technique requires

changes in memory allocation primitive (e.g., malloc in

C applications). Our second technique CacheGrabber

works at user level and operates on commodity hardware

and software with no changes. We evaluate a variety

of cache partitioning techniques which make different

trade-offs along accuracy, flexibility, and intrusiveness

dimensions. We distill our experimental study to recom-

mend a hybrid technique that leverages the strengths of

various techniques to identify the cache requirement for

all the phases of an application. Finally, our observations

on unequal associate cache sets loading could be of

independent interest as well as aid in understanding

classical memory resource usage models.

REFERENCES

[1] National Aeronautics and Space Administra-
tion. NAS parallel benchmark. Online,
http://www.nas.nasa.gov/Resources/Software/npb.html.

[2] Fabrice B. Qemu, a fast and portable dynamic translator. In Proc.

of the USENIX Annual Technical Conference, April 2005.
[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent

dynamic optimization system. In ACM SIGPLAN, 2000.
[4] A. P. Batson and A. W. Madison. Measurements of major

locality phases in symbolic reference strings. In Proc. of ACM

SIGMETRICS, 1976.
[5] P. J. Denning. The working set model for program behavior. In

Communications of the ACM, 1968.
[6] P. J. Denning. Working sets past and present. In IEEE Tran. on

Software Engineerng, 1980.
[7] A. S. Dhodapkar and J. E. Smith. Managing multi-configuration

hardware via dynamic working set analysis. In Proc. of ISCA,
2002.

[8] A. El-Moursy, R. Garg, D. H. Albonesi, and S. Dwarkadas.
Partitioning multi-threaded processors with a large number of
threads. In Proc. of ISPASS, 2005.

[9] M. Karlsson and P. Stenstrom. An analytical model of the
working-set sizes in decision-support systems. In Proc. of ACM

SIGMETRICS, 2000.
[10] J. Kim, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim.

A low-overhead high-performance unified buffer management
scheme that exploits sequential and looping references. In Proc.

of USENIX OSDI, 2000.
[11] Y. Kim, M. Hill, and D. Wood. Implementing stack simulation

for highlyassociative memories. In Proc. of ACM SIGMETRICS,
1991.

[12] R. Koller, A. Verma, and A. Neogi. Wattapp: An application
aware power meter for shared data centers. In Proc. of IEEE

ICAC, 2010.
[13] R. Koller, A. Verma, and R. Rangaswami. Generalized erss tree

model: Revisiting working sets. In Proc. of IFIP Performance,
2010.

[14] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan.
Gaining insights into multicore cache partitioning: Bridging the
gap between simulation and real systems. In HPCA, 2008.

[15] M. Malkawi and J. Patel. Compiler directed memory manage-
ment policy for numerical programs. In Proc. of ACM SOSP,
1985.

[16] Open Source. Valgrind. Online, http://valgrind.org/.
[17] R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka.

Informed prefetching and caching. In SOSP, 1995.
[18] A. Buyuktosunoglu R. Balasubramonian, D. Albonesi and

S. Dwarkadas. Memory hierarchy reconfiguration for energy and
performance in general purpose architectures. In IEEE MICRO,
2000.

[19] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek.
Practical solutions for qos-based resource allocation problems.
In Proc. of IEEE Real-Time Systems Symposium, 1998.

[20] E. Rothberg, J. P. Singh, and A. Gupta. Working sets, cache
sizes and node granularity issues for large-scale multiprocessors.
In Proc. of ISCA, 1993.

[21] L. Soares, D. Tam, and M. Stumm. Reducing the harmful
effects of last-level cache polluters with an os-level, software-
only pollute buffer. In IEEE MICRO, 2008.

[22] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm. Rapidmrc:
Approximating l2 miss rate curves on commodity systems for
online optimizations. In Proc. of ACM ASPLOS, 2009.

[23] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithreading:
maximizing on-chip parallelism. In Proc. of ISCA, 1995.

[24] A. Verma, P. Ahuja, and A. Neogi. Power-aware dynamic
placement of hpc applications. In Proc. of ACM ICS, 2008.

[25] S. Woo, M. Ohara, E. Torrie, J.P.Singh, and A. Gupta. Method-
ological considerations and characterization of the splash-2 par-
allel application suite. In Proc. of ISCA, 1996.

[26] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou,
and S. Kumar. Dynamic tracking of page miss ratio curve for
memory management. In Proc. of ACM ASPLOS, 2004.


