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Abstract 
 

While much research has been done on finding 
similarities between protein sequences, there has not 
been the same progress on finding similarities between 
protein structures. Here we report a new algorithm 
(SBLAST) which discovers the largest common 
substructures between two proteins using a triangle-
based variant of the geometric hashing of protein 
structures algorithm. The algorithm selects triples 
(triangles) of selected Cα atoms from all proteins in a 
protein structure database and creates a hash table 
using a key based on the three inter-atomic distances. 
Hash table hits from the triangles of a query protein 
are extended recursively to determine the largest 
common substructures less than a threshold deviation 
level (rmsd). Comparisons between a query protein 
and a preprocessed protein database can be performed 
in parallel. Because SBLAST does not rely on protein 
sequence alignment, common substructures can be 
detected in the absence of sequence conservation. 
SBLAST has been tested using the ASTRAL subset of 
the PDB. 
 
1. Introduction 
 
Determining structural similarity is one of the most 
important tasks in proteomics. Numerous 3D structure 
alignment tools have been developed for comparing 
protein structures, such as CE [1], DALI [2], ProSup 
[3], and VAST [4].  So far, however, there is no 
universally accepted algorithm for determining the 
structural similarity of two proteins. This contrasts 
with the situation regarding protein sequence 
comparison where the sequence alignment program  
BLAST (basic local alignment search tool) [5] is the 
most frequently used and most widely accepted method 
for calculating sequence similarity. The BLAST 
program performs local alignment of sequences and 
finds short stretches of sequence similarity.  While 
doing local alignment at the sequence level is not an 

easy task, it is considerably more difficult to perform a 
similar task at the three-dimensional structure level. 
And the challenge is further magnified when there are 
a large number of entries in the database against which 
good alignments are sought. The number of structures 
in the Protein Data Bank (www.pdb.org) have 
increased rapidly with more than 44,000 structures 
have been deposited by the end of June, 2007. Despite 
the existence of a number of 3D protein structure 
alignment tools, there is still a need for the 
development of new approaches for solving the 
problem from a slightly different angle. Inspired by the 
success of BLAST at sequence level, we have 
developed the program SBLAST (BLAST for 
structures) to perform BLAST-like search for 3D 
proteins. In this paper, we will discuss our approach for 
discovering structurally similar regions in proteins 
using a variation of the geometric hashing method. 
 
The original geometric hashing concept was introduced 
in the field of machine vision to solve the object 
recognition problem [6]. Geometric hashing concept is 
predicated on the idea that the simplest invariant 
associated with any set of three points in space under 
any rigid transformation is the set of the three inter-
point distances. These distances can thus be used as a 
“hash value” of the triple of points. In one 
implementation of geometric hashing, every choice of 
a basis of a set of two or three points corresponds to a 
transformation, and the other points are subjected to 
the same geometric transformation and indexed into 
the corresponding hash table bins [7]. Since, in this 
implementation, all combinations of the bases are 
selected, the resulting hash table records the locations 
of all points through all possible basis transformations. 
For searching with a query image of m points and 
target image of n points, the time complexity is O(n2m) 
if a two-point basis is used, and the time complexity is 
O(n3m) if a three-point basis (triangles) is used. While 
this technique is widely used in computer vision, it is 
not really suitable to analyze protein structures, which 



contain in the order of thousands of atoms. A triangle-
based approach will be discussed in this paper to 
approach local protein structure alignment problem. 
However the details of the method are considerably 
different from that of earlier techniques. In particular 
we discuss how this algorithm is adapted for massively 
parallel machines. 
 
2. Methods 
 
As mentioned earlier, every triple of points consisting 
of the 3-D coordinates of selected Cα atoms 
(henceforth referred to as a “triangle”) is hashed to a 
set of three inter-point distances, giving a 3-
dimensional hash value. The algorithm consists of 
three phases: 1) the preprocessing phase, 2) the hit 
search phase, and 3) the hit extension phase. The 
source code was implemented using a mixture of C, 
C++ and Message Passing Interface (MPI). 

 
2.1 Preprocessing phase 

 
During the preprocessing phase, all proteins in the 
database of potential database proteins are hashed. In 
other words, triangle information is extracted from 
each of the PDB files and is stored in a 3-D hash table 
with user-defined bin sizes. The hash key is generated 
using the lengths of each triangle. In practice, this hash 
function has been found to provide a good balance 
between hash table size, hash key computation and 
clustering (collisions). The size of the hash bin 
determines the granularity of the search. The larger the 
bin size, the more likely it will be that comparable 
triangles will hash to the same bin. However, if the bin 
size is too large, then many unrelated triangles will 
need to be evaluated during the extension phase. After 
preprocessing, a list of relevant triangles will be stored 
in a large hash table that can be used later in the hit 
search and the hit extension phases. 
 
2.2 Hit Search Phase 
 
Given a query protein structure, we first extract 
triangles from the query protein and search the 
matching triangles in the hash table generated at 
preprocessing phase. To accommodate the situation 
that a triangle in the border of a neighboring bin might 
be closer to the query triangle than some triangles in 
the hash bin that the query triangle is hashed into, we 
also implemented a neighbor search routine to find 
matches in neighboring hash bins. 

2.3 Hit Extension Phase 
 
As in sequence BLAST, once a hit is found (by 
matching a triangle from the query structure with a 
triangle of a database protein), we need to extend the 
hit to find locally maximal structure segment pairs, one 
in the query and one in the database protein. A 
recursive routine is used to extend the triangle hits. The 
goal is to find a pair of longest common substructures 
such that when they are structurally aligned, the root 
mean square deviation (RMSD) is below a user-
defined threshold. To facilitate this process, an 
adjacency list of triangles is constructed and a depth-
first search is simulated on it. Note that the triangles 
are considered to be adjacent if they share an edge.  

 
The extension phase is implemented using a query-
driven search that recursively extends the hits until the 
maximum allowable RMSD is reached. Details of the 
algorithm are given in Figure 1. A standard procedure 
is used to find the RMSD between two 3-D protein 
structures based on a matrix computation approach by 
Schonemann [8].   

 
3. Parallel Design and Implementation 
 
We used a “Master-Worker” paradigm to implement 
the parallel algorithm for SBLAST using MPI 
(message passing interface) routines on the IBM Blue 
Gene/L massively parallel supercomputer. The Blue 
Gene/L architecture is designed to scale to 65,536 
dual-processor nodes (131,072 processors) with a peak 
performance of 360 teraflops [9]. The three phases of 
the algorithm described above were broken into two 
modules: 1) the preprocessing module and 2) the 
search module. Both modules were implemented in 
serial and parallel versions. In the SBLAST 
preprocessing module, a master processor listens for 
the requests of idle worker processors and sends a new 
PDB file for each worker to parse. The parsed results 
are the sent to an output master processor that outputs 
the results into four different files: 1) The hash table 
database stores the hash tables for all the proteins in 
the database; 2) The hash index file stores the 
beginning and ending bytes in the hash table for each 
protein; 3) The attribute database stores the attributes 
(coordinates, residue type, atom type, etc.) for all the 
proteins in the database; and 4) The attribute index file 
stores the beginning and ending bytes in the attribute 
table for each protein. The SBLAST search module 
uses the four files generated from preprocessing 
module. The master processor operates as a job-
scheduler servicing  requests from worker processors. 

 



Input 
  Q1, Q2, … Qi,… //Qi is the ith triangle in query that has at least one hit 
  Qi:{Ti1, Ti2, …, Tia, …} //Associative map for query triangle Qi, Tia is the ath  

matching triangle in target T that matches with Qi 
  Q is the union of all query triangles with hits 
  T is the union of all target triangles  
  maxDev: the maximum root mean square deviation allowed  
  minSize: the minimum substructure size allowed  
 
Output: 
 A list of matching common substructure pairs (local alignments) 
 
search(Q, T) 
    int k; 
    VQ = number of triangles in Q 
    VT = number of triangles in T 
    for (k=0; k<VQ; k++) 
        valQ[k] = unseen; 
    for(k=0; k<VT; k++) 
        valT[k] = unseen; 
    Initialize subgraphQ_1 to subgraphQ_n as empty set 
    Initialize subgraphT_ij as empty set 
    for i=1 to VQ 
        Qi is the ith triangle in query 
        for j=1 to number of target triangles that match with Qi 
           subgraphT_ij = Tij 
            if Qi is not visited                      

         doubleExtendTriangle(subgraphQ_i, subgraphT_ij, Qi, Tij) 
        if maxDev and minSize constraints satisfied           

  Output subgraph Q_i and subgraph T_ij as matching common substructure 
 
adjlist(Q) 
    for i=1 to VQ 
      for j=1 to VQ 
            if (Triangle_j shares an edge with Triangle_i) 
 adj[i].push_back(triangle_j)  
 
doubleExtendTriangle(subgraphQ, subgraphT, TQ, TT) 
    mark triangle TQ as visited 
    mark triangle TT as visited    
    append unshared point of TQ into subgraphQ 
    append unshared point of TT into subgraphT 
    if appended subgraphQ is similar to appended subgraphT 
        extend subgraphQ and subgraphT and do the following 
        for i = 1 to number of neighbors of TQ 
  TQ_i is the ith neighbor of TQ 
              for j = 1 to number of target triangles that matches with TQ_i 
  TT_ij is the jth target triangle that matches with TQ_i 
  doubleExtendTriangle(subgraphQ, subgraphT, TQ_i, TT_ij) 
    else do not extend      

Figure 1. Pseudo code for the search and extension phase. 



 
 

When the SBLAST search is initiated, the names of the 
query file, hash table database and attribute database 
are broadcasted to all the worker processors.  The 
master processor then reads the index file for the hash 
table and the index file attribute table and determines 
the offsets of hash table and attribute table for each 
individual worker processor. A pair of offsets (the 
beginning byte and ending byte) for a particular hash 
table in the hash table database is sent to each worker 
processor. A pair of offsets for the corresponding 
attribute table is sent as well. Every worker will read 
the chunk of characters determined by the pair of 
offsets from the respective hash table and attribute 
table and subsequently parse the tables into data 
structures. A pair of proteins, consisting of a query and 
a database protein constitutes a job. A worker 
processor works on one job at a time and makes a new 
request to the master processor as soon as it finishes its 
job. The master works as a server and send the next 
pair of offsets to the requesting worker processors as 
soon as it receives the request. Output of the results is 
done in parallel by the worker processors. A post-
processing routine merges the results generated by 
each individual worker processor. The output files 
contain matching common substructures and the 
corresponding RMSD between the superimposed 
common substructures.  
 
4. Performance Evaluation of SBLAST 
 
We used Message Passing Interface (MPI) to 
implement the parallel version of our algorithm. Our 
benchmark database consisted of 2898 proteins from 
ASTRAL40.  The performance for preprocessing 
module is shown in Figure 2(a) and the performance of 
search module is shown in Figure 2(b). 
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Figure 2. Parallel performance of SBLAST on 
Blue Gene. (a) Preprocessing module, (b) Search 
module. A test database containing 2898 proteins 
was used. The scaling limit in both cases was the 
time to process the largest database proteins.  
Close to linear scaling is expected when 
preprocessing and searching the PDB as a whole. 
 
5. Experiments 
 
We performed our experiments on a smaller version of 
the PDB based on the ASTRAL Compendium of 
protein structures and sequences [10].  The version of 
the ASTRAL Compendium we used was one in which 
no two proteins share more than 40% sequence identity 
(ASTRAL40 in the sequel) (http://astral.berkeley.edu).  
We first tested if SBLAST program was able to find 
the common protein domain shared by several proteins. 
We queried trypsin (ASTRAL ID: d1s83a_) against 
ASTRAL40 and looked for proteins that shared some 
common substructure with the trypsin. We chose 
Trypsin because it is a relatively large protein. Eighty 
two local alignments with RMSD ranging from 0.098 
to 0.669 were identified.  We also chose the zinc finger 
domain for our experiments. A zinc finger is a DNA-
binding domain typically consisting of two antiparallel 
β strands, and an α helix. Many regulatory proteins 
(e.g., transcription factors) contain zinc fingers. 
Alkaline phosphatase (ASTRAL ID: d1a1ia_) is a zinc 
finger protein. We queried d1aliia_ against the 
ASTRAL40 database to look for common 
substructures in other proteins in the database.  Figure 
3 shows a local alignment between d1s83a_ and 
d1p57b_, and another local alignment between d1a1ia_ 
and d1p7a_. 
 



 
d1s83a_ 

 
d1p57b_ RMSD: 0.1692 

Size: 11 
(a) 
 

 
d1a1ia_ 

 
d1p7a_ 

RMSD: 0.3285 
Size: 6 

(b) 
 
Figure 3. SBLAST search for common 
substructures in ASTRAL40.  In (a), the query 
protein d1s83a_ is found to share a large 
common substructure of high similarity with the 
protein d1p57b_. In (b), the query protein d1a1ia_ 
is found to share  a common substructural region 
with the protein d1p7a_.  Note although d1p7a_ 
does not have the characteristic secondary 
structure topology of zinc finger proteins, the zinc 
binding residues are structurally well conserved.   
 
6. Results and Discussion 
 
Preliminary experiments show that SBLAST was able 
to identify common substructures in a large set of 
proteins. In Figure 2, above, the preprocessing module 
and the search module show effective speedups of 70% 
and 60% for 1000 and 500 processors respectively.  An 
improvement in parallel efficiency is expected when 
the ratio between the number of database proteins and 
the number of processors increases for larger 
databases.  Improvement in the absolute performance 
of the search function would require that the current 
parallel algorithm be rewritten to allow more than one 
processor per database protein. Currently SBLAST 
provides alignment measures using length and RMSD 
of the common substructures. Future work will be to 
explore the distribution of structural alignments so as 
to better determine the statistical significance of an 
alignment.  
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