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Every man has the power to choose, but no power to escape the necessity of choice. – Ayn Rand

Abstract
We introduce the concept of Avatar problems that deal with situations where each entity has
multiple copies or “avatars” and the solutions are constrained to use exactly one of the avatars.
The resulting set of problems show a surprising range of hardness characteristics and elicit a
variety of algorithmic solutions. Many avatar problems are considered. In particular, we show
how to extend the concept of ε-kernels to find approximation algorithms for geometric avatar
problems. Results for metric space graph avatar problems are also presented.
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1 Introduction

We introduce a family of optimization problems which we call Avatar problems. The main
feature of this family of problems is that their input entities have multiple replicas (or copies,
or avatars), but their output is constrained to use exactly one of the copies. Avatar problems
manifest themselves in many practical applications. For example, if disk storage systems
have multiple copies of data items, then disk scheduling algorithms may process requests
by visiting any one of the copies of each requested data to optimize the total access cost.
Given any optimization (or decision) problem, its avatar version is required to achieve the
same optimization (or decision) over all possible instances where each instance is created by
assigning each element ai to exactly one of k possible values. In this paper we investigate
the complexity of avatar versions of classical algorithmic problems.

Avatar versions of NP-hard problems are easily shown to be NP-hard. However, designing
good approximation algorithms often requires the solution of other avatar problems (e.g.,
avatar TSP can be well approximated by approximating avatar MST or avatar matching).
This suggests the need for solving a family of avatar problems, over and beyond those with
direct relevance to practical applications.

Related problems include generalized MST (MST spanning at least one vertex from each
given set) [20], group TSP (minimum length tour visiting at least one vertex from each
given group) [9], and TSP with neighborhoods (minimum length tour that visits each given
neighborhood) [8,22], all of which are NP-hard, even in Euclidean space. A closely related
model is the indecisive (uncertain) points model [16], where input points have spatial uncer-
tainty, but their true locations are known to be from a set of (possibly infinite) possibilities.
Jørgensen et al. [16] suggest many applications for their model; these are applicable to the
avatar model as well. For example, privacy considerations may prevent a database from
storing the precise location of a person with a certain illness, but may provide a zip code;
sensors may have limited accuracy and may provide approximate location data. A major
difference with the avatar model is that in the uncertainty model, the power of choice lies
with an adversary. Also see [5, 10–12,14,19,21].
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The concept of switching graphs [15, 18] introduces another related model. In the area
of scheduling, a related problem is the job interval selection problem (JISP) [7]. In this
problem the input is a set of n jobs assigned to a worker. Each job is a set of one or more
intervals on the real line, and we must select one interval for each job such that we schedule
as many jobs as possible by picking non-overlapping intervals. In the k-avatar version of
JISP each job is a set of at most k intervals. Avatar problems share some overlap with
the area of parameterized complexity. The study of the complexity of a k-avatar problem
as k goes from 1 to ∞ provides better understanding of the complexity landscape of the
problem.
Results

The main results are summarized here, and is indicative of how “choice” affects the
complexity of these problems in different ways.
1. In Section 2, we tackle two seemingly simple problems, minGap and maxGap, where

the avatar versions result in natural optimization problems. We design a O(n2 logn)-
time algorithm for the 2-avatar maximum minGap problem for inputs in Rd, and a
2-approximation O(n3 · k3 log(nk))-time algorithm for the k-avatar minimum maxGap
problem for points on a line.

2. In Section 3, we extend the concept of ε-kernels to the avatar world and show how
to compute it efficiently for a k-avatar point set in Rd. This enabled us to design a
polynomial-time algorithm for finding an ε-approximate smallest convex hull for the k-
avatar convex hull problem in Rd. The ε-kernel result was also used to design polynomial-
time (1 + ε)-approximation algorithms for the avatar versions of the following geometric
problems: smallest volume axis-aligned enclosing hyperbox.

3. Reachability is a fundamental problem with linear-time algorithms for non-avatar inputs.
Surprisingly, we show in Section 4 that for unweighted graphs, the k-avatar reachability
problem is NP-complete. For weighted graphs, we show that the k-avatar shortest path
problem is inapproximable to any constant factor unless P = NP .

We establish some basic notation for this paper. Let L = {a1, a2, . . . , an} be a set of n
k-avatar entities. In other words, for each entity ai ∈ L, one can assign ai to one of the k
avatar values from the set Av(ai) = {v(1)

i , v
(2)
i , . . . , v

(k)
i }. An avatar assignment for entities

in L, denoted by A(·), is an assignment of a single avatar value to each entity in L. Thus,
A(ai) ∈ Av(ai). Let A(L) denote the set of values assigned to each element in L.

2 Avatar Minimum and Maximum Gaps

Given a set of points {x1, . . . , xn} on a line, we define the minGap (resp. maxGap) as the
smallest (resp. largest) gap between consecutive items in the sorted order. The avatar ver-
sion of the maximum minGap and minimum maxGap problems is: Given a set of n k-avatar
entities, find an avatar assignment that results in the maximum minGap (resp. minimum
maxGap). More formally, we are given a set of k-avatar entities L = {a1, a2, . . . , an}, where
each entity ai can be assigned one of k values from the set {v(1)

i , v
(2)
i , . . . , v

(k)
i }.

2.1 Avatar Maximum minGap
We present a polynomial-time algorithm for the 2-avatar version of maximum minGap prob-
lem. It is clear that the minGap must be between a pair of points from the set of all avatar
values,

⋃
ai∈LAv(ai) = {v(1)

1 , . . . , v
(k)
1 , v

(1)
2 , . . . , v

(k)
2 , . . . , v

(1)
n , . . . , v

(k)
n }. We first solve the

decision problem of determining if there exists an avatar assignment so that the minGap is
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at least B; this is achieved by giving a polynomial-time reduction to 2SAT. The construction
creates two complementary boolean variables, xi and ¬xi, to represent the two avatars of
entity ai. For every pair of values that are not avatars of each other and that have a distance
of at most B, a clause is created to ensure that the corresponding boolean variables are not
simultaneously set to true; a conjunction of these clauses generates an instance of 2SAT.
It is easily shown that the resulting 2SAT formula is satisfiable if and only if the original
2-Avatar Maximum minGap problem has a minGap that is no smaller than B. Given the
linear time algorithm for 2SAT [3], it is not difficult to see that the above algorithm takes
O(n2) time, and that the maximum minGap can be found in O(n2 logn) time by doing a
binary search on the sorted list of all interpoint distances.

The above reduction to 2SAT for the 2-avatar minGap problem readily generalizes to
the case where the entity values are points in d-dimensional space. However, the k-avatar
minGap problem is NP-complete, and can be proved by a trivial adaptation of the proof of
NP-Completeness of the problem of finding a System of q-Distant Representatives proved
by Fiala et al. [13].

I Theorem 1. The 2-avatar maximum minGap problem for n points in Rd can be solved in
O(n2 logn) time. The corresponding k-avatar problem for k > 2 is NP-hard.

2.2 Avatar Minimum maxGap
The avatar minimum maxGap problem appears to be harder than the avatar maximum
minGap problem. While an exact polynomial time algorithm for the minimum maxGap
problem remains open, below we present an approximation algorithm for the k-avatar min-
imum maxGap problem for points on a line.

Let B∗ be the length of the minimum MaxGap, where the minimum is over all possi-
ble avatar assignments. We will perform binary search on the sorted list of all interpoint
distances in order to find good lower and upper bounds Blow and Bupp for B∗ such that
Blow ≤ B∗ ≤ Bupp. Establishing bounds for the ratio between the lower and upper bounds
gives an approximation for B∗. A sorted list of interpoint distances can be computed in
O(n2k2 lognk). For a given value of B during this binary search we need to solve the deci-
sion problem of determining if there exists an avatar assignment so that the maxGap is at
most B. The algorithm described below will give an approximate solution to this decision
problem in the following sense. If the algorithm says “NO”, then maxGap is greater than
B. If the algorithm says “YES”, then the maxGap is at most 2B.

Let V denote the set of kn avatar values mapped on to the real line. Any avatar
assignment is a subset of n points from V . A partition of the line into infinite number
of disjoint abutting cells each of size B (see Fig. 1) is called a valid partition if there exists
an avatar assignment such that all the points in the assignment are contained in a sequence
of consecutive non-empty cells. Therefore, it follows that if there exists an avatar assignment
for L such that the resulting point set has maxGap at most B then every partition of the
line into infinite cells of size B is valid. The consequence is that if there is any partition of
the line into infinite cells of size B that is not valid, then we know for sure that the maxGap
for every assignment is greater than B. The difficulty is that the converse need not be true.
Even though the assigned values appear in a sequence of consecutive cells, the maxGap
could be between two items in adjacent cells that are nearly 2B apart, a key observation
that leads to a 2-approximate algorithm. For example, in Fig. 1, v2

6 and v2
5 are in adjacent

cells (of the partition with vertical dotted lines) but are almost 2B apart.
Given B, a fixed infinite partition of the line into cells of size B, and a fixed sequence
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Figure 1 Two different infinite partitions of the line are shown. The partition with dotted vertical
lines is valid, while the partition with solid vertical lines is not valid. The valid partition is achieved
by an avatar assignment that picks all choices with superscript 2.

of consecutive cells, we check if that partition is valid for some avatar assignment of L by
a reduction to Network Flow. Briefly, we construct a bipartite network where one partition
P has vertices corresponding to entities ai ∈ L and the other partition Q has vertices
corresponding to cells of the partition. There is an edge from a vertex p ∈ P to a vertex
q ∈ Q if the entity corresponding to p has an avatar in the cell corresponding to q. Finally,
the reduction involves showing that the network has a flow of n if and only if the partition is
valid. For lack of space, details of the algorithm are omitted from this draft. As mentioned
above, we perform binary search on the sorted list of interpoint distances until we find two
adjacent gaps Bi−1 and Bi in the list of gaps such that

1. Bi−1 ≤ Bi,

2. the algorithm returns NO for all partitions into cells of length Bi−1, and

3. Returns YES for at least one partition into cells of length Bi.
Thus, Bi−1 < B∗. Since the smallest possible gap attainable that is larger than Bi−1 is
Bi, we have Bi ≤ B∗. Also, since we have a partition into cells of length Bi for which we
can find an avatar assignment where all the chosen points are in a set of adjacent cells such
that each cell in that set contains a chosen point, we can use that avatar assignment to
produce an assignment with a maximum gap that is no larger than 2 · Bi. Hence we have
that Bi ≤ B∗ ≤ 2 · Bi. This gives us a polynomial-time 2-approximation algorithm for the
1D k-avatar minimum maxGap problem. The hardness of the avatar minimum maxGap for
points in Rd remains open, even for d = 1.

I Theorem 2. The k-avatar minimum maxGap problem for points on a line has a 2-
approximate algorithm that runs in O(n3 · k3 log(nk)) time.

3 Avatar Convex Hulls

Let L be a set of k-avatar entities where each entity can be assigned one of k different
points in d-dimensional space. A k-avatar convex hull of L is a minimal convex set that
contains at least one avatar for each entity a ∈ L. The aim is to minimize a specific
measure such as the perimeter, surface area, or volume. The computational complexity
of the problem of computing the avatar minimum convex hull remains an open problem.
Related work includes results on the minimum and maximum convex hull for a set of points
with imprecise locations [17, 23], and a recent paper by Abdullah et al. [1] for the model of
uncertain points.

A smallest avatar convex hull is a convex hull that has minimum perimeter over all
possible avatar assignments. Using the concept of ε-kernels, we present an algorithm that
finds an ε-approximate smallest avatar convex hull for the k-avatar convex hull problem in
Rd. The results can be extended to minimum area/volume convex hulls.
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3.1 Approximate Avatar Convex Hulls
For any point set X ⊂ Rd, let ω(u,X) denote the directional width of X in direction u

(see Fig. 2 (a)). A subset Q ⊆ P is called an ε-approximation of P if for any direction
u ∈ Sd−1 we have (1 − ε)ω(u, P ) ≤ ω(u,Q) ≤ (1 + ε)ω(u, P ). Our proposed algorithm
finds an ε-approximate smallest convex hull CH(Q) by returning a set of avatar points
Q ⊆ A′(L) for some avatar assignment A′(L) such that (1−ε)ω(u, CH∗(L)) ≤ ω(u, CH(Q)) ≤
(1 + ε)ω(u, CH∗(L)), where CH∗(L) is the minimum avatar convex hull of L. Using the
terminology of Agarwal et al. [2], one can think of the set Q as the avatar equivalent of an
ε-kernel. This is formalized in the following definition of an avatar ε-kernel whose width
along any direction is within a 1 − ε factor of the width of the optimal hull along that
direction.

I Definition 3. Given a set L of n k-avatar entities in Rd, we say that a point set Q is an
avatar ε-kernel of L if and only if (1−ε)ω(u, CH∗(L)) ≤ ω(u,Q) ≤ (1+ε)ω(u, CH∗(L)),∀u ∈
Sd−1, where Sd−1 is the unit hypersphere centered at the origin.
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Figure 2 (a) Directional Width (b) ε-grid Z

The following procedure for finding a diameter-oriented bounding box B of a set S of
points in Rd was described by Barequet and Har-Peled [4]. Let D(S) be the diameter of
S and let s1, t1 ∈ S s.t. |s1t1| = D(S). Let H be a hyperplane perpendicular to s1t1 and
let Q be the orthogonal projection of S onto H. We again compute two points s2, t2 ∈ Q
s.t. |s2t2| = D(Q). Once again we project Q onto a hyperplane H ′ perpendicular to s1t1
and s2t2 and determine the diameter D(Q′) of the projection Q onto H ′ and select two
more points s3, t3 ∈ Q′ s.t. |s3t3| = D(Q′). After d iterations of this process we have a
diameter-oriented bounding box B(S) of S with the diameter in each iteration determined
by the direction from si to ti, for i = 1, 2, . . . , d− 1.

Note that CH∗ must cover a set S of 2 · d avatar points of an avatar assignment such
that the diameter-oriented bounding box B(S) is exactly the same as the diameter-oriented
bounding box B(CH∗). See Algorithm 1 for the pseudocode for the following procedure.
We pick all possible subsets of 2 · d avatar points of L, of which there are

(
n·k
2·d
)
. For each

such subset Si, we first check that no two points in Si are in the same avatar set, then we
find the diameter-oriented bounding box Bi = B(Si). If every entity in L has an avatar
point inside Bi then it is possible that Bi = B(CH∗), otherwise we can discard Bi. We find
an ε-approximate minimum avatar convex hull CHi of all the points inside Bi and output
the smallest one, which we refer to as CHmin. Since B(CH∗) = Bi for some i, CHmin will
ε-approximate CH∗. The following lemma from [2] is useful for this proof. We say that a
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point set is α-fat if its convex hull (a) is contained in a hypercube H and (b) contains a
copy of H sharing the same center as H, but shrunk by a factor α < 1.

I Lemma 4. [2] For any point set P with non-zero volume in Rd there exists an affine
transform M s.t. M(P ) is an α-fat point set (for some α <) where the hypercube C =
[−1,+1]d is the smallest enclosing box of M(P ) and s.t. a subset Q ⊆ P is an ε-kernel of
P iff M(Q) is an ε-kernel of M(P ).
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Figure 3 Affine transform of space inside diameter-oriented bounding box of 2 · d points.

Algorithm 1 Computing ε-approximate smallest
avatar convex hull
Require: L: set of n k-avatar entities; µ: a measure func-
tion of the size of the perimeter of a convex hull, T (.) affine
transform procedure
let CHmin = null
let S be the set of all possible sets of 2d avatar points of L.

for Si ∈ S do
if no two points in Si are avatars of each other then

let B(Si) be the diameter-oriented bounding box
let Bi be the set of all avatar points inside B(Si) such
that every entity is represented in Bi
let CHi be the ε-approximate smallest avatar convex
hull of T (Bi) computed by Algorithm 2
CHmin = Min(CHmin, CHi)

end if
end for
return CHmin

It is known that for
a diameter-oriented bound-
ing box B with largest side
D, if we appropriately ex-
pand or contract the box
along each direction un-
til it becomes a hypercube
of side D and scale it to
the hypercube C, then the
transformed point set is an
α-fat point set (for some
α <) in C [4]. This
is illustrated by an exam-
ple in Fig. 3. This
transformation T (B) of B
as well as the transformed
points can be computed in
linear time, i.e., O(n · k)
time. By Lemma 4, to
compute an ε-approximate
avatar convex hull of all the
points in B, we only need to
compute an ε-approximate

avatar convex hull of all the points in C, which is computed as follows.
As in [4], let δ be the largest value such that δ ≤ (ε/

√
d)α and 1/δ is an integer. We then

partition the bounding hypercube into a uniform grid with cells of side length δ (see Fig. 2
(b)). However, applying the algorithm of Barequet and Har-Peled [4] does not help us to
compute ε-kernels in C because now we must make sure not to pick two or more avatars of
the same entity.



Consuegra et al. 7

We need one other idea to compute ε-kernels in C. The following procedure computes
the ε-kernel in T (B) (see Algorithm 2). Consider all possible assignments of binary values
(0/1) to the cells in the grid (see Fig. 2 (b)). For the ith binary assignment let Qi be the set
of cells that are assigned a value of 1. We call the set Qi legal if each avatar entity has at
least one element in at least one of the cells of Qi, and it is possible to pick a representative
point from each cell such that no two cells have representative points that are avatars of
the same entity. Since there are 1/δd cells, there are at most 21/δd legal sets. In particular,
if AOPT (·) is the avatar assignment that leads to the optimal avatar convex hull, then it
is easy to see that one of these legal sets must contain exactly the collection of cells with
points from AOPT (·).

It is clear that for any box Bi, with largest side of length Di, if we expand the box along
each direction until it becomes a hypercube of side Di and scale it to the unit hypercube
C, we are left with an α-fat point set in C (for some α <) since CH(Bi) must cover all the
points in Si and hence it must touch each face of C. This transformation T (Bi) of Bi can be
found in time linear in the number of points in Bi, which is equal to O(nk). By Lemma 4,
we know that finding an ε-approximate avatar convex hull of all the points in C gives us
directly an ε-approximate avatar convex hull of all the points in Bi.
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Figure 4 Reduction to network flow used to determine if a set of cells is legal.

We can determine if a given set of grid cells Qi is legal by solving a network flow problem
as follows. (See Fig. 4.) Create a set of vertices T such that each vertex in T represents a
different cell in Qi. Create a source vertex s with directed edges to each vertex in T . Create
a set of vertices T ′ such that each vertex in T ′ represents a distinct point in some cell in
Qi. Add an edge from u ∈ T to u′ ∈ T ′ if the cell in Qi corresponding to u contains the
point corresponding to u′. Create another set of vertices T ′′ such that each vertex in T ′′

corresponds to an avatar entity. Add an edge from u′ ∈ T ′ to u′′ ∈ T ′′ if u′ is a possible
assignment for the avatar entity u′′. Finally add a sink vertex t and connect all vertices in
T ′′ to t by an edge. All edges have capacity 1. A maximum flow of size |T | from s to t will
identify a representative point in each cell such that no two points are avatars of the same
entity. It is easy to see that such a flow exists if and only if the corresponding set of cells
Qi is legal. The following theorem formalizes the result.

I Theorem 5. There is an algorithm that finds an ε-approximate min-perimeter k-avatar
convex hull in time O((nk)(2d+3) · n

δd
· (2d)2 · 2

1
δd ( 2

δd−1 )b d2 c) by finding an avatar ε-kernel Q
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Algorithm 2 ε-approximation of smallest avatar convex hull for α-fat avatar
point set
Require: P : an α-fat set (for some α <) of k-avatar points inside the unit hypercube C
µ: measure function of the size of the perimeter
let δ be the largest integer s.t. δ ≤ (ε/

√
d)α

let Z be a d-dimensional grid of cell size δ
for each assignment of binary values (0/1) to the cells in the grid Z do

let Qi be the set of cells assigned with a 1 in the ith binary assignment
if Qi is legal then

let Q′i ⊆ Qi be the collection of highest and lowest cells in every hypercolumn
containing at least one cell of Qi
let Q′ be the set of representative points of cells in Q′i
let CHi = CH(Q′)
if µ(CHi) < µ(CHmin) then
CHmin = CHi

end if
end if

end for
return CHmin

of L, which by Definition 3 satisfies (1− ε)ω(u, CH∗(L)) ≤ ω(u, CH(Q)), ∀u ∈ Sd−1. Note
that the choice of constant δ depends on k, ε, and α.

The proof is sketched as follows. Given a legal set, Qi, let Q′i ⊆ Qi be the collection of
highest and lowest cells in every hypercolumn containing at least one cell of Qi. Let Q
(resp., Q′) be the set of representative points of cells in Qi (resp., Q′i). It is easy to see
that Q is an ε-kernel of Q′. We argue that AOPT (·), the avatar assignment that leads to
the optimal avatar convex hull, occupies a collection of cells (call this set of cells QOPT ),
which would have been considered by our algorithm. While the algorithm may not have
picked the points in the optimal avatar assignment, it is sure to pick one representative
point from each of the cells in QOPT . Since for each point in the legal set, there is at least
one representative point that is within distance ε · α for every point in the optimal avatar
assignment, we immediately have an avatar ε-kernel of the original input.

3.2 Approximate Smallest Volume Enclosing Hyperbox

Using ε-kernels we prove the following theorem.

I Theorem 6. Given an exact algorithm for finding the min-volume axis-aligned enclosing
hyperbox that runs in time O(na), there exists an algorithm that finds a (1 + ε)-approximate
smallest volume axis-aligned avatar enclosing hyperbox in time O((nk)(2d+3) · n

δd
· (2d)2 ·

2
1
δd ( 2

δd−1 )b d2 c + ( 2
δd−1 )a). Note that the choice of constant δ depends on k, ε, and α.

Proof. We can compute a (1 + ε)-approximate smallest volume axis-aligned enclosing hy-
perbox B(L) containing an avatar of each entity in L after finding an ε′-kernel of L, for some
constant ε′. Let CH(L) be the smallest avatar convex hull of a set L of k-avatar points. If
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Q is a k-avatar ε′-kernel of L such that Q ⊂ CH(L), then we have:

(1− ε′) · ω(u, L) ≤ ω(u,Q), ∀u ∈ Sd−1

(1− ε′) · ω(u, L) ≤ ω(u,Q), ∀u ∈ [d] = {e1, e2, . . . , ed}
(1− ε′)d

∏
u∈[d]

ω(u, L) ≤
∏
u∈[d]

ω(u,Q)

There exists a constant c (function of ε′ and d), such that (1−cε′) ≤ (1− ε′)d, thus implying
the following:

(1− cε′)
∏
u∈[d]

ω(u, L) ≤
∏
u∈[d]

ω(u,Q)

(1− cε′) · V olume(B(L)) ≤ V olume(B(Q))

By choosing ε = 1
1−cε′ , we obtain a (1+ε)-approximation of the smallest volume axis-aligned

enclosing rectangle, since

1 ≤ (1 + ε) · V olume(B(Q))
V olume(B(L)) ≤ (1 + ε)

J

Similar results can be achieved for an approximate min-diameter (see Section 3.3) and
min-perimeter axis-aligned avatar enclosing box.

3.3 (1 + ε)-Approximate Avatar Diameter
This section gives yet another result using ε-kernels.

I Definition 7. Define the minimum avatar diameter diam(L) of a set L of avatar points
as the diameter of the avatar assignment A(L) with the smallest diameter.

I Theorem 8. Given an exact algorithm for finding the diameter of a convex hull that runs
in time O(na), there exists an algorithm that computes a (1 + ε)-approximate smallest k-
avatar diameter in time O((nk)(2d+3) · n

δd
· (2d)2 · 2

1
δd ( 2

δd−1 )b d2 c + ( 2
δd−1 )a). Note that the

choice of constant δ depends on k, ε, and α.

Proof. We can use the procedure described in Section 3 to find an avatar ε′-kernel Q.
(We find Q by finding an ε′-approximate smallest convex hull CH(Q) of L.) Our measure
function is µ(.) = diam(.). This measure function diam(.) has the property that diam(L) =
diam(CH∗(L)). Let ū ∈ Sd−1 be the direction of diam(L). Then we have that:

(1− ε′)ω(u, L) ≤ ω(u,Q), ∀u ∈ Sd−1

(1− ε′) · diam(L) ≤ ω(ū, Q)
≤ diam(Q)

diam(L) ≤ (1 + ε) · diam(Q), where ε = 1
1− ε′

Thus we can just return (1 + ε) · diam(Q), which gives us an (1 + ε)-approximate minimum
avatar diameter knowing that:

diam(Q) ≤ diam(L) ≤ (1 + ε) · diam(Q)

1 ≤ (1 + ε) · diam(Q)
diam(L) ≤ (1 + ε)

J
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4 Avatar Problems in Graphs and Metric Spaces

In this section we consider the hardness of the avatar versions of vertex reachability and
shortest paths in unweighted graphs. The results easily generalize to weighted graphs and
metric spaces. Vertex reachability has ties to rainbow connectivity problems from the graph
theory literature [6]. As before, in order to set the stage, we provide some formal definitions.

4.1 Avatar graph reachability
A k-avatar graph G(V,E, L,A) (or simply an “avatar” graph) consists of the following:
a set of vertices V ; a set of edges E connecting pairs of vertices in V ; a set of entities
L = {a1, . . . , am}; and a collection of disjoint avatar sets A = {A1, . . . , Am} such that ∀i,
Ai ⊆ V is the avatar set for entity i, |Ai| ≤ k, and Ai ∩ Aj = � if i 6= j. An avatar path in
G is a path p such that no two vertices on the path p are avatars of the same entity.

The k-avatar reachability problem is stated as follows: Given an avatar graph G and two
vertices s and t in G determine wether there is an avatar path p from s to t. Reachability is
a fundamental graph problem and can be solved in linear time using simple techniques such
as DFS or BFS. Surprisingly enough, in the avatar setting it turns out to be NP-complete,
even for k = 2.

I Theorem 9. The k-avatar reachability problem is NP-complete, for k ≥ 2.
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Figure 5 Sketch of reduction from CLIQUE to avatar vertex reachability.

Proof. The reduction is from the CLIQUE problem. Let graph GC(V,E) and integer k
denote an instance of the CLIQUE problem. (GC , k) is a YES instance if and only if GC
contains a clique of size k. We construct graph GA(V ′, E′) as follows (see Fig. 5): create
k + 2 layers of vertex sets, V ′0 , V ′1 , . . . , V ′k+1. Let V ′0 = {s} and V ′k+1 = {t}. For l = 1, . . . , k,
let V ′l = {v′l,i,j : 1 ≤ i ≤ |V |, 1 ≤ j ≤ k}. Vertices v′x,i,y and v′y,i,x correspond to avatars
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of the same entity Ai (prevents picking same vertex from 2 different layers). Add edges
(v′l,i,j , v′l,i,j+1) for all l, i, and j; for 0 ≤ l < k, add edges (v′l,i,k, v′l+1,j,1) for all i, j. Note
that the vertices v′l,i,1, . . . , v′l,i,k in layer l form k connected subpaths. Denote the subpath
from v′l,i,1 to v′l,i,k by Sl,i. It is important to note that for each vertex vi ∈ V , there is
exactly one corresponding subpath in each layer V ′l . Now for each pair of non-adjacent
vertices vi, vj ∈ V from GC , add vertices u′l,i,j,x and u′l,j,i,x, for all 1 ≤ x ≤ k and 1 ≤ l ≤ k
to GA. Add edges (u′l,i,j,x, u′l,i,j,x+1) and (u′l,j,i,x, u′l,j,i,x+1), 1 ≤ x < k. Update subpaths
Sl,i by taking each outgoing edge from it and make it outgoing from u′l,i,j,k instead, and then
adding an edge from it to u′l,i,j,1, effectively making u′l,i,j,1 the new last vertex of subpath Sl,i.
Finally, let each pair of vertices u′x,i,j,y, u′y,j,i,x be avatars of each other, for all 1 ≤ x, y ≤ k.

It is not hard to see that the size of the graph GA is polynomial in n. More importantly,
we claim that if the set {vi1 , . . . , vik} is a clique in GC , then a 2-avatar path can be found
from s to t in GA by starting at s (layer V ′0), moving from each layer to the next, selecting
in each layer a subpath corresponding to a distinct vertex from the clique. Intuitively, if
the path in level l goes through vertices of the form v′l,i,j , then vertex i is chosen as the l-th
vertex in the clique. Furthermore, the vertices of the form u′l,i,j,x that are required to be
visited by the path (and its avatars) ensure that the other vertices picked for the clique are
indeed adjacent to i. The converse is proved by starting from a 2-avatar path and selecting
the clique vertices based on the subpaths traversed in each layer. Hence there is a clique of
size k in GC if and only if there is a 2-avatar s  t path in GA. It is readily shown that
2-avatar reachability is in NP, thus completing the proof that it is NP-complete. J

4.2 Avatar Shortest Paths
Given an unweighted (or unit-weighted) k-avatar graph and two vertices s and t in the
graph, find the shortest length avatar path from s to t. Given that reachability is hard in
the avatar setting, the shortest path would be expected to be at least as hard. The following
theorem highlights its inapproximability.

I Theorem 10. The k-avatar shortest path problem is APX-Hard for k ≥ 2.

The key to the proof is a gap-preserving reduction from the maximum clique problem, which
is known to be APX-hard, implying immediately that it cannot be approximated to within
any constant factor in polynomial time. The proof is omitted here because of limited space.

I Lemma 11. There is a gap-preserving reduction from the max-clique problem to the 2-
avatar shortest path problem that transforms a graph Gclique(V,E) to a graph Gavatar(V ′, E′)
such that:
1. if OPTclique(G) ≥ k · |V |, OPTavatar(s− t) ≤ m, and
2. if OPTclique(G) < α · (k · |V |), OPTavatar(s− t) > (2− α) ·m,
where m = (k2 · |V |3) + 1, and α and k are any constants such that 0 ≤ α, k ≤ 1. Here
OPTclique(G) is the size of the maximum clique in Gclique(V,E), and OPTavatar(s− t) is the
length of the shortest 2-avatar path from a vertex s to a vertex t in Gavatar(V ′, E′).

Open Problems: Open problems from this work include determining the time complexity
of the k-avatar versions of minimum MaxGap problem and convex hull.
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