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ABSTRACT 
In an attempt to account for correlations in gene expression data, 
we considered neural network classifiers with random weights 
selected from a normal distribution. The optimal parameters of the 
distribution were determined using Bayesian methods. The 
performance of such a Bayesian neural network was compared 
with that of a standard feed-forward hierarchical neural network. 
The performance of the neural network was further enhanced 
using ensemble techniques called bagging and boosting. A 
version of the neural network that used a combination of bagging 
and boosting was also designed. The performance of all the 
resulting classifiers was compared using gene expression data 
from the processed Michigan and Boston data sets available from 
the CAMDA website. They were also tested on standard 
benchmarking data available from the UCI machine learning 
repository. In order to keep the number of input variables and 
weight parameters of the neural network small, gene selection 
tools were used to select the most significant genes for the 
analysis. Five different gene selection methods were implemented 
and compared. All the neural network versions were implemented 
using the R statistical software environment. We conclude that 
bagging significantly improved the performance of both feed-
forward neural networks and Bayesian neural networks. Boosting 
improved the accuracy only in a limited number of tests.  The 
robust method for gene selection (GS-Robust) is novel and helped 
to achieve the lowest error rates among all the methods tried.   

1. INTRODUCTION 
In an attempt to model correlations in gene expression data, we 
considered several variants of neural network classifiers with 
random weights sampled from a normal distribution. The effect of 
using such random weights is to induce correlations among the 
gene expression measurements. The neural network classifiers 
were trained and tested with lung cancer gene expression data sets 
available from the CAMDA website.  

Many different classification schemes and diagnostic prediction 
methods have been employed on gene expression data from 
cancers and the resulting classifications have been correlated to 
various factors [1-4]. In particular, researchers have made sub-
classifications of adenocarcinoma into subgroups that correlated 
with the degree of tumor differentiation (referred to as “stage” of 
tumor) [5, 6].  The Boston and Michigan data sets from CAMDA 
have made available gene expression values for a large number of 
samples from three different stages of tumors (as well as samples 
from non-disease patients). 
Analysis of gene expression data is challenging because the data 
are very sparse, redundant, correlated, noisy, and contain high 
experimental and biological variations.  Neural networks have 
been used to analyze gene expression data [7, 8]. In this paper, we 
present several new methods for classifying gene expression data 
from lung cancer patients. Our approach uses Bayesian 
regularized feed-forward neural networks (as developed by 
MacKay [9]) and their many variants. 

Ensemble neural network methods provide an improved learning 
paradigm. These methods involve the design of an “ensemble” of 
neural networks such that collectively their individual abilities.  
However, methods of classification of gene expression data using 
ensemble neural network appear to be lacking.  The challenge in 
the use of an ensemble of base classifiers is to decide which 
classifiers to rely on, or how to combine classifications produced 
by the classifiers [10].  A necessary and sufficient condition for 
an ensemble of classifiers to be accurate is that its individual 
members should be reasonably accurate and diverse [11].  
Traditional ensemble methods include bagging [12] and boosting 
[13].  Bagging involves bootstrapping and simple aggregation of 
the classification results. Boosting works by sequentially applying 
a classification algorithm to reweighted versions of the training 
data, and then taking a weighted majority vote of the sequence of 
classifiers thus generated. 

In Section 2, we introduce some of the key concepts necessary to 
describe our methods and results. In Section 3, we briefly 
describe the implementation, the data sets and the experiments 
that were performed. In Section 4, we conclude with some 
discussions.  
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2. KEY CONCEPTS 
Neural Networks: A neural network implements a non-linear 
function   where  is the output of the function for 
input 
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training set, i.e., set of pairs of the form Niyx ii ,...,1,, =〉〈 , 
the neural network can be trained to model the given data as 
closely as possible. In other words, it is possible to determine the 
weight vector  that will best describe the given training data. 
The training procedure is an optimization procedure that involves 
minimizing an appropriate error function. Once the optimal 
weight vector is determined, the neural network acts as a 
classification or regression tool, depending on whether the output 
is from a discrete or continuous set of values.  

w

Neural networks have been used to model gene expression data, 
where the output function may represent some medical or 
biological event such as the recurrence of a disease or the 
production of an enzyme. The main drawback of such a method is 
that no correlation is assumed between the components of the 
weight vector w. In particular, for modeling gene expression data 
it is necessary to model the correlations between weight vector 
components because genes act in concert with a collection of 
other genes forming gene networks. We overcome this drawback 
by assuming the simplest correlation model, i.e., that the 
components of the weight vector are random under a univariate 
model. Such a mixed model induces correlation amongst gene 
expressions. 

Bayesian Neural Networks: In our Bayesian model for neural 
networks, we treat the weights as random variables. This 
approach has the effect of inducing correlations among the gene 
expressions. The optimal weights are obtained as the modes of the 
posterior densities . As such, they are 

computed by maximizing . In this paper, we 
report on experiments comparing the performance of neural 
networks to that of its Bayesian counterpart.  
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Ensemble Neural Network Techniques: More recently, it has 
been shown that the performance of classifiers can be enhanced 
by using ensemble techniques such as bagging or boosting. Both 
these techniques are termed as “ensemble” techniques because 
they effectively correspond to designing multiple classifiers in 
such a way that their collective performance is better than their 
individual performance. 

Bagging: Bagging is an acronym for “bootstrap aggregating” 
[12]. The idea is to take k  repeated bootstrap samples 

, from the data and to design k classifiers using 
them as the training sets. For any given test data, all the 

classifiers vote to give a resulting classification. Breiman has 
noted that neural network classifiers tend to be unstable, and that 
bagging tends to improve unstable classification methods more 
than stable ones. In this paper, we report on experiments 
comparing the performance of neural networks and their Bayesian 
counterparts when enhanced with bagging. 
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Boosting: Boosting was designed to boost the performance of 
weak classifiers [13]. As in bagging, classifiers are designed. 
However, the training samples are weighted, with higher weights 
assigned to misclassified samples. The weights are iteratively 
modified to minimize expected error over different input 
distributions. After the classifiers are designed, they are assigned 
weights based on their performance on the training data. A 

weighted voting scheme is then used to determine the resulting 
classification for a given test sample. In this paper, we report on 
experiments comparing the performance of neural networks and 
their Bayesian counterparts when enhanced with boosting. 

k

Gene Selection Methods: Due to the limitations of the statistical 
package, it was necessary to limit the size of the neural network 
and the number of inputs to it. This was achieved by using gene 
selection methods. An efficient gene selection method was 
therefore very essential to apply our methods. Several methods 
have been described in the literature [15-21], all of which rank the 
genes in the order of significance. We used the following five 
methods for our analysis: GS-ANOVA, GS-SAM, GS, GS-
Robust, and GS-PCA.  In GS-ANOVA, the genes are ranked 
based on the F-statistic computed using ANOVA.  In GS-SAM, 
the SAM program from the Stanford Genomics Group was used 
to obtain a ranked list of significant genes. GS-PCA involves 
doing a principal component analysis on the genes and using the 
components that contribute a large fraction to the variation. 

Two new methods, called GS and GS-Robust, were also used for 
this purpose.  In GS, a statistic based on the sum of square error 
between classes and the sum of square error within classes was 
computed.  In GS-Robust, a similar statistic was computed based 
not on the sum of square error, but on the median absolute 
deviation (MAD). More precisely, for a -class classification 

problem, if

k
ijg is the vector of gene expression values for the ith 

gene in the jth class, then the GS and the GS-Robust methods 
gives the following scores for the ith gene: 
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The GS criterion is somewhat similar to, but not equivalent to, the 
F-ratio selection criterion. GS-Robust is a robust version of the 
GS criterion using the L1-norm to measure deviation.  

k-fold Cross-Validation Method: This is a standard statistical 
method to validate the accuracy of the classification results.  The 
data is divided into k groups and k separate tests are run. When 
testing samples from each of the groups, the classifier is trained 
with the k-1 remaining groups. The error rate is reported after 
averaging over all the groups. All classifier experiments with one 
labeled data set were tested using this method. 



3. EXPERIMENTAL RESULTS 
All the neural network classifiers and gene selection methods 
described in this paper were implemented using the R statistical 
package. We tested with 6 neural network classifiers in all. The 
first one was a standard feed-forward neural network (nnet); the 
next two were derived form the first after enhancing with bagging 
(nnet.bag) and boosting (nnet.boost). The last three were similar 
to the first three with the difference that they used Bayesian 
neural networks.  

A number of benchmark data sets from the UCI repository were 
downloaded and tested to evaluate and compare the quality of the 
neural network classifiers. The Iris, BreastCancer, and the 
HouseVotes84 data sets were used for this purpose [22]. Table 1 
shows the error rates from experiments with the classifiers for the 
three benchmark data sets. In this table and in all the others that 
follow, results on error rates are shown as mean ± SD of the 5-
fold cross-validation error from 10 independent runs. 
 

Table 1. Error rates from Experiments with Benchmark Data 

Benchmark Data Sets 
NN Type 

Iris BreastCancer HouseVotes84 

nnet 0.105 ± 0.048 0.065 ± 0.009 0.053 ± 0.009 

nnet.bag 0.033 ± 0.009 0.045 ± 0.004 0.043 ± 0.004 

nnet.boost 0.030 ± 0.005 0.064 ± 0.005 0.045 ± 0.004 

bayesian 0.036 ± 0.013 0.063 ± 0.007 0.055 ± 0.007 

bayes.bag 0.027 ± 0.010 0.047 ± 0.003 0.045 ± 0.006 

bayes.boost 0.028 ± 0.003 0.075 ± 0.006 0.044 ± 0.005 

 
From the CAMDA data sets we tested the neural network 
classifiers on the Michigan and Boston processed data sets. These 
were chosen because the type of microarrays used for both data 
sets were the same. The classifications were performed using the 
stage level of the tumor as the prediction. The Michigan and 
Boston data sets use Stages I, II and III as the labels on samples 
for their samples from diseased patients. Besides these, the 
Michigan data set also had some normal samples, corresponding 
to patients with no tumors. This provided us with two data sets 
each divided into 4 classes of samples. It may be noted that, in 
fact, one of the classes was missing in both data sets (Stage II 
from the Michigan data set, and normal samples from Boston data 
set).  
Tables 2 and 3 show the error rates for the classifiers on the two 
data sets. As discussed before, we used 5 gene selection methods 
for selecting genes that were used to train the classifiers. This 
explains the five columns in the tables. Table 4 below shows 
results from the cross-validation experiments. In the first set of 
experiments, the neural network classifiers were trained with the 
Michigan data set and tested with the Boston data set. In the 
second set of experiments, their roles were reversed. 
Next, we present our experiments with the gene selection 
methods. The first four gene selection methods produced explicit 
list of significant genes, while PCA only provides components 

that are linear combinations of genes. We inspected the 200 most 
significant genes reported by the first four methods and counted 
the amount of overlap in their lists. The sizes of their pairwise 
overlaps are given in Table 5.  

Table 5. Shown are the sizes of the intersection between pairs 
of lists of the 200 most significant genes picked by the four 

gene selection methods. 

 GS-SAM GS GS-
ANOVA 

GS-
Robust 

GS-SAM 200    

GS 167 200   

GS-
ANOVA 179 164 200  

GS-Robust 23 28 20 200 

 
As Table 5 shows, the list of genes selected by GS-Robust turned 
out to be the most different. In fact, 167 of the genes selected by 
GS-Robust were not on any of the other three lists. Only eight 
genes were on all the four lists. The gene names of these genes 
are as follows: GAPD, MGP, RTVP1, DDXBP1, FGR, FGFR2, 
TNNC1, and KIAA0140. Table 6 shows the contribution to the 
total variation of the first 10, 20, 30, and 40 components. We 
picked the first 40 components because they collectively cover at 
least 80% of the variation.  
 

Table 6. Contribution of the PCA components to the total 
variation. 

PCA Components First 
10  

First 
20 

First 
30 

First 
40 

Boston 0.605 0.699 0.763 0.812 Contribution 
to the total 
variation 

Michiga
n 0.443 0.620 0.735 0.815 

 

4. DISCUSSION AND CONCLUSIONS 
Neural network classifiers enhanced with bagging exhibited 
consistently good performance, and were clearly better than the 
ones without any enhancements. Erratic performance was 
exhibited by neural network classifiers enhanced with boosting. 
Also, the bagging variants were much faster than their boosting 
counterparts. The Bayesian neural networks performed marginally 
below the corresponding feed-forward variants. It is, however, 
significant to note that when the GS-Robust classifier was used, 
the Bayesian variants outperformed their feed-forward 
counterparts.  

GS-Robust appeared to have excellent ability to select significant 
genes for neural network classifiers. This method consistently 
outperformed the other gene selection methods. Roughly 
speaking, GS-Robust is the non-parametric version of GS-
ANOVA and GS.  

Even though it is interesting that the set of genes selected by GS-
Robust had very small overlap with the other methods (Table 5), 
the most striking results appear in Tables 2-4. The classifiers with 



GS-Robust had k-fold cross validation error rates of 
approximately 24% when tested and trained with the Michigan 
data set. The corresponding error rates were approximately 15% 
with the Boston data set. It is significant to note that when we 
performed cross validation experiments where we trained with 
one entire data set and tested with the other, the results were 
unexpected. When the training was done with the Boston data set 
and tested with the Michigan data set, the error rates went up from 
23% to 28% for the Bayesian neural networks enhanced with 
bagging. In sharp contrast, when we trained the neural network 
with the Michigan data set and tested with the Boston data set, the 
error rates were down from 15% to about 3% (which is close to 
the error rates achieved for the tests with the benchmark data 
sets).  

Do these results say something about the relative quality of the 
two microarray data sets, or about the different sources of 
variations in the samples from which the two data sets were 
obtained? Why was the model generated by the combination of 
the GS-Robust gene selection method and the neural network 
classifier particularly effective with one data set and not the 
other? Further analyses are being pursued to address these 
questions.   
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Table 2. Error rates from Experiments with the Michigan Data Set 

Gene Selection Method 
NN Type 

GS-ANOVA GS-SAM GS GS-Robust GS-PCA 

nnet 0.2889 ± 0.025 0.2900 ± 0.022 0.2967 ± 0.031 0.2767 ± 0.024 0.288 ± 0.021 

nnet.bag 0.2789 ± 0.004 0.2767 ± 0.008 0.2678 ± 0.018 0.2733 ± 0.006 0.278 ± 0.000 

nnet.boost 0.2922 ± 0.012 0.2900 ± 0.017 0.2622 ± 0.016 0.2722 ± 0.012 0.282 ± 0.013 

bayesian 0.3345 ± 0.048 0.3111 ± 0.046 0.3154 ± 0.036 0.2693 ± 0.030 0.299 ± 0.034 

bayes.bag 0.2815 ± 0.008 0.2733 ± 0.014 0.2641 ± 0.021 0.2359 ± 0.017 0.280 ± 0.009 

bayes.boost 0.2815 ± 0.012 0.2800 ± 0.015 0.2573 ± 0.019 0.2464 ± 0.015 0.277 ± 0.013 

 

Table 3. Error rates from Experiments with the Boston Data Set 

Gene Selection Method 
NN Type 

GS-ANOVA GS-SAM GS GS-Robust GS-PCA 

nnet 0.153 ± 0.010 0.150 ± 0.005 0.148 ± 0.006 0.149 ± 0.002 0.150 ± 0.007 

nnet.bag 0.148 ± 0.000 0.148 ± 0.000 0.148 ± 0.000 0.148 ± 0.000 0.148 ± 0.000 

nnet.boost 0.148 ± 0.000 0.149 ± 0.002 0.148 ± 0.000 0.148 ± 0.000 0.148 ± 0.000 

bayesian 0.157 ± 0.016 0.152 ± 0.005 0.145 ± 0.006 0.154 ± 0.014 0.148 ± 0.000 

bayes.bag 0.148 ± 0.000 0.149 ± 0.003 0.147 ± 0.002 0.148 ± 0.000 0.148 ± 0.000 

bayes.boost 0.147 ± 0.003 0.149 ± 0.005 0.142 ± 0.006 0.149 ± 0.002 0.148 ± 0.000 

 
Table 4. Error rates from Cross-Validation Experiments. 

Gene Selection Method Training/ 

Testing
NN Type 

GS-ANOVA GS-SAM GS GS-Robust GS-PCA 

nnet 0.090 ± 0.122 0.055 ± 0.054 0.122 ± 0.257 0.033 ± 0.000 0.142 ± 0.272 

nnet.bag 0.033 ± 0.000 0.033 ± 0.000 0.034 ± 0.003 0.033 ± 0.000 0.035 ± 0.005 

nnet.boost 0.036 ± 0.008 0.055 ± 0.068 0.049 ± 0.037 0.033 ± 0.000 0.054 ± 0.050 

bayesian 0.172 ± 0.309 0.269 ± 0.358 0.405 ± 0.466 0.099 ± 0.126 0.171 ± 0.294 

bayes.bag 0.034 ± 0.003 0.035 ± 0.003 0.057 ± 0.059 0.033 ± 0.003 0.105 ± 0.155 

Michigan
/ Boston

bayes.boost 0.037 ± 0.007 0.060 ± 0.038 0.138 ± 0.188 0.033 ± 0.000 0.061 ± 0.086 

nnet 0.391 ± 0.226 0.250 ± 0.077 0.299 ± 0.154 0.293 ± 0.178 0.221 ± 0.000 

nnet.bag 0.221 ± 0.000 0.221 ± 0.000 0.221 ± 0.000 0.221 ± 0.000 0.221 ± 0.000 

nnet.boost 0.219 ± 0.004 0.222 ± 0.004 0.221 ± 0.000 0.221 ± 0.000 0.221 ± 0.000 

bayesian 0.434 ± 0.245 0.343 ± 0.249 0.380 ± 0.201 0.510 ± 0.336 0.276 ± 0.131 

bayes.bag 0.226 ± 0.015 0.222 ± 0.004 0.307 ± 0.149 0.280 ± 0.167 0.221 ± 0.000 

Boston / 
Michigan

bayes.boost 0.241 ± 0.042 0.271 ± 0.101 0.399 ± 0.286 0.337 ± 0.206 0.221 ± 0.000 
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