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ABSTRACT 
There is very little information available with regard to gene 
regulatory relationships in Plasmodium falciparum. In an attempt 
to discover transcription factor binding motifs (TFBMs) in P. 
falciparum, we considered two approaches. In the first approach, 
gene expression data of all the conditions were fed into the 
Iterative Signature Algorithm (ISA), which outputs modules 
composed of sets of genes associated with co-regulating 
conditions. Potential TFBMs were discovered by applying 
AlignACE on the resulting gene sets. In the second approach, 
MotifRegressor was used to generate motifs associated with 
induced and repressed genes for each time point and then 
clustered based on the strength of their correlation to the gene 
expression (i.e., motif coefficients) across different time points. 
Currently, a total of 637 and 840 motifs have been discovered by 
the MotifRegressor and ISA-AlignACE programs, respectively. 
All this information was uploaded into a database, thus making it 
easy to devise complex queries. Using published information on 
known motifs, we were able to validate some of our results. In 
addition, modules consisting of putative transcription factors and 
related genes were also investigated. This work provides a 
bioinformatics methodology to analyze transcription regulation 
and TFBMs across the whole genome. 

1. INTRODUCTION 
The challenge of CAMDA’04 is to analyze the gene expression 
data generated by DeRisi’s laboratory using transcripts from the 
organism Plasmodium falciparum, harvested at 46 different time 
points during its intraerythorcytic developmental life cycle [2]. P. 
falciparum is one of four species of the parasitic protozoan genus 
Plasmodium, and is responsible for the vast majority of malaria 
episodes, affecting 200-300 million individuals and causing 0.7-
2.7 million deaths per year worldwide.  

In this paper, we focused on mining for information related to 
gene regulation and transcription factor binding motifs (TFBM), 
which is important considering the fact that direct experimental 
identification of TFBMs is slow and laborious. We used two 
recently developed algorithms to predict potential TFBMs: 

AlignACE and MotifRegressor. Using the limited information on 
known motifs, we were able to validate some of our results. We 
further analyzed the data using the Iterative Signature Algorithm 
(ISA) to obtain clusters of genes that are potentially co-regulated 
at specific sets of time points [8]. In particular, we started with 
collections of genes that were related either by their functional 
annotation or by the presence of a significant motif, and applied 
the “refinement” procedure of ISA.  

Finally, we input all the information into a relational database 
(implemented using MySQL) with the goal of facilitating 
complicated querying of the available data (Figure 1). We show, 
with examples, how a biologist can generate simple “conjectures” 
using this database, which could then be used to perform directed 
experimentation in a laboratory. 

The only other related work on studying genome-wide TFBMs in 
P. falciparum is by Militello et al., where they applied the 
AlignACE software to the upstream sequences [10]. However, 
they did not use gene expression data to validate their results. The 
current work is much more comprehensive and provides a launch-
pad for more biologically meaningful analysis. While our results 
are extensive and available at our website, because of space-
limitations, we will confine our discussions to a few choice 
examples.   

In Section 2, we introduce some of methods used in this paper. In 
Section 3, we briefly describe the experiments that were 
performed and present a small cross-section of the results. In 
Section 4, we conclude with some discussions. 

2. METHODS 
Transcription Modules: For this paper, we define a transcription 
module (or simply, modules) as a set of co-regulated genes along 
with a set of conditions (time points) during which they appear to 
be co-regulated. We started with collections of genes that were 
known to be (or conjectured to be) co-regulated. These collections 
were then refined using the ISA. The modules output by this 
algorithm satisfy a self-consistency property, which implies that 
the set of genes and the set of conditions show a strong 
correlation with each other.  
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Transcription modules were generated in several different ways, 
each time by applying the ISA algorithm [1, 8]. A first set of 
modules was generated by starting from collections of genes 
known to be involved in the same function (e.g., heat shock 
proteins); such sets were obtained from the PlasmoDB website 
[http://www.plasmodb.org]. A second set was generated by 
starting from genes that shared the same motif (as detected by the 

 



methods described below). A third set was generated by starting 
from random initial sets.  In total, 217 modules were obtained, 
with gene sets ranging in size from 10 to 500. 

AlignACE: AlignACE (Aligns Nucleic Acid Conserved 
Elements) is a Gibbs sampling algorithm for detecting motifs that 
are over-represented in a set of DNA sequences [7, 11]. A C++ 
implementation was downloaded from their website 
[http://atlas.med.harvard.edu]. The upstream sequences of  co-
regulated genes obtained from the transcription modules 
(described above) were downloaded, and AlignACE was used to 
search for motifs in them. 

MotifRegressor: MotifRegressor is another motif-detection tool. 
It uses MDscan as a feature extraction tool to construct candidate 
motif matrices and then applies regression analysis to select 
motifs that are strongly correlated with changes in gene 
expression [3, 9]. 

Data: Quality expression data (QC data) was downloaded form 
the CAMDA website. The gene expression data was available for 
46 hours post-infection (hpi). Standard R package routines (based 
on the k nearest neighbor method) were used to impute missing 
values [15]. Regulatory Sequence Analysis Tools were used to 
extract upstream sequences for the ORFs [16].  

Generating potential TFBMs: The QC data and the 
corresponding upstream sequences were analyzed. The ISA 
algorithm was applied on available collections of related genes. 
The resulting modules were used as initial sets to run AlignACE 
resulting in one set of motifs. Then, the MotifRegressor software 
was ran on the gene expression data for each of the 46 time points 
separately, to obtain 46 sets of significant motifs. Motifs that were 
identical, similar, or overlapping were merged using perl scripts 
(the cleaning step). There were 1077 motifs generated from 
MotifRegressor and 936 from AlignACE. After the cleaning step, 
637 MotifRegressor and 840 AlignACE motifs remained.  
Database: A relational database was designed and implemented 
using MySQL to store all the available information. This includes 
the gene expression data, generated significant motifs and 
modules, gene annotation information including the functional 
information and the chromosomal location.  

Database Queries: Queries to the database were written in perl 
DBI. The implemented database facilitated the design of non-
trivial queries and made it possible to mine for information 
related to gene regulation.  

Figure 1 shows the scheme used for the analyses of the data. 

3. EXPERIMENTAL RESULTS 
There are very few regulatory elements in P. falciparum that have 
been reported [6]. We sought to validate our results using the 
known motifs. We discuss some of the interesting motif groups 
found. 

G Box Motif Group: Recently, a novel G-rich regulatory 
element named G-box was identified upstream of several P. 
falciparum hsp genes [10]. Since the genome of P. falciparum is 
AT-rich (only 15% GC content), the G-box is considered a unique 
regulatory element. We investigate motifs in seven genes 
corresponding to heat-shock proteins (Hsp) or putative Hsps. The 
G-box was also found by our analyses in all these seven hsp genes 

(Figure 2). Furthermore, the G-box motif was found to be 
significant in all 46 time points, and was not confined to just the 
hsp gene, suggesting that the G-box is a common regulatory 
element, and is not stage-specific. 
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Figure 1: Flowchart for mining TFBMs for P. falciparum. 
 

Figure 2. G-box motifs appeared in the upstream sequences of 
the Hsp genes given in column 1. The motifs shown using the 
Logo format were obtained by using AlignACE on modules 
that included the hpi mentioned in the second column.  

Locus hpi Logo[4] 

PFI0875w 
(HSP) 

1-3, 6, 22, 
27-37, 41-48 

 

MAL8P1.143 
(hypothetical) 1-48 

 

PF08_0032 
(hypothetical) 

1-3, 6, 27-
37, 41-48 

 

PF11_0175 
(HSP 101) 11-18, 26-33 

 

PF11_0188 
(HSP 90) 1-48 

 

PF11_0351  
(HSP 70) 1-48 

 

PFL0740c 
(hypothetical) 1-48 

 



 
Next, we compared the motif sequences found by our analyses 
with the published sequence, (A/G)NGGGG(C/A) [10]. However, 
the AlignACE method found several longer motifs containing the 
published sequence for G-box. The variations of the motifs found 
are shown in Figure 2. One of the motifs contained a string of Ts 
preceding the G box; we will refer to this as the TG-box. The 
analysis of the TG-box shows that it has significant expression 
only during two time periods - high expression at hpi 11 and a 
low expression at hpi 33. An inspection of the genes that shared 
this module (module m7_7_2000Motifs consisting of 10 genes) 
showed that they exhibited similar expression patterns, and sparse 
in 7 chromosomes (chromosomes 4, 7-8, 11-14) with diverse 
functions. The TG-box motif is found during late ring stage with 
all the genes being strongly induced, and during the schizont 
stage, where all the genes were strongly repressed; it was not 
found to be significant in the other two intraerythrocytic stages of 
the parasite. It may be noted that MotifRegressor was unable to 
find the TG-box motif.  

Motifs in var genes: It is known that there are nearly 50 diverse 
var genes distributed throughout the parasite genome coding for 
variants of PfEMP1, P. falciparum erythrocyte membrane protein 
1; they are responsible for both antigenic variation and 
cytoadherence of infected erythrocytes in malaria [17, 18]. The 
ability of the parasite to switch the expression of PfEMP1 allows 
it to escape specific immune responses directed against it, and 
changes in antigenic phenotype correlate with altered properties 
of PfEMP1 [17, 18]. Thus understanding the regulatory 
mechanisms of PfEMP1 variants and other genes is very critical.  
It was observed previously that most of the var genes were 
expressed in the early ring stage, but only one var gene variant is 
induced in the trophozoite stage, while the others are silent. We 
queried our database to find the motifs contained in the var genes. 
Our analysis showed the presence of two significant motifs (Fig. 
3): one was observed in a cluster of var genes at hpi 11 associated 
with inducing effect, while another motif at hpi 38 associated with 
repressing effect.  
Previous studies of var genes have shown that nuclear proteins 
bind to conserved sequence motifs called SPE1 
(CACGGACACATGCAGTAACCGAGAATTATTATATATAA
ATAT), SPE2 (TGTGCATAGTGGTGCG) and CPE 
(ATGTTGTACAT) [18]. These were found by transfection 
experiments, and not by the use of sequence analysis or motif 
prediction software [18].  
We used the motif sequence information and queried our database. 
We found motifs in our database that were subsequences of the 
SPE2 and CPE elements reported previously (Figure 3). In 
addition, our analysis showed that similar motifs were significant 
in a group of var genes that were induced at the ring stage. In 
contrast, the extended SPE2 element was found in a group of var 
genes that were repressed at the schizont stage. However, these 
motifs were not unique to the group of var genes, but were also 
present in other genes at the ring and schizont stages. The analysis 
of the SPE1 sequence did not generate any potentially useful 
interpretations. 

 
 

Locus 
 

Stage Motif 
effect Logo 

PFL0935c  
PF14_048 
PFI1830c 
PF10_0406 
PFL1955w 
PFA0765c 
PFD0615c 
PFB0010w  
PF08_0103 

 
  Ring 

 
Induce 

 

PFD0230c 
PF08_010 
PFL0935c 
PF10_040 
PFB0010w 
PFI1830c 
PFA0765c 

Schizont Repress 

 

Figure 3. Some significant motifs from the var genes. 
 
Discovery of Multiple Motifs: A total of 637 significant motifs 
were predicted by the MOTIFREGRESSOR software across the 
46 time points. These were then clustered by motif coefficients, as 
suggested by Conlon et al. [3]. Motif coefficients can be 
interpreted as the putative influence of a particular motif on the 
expression of downstream genes. Figure 5 shows the clusters of 
motifs with the plot on the left showing the motif coefficients 
across all time points. The plot on the right side shows the time 
points when the corresponding motifs were discovered as being 
significant. As can be seen in the figure, a majority of the motifs 
showed a periodic behavior within the P. falciparum IDC cycle, 
indicating that they are regulated periodically during the IDC 
cycle. We also note that many motifs were found at the time 
points at which they were known to have the strongest effect. 

Motifs of EBA140: We also analyzed the gene for erythrocyte-
binding antigen 140 (EBA140). This is a particularly interesting 
gene, since the corresponding protein shares structural features 
and homology with EBA175 that is implicated in merozoite 
invasion using a sialic acid-dependent receptor on human 
erythrocytes [2, 14]. Eight significant motifs were identified in 
the upstream region of eba140. These eight motifs were also 
found in one other gene MAL13P1.61 encoding a hypothetical 
protein. Incidentally, both genes are adjacent on chromosome 13. 
This analysis suggests that both these genes are tightly co-
regulated.  
Querying the database helped us to locate a module that contained 
EBA140 and a putative transcription factor, MAL7P1.86, which 
has a peak expression at hpi 42 (early merozoite stage). 
AlignACE, when applied to this module had discovered a motif 
shared by the upstream sequences of the genes EBA140 and 
MAL7P1.86. At the spanned time period, the putative 
transcription factor and the EBA140 gene were co-expressed; 
they also shared common motifs which were at upstream 
locations -752 and -1330 in EBA140 (Fig 4). These two elements 
have very similar core sequence (“ACACA”). These two motifs 
were also shared by 77 others genes that are highly expressed at 
41 hpi. One possible conjecture is that these genes are regulated 



by MAL7P1.86 by interacting with these two TFBMs. This would 
then suggest that MAL7P1.86 is auto-regulated. Alternatively, 
one could also conjecture that these genes are activated by an 
unknown transcription factor that interacts at these motifs. 
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Figure 4. Motifs found in upstream of gene EBA140. 

 
It is worth pointing out that the above analysis on EBA140 and 
MAL7P1.86 was easily performed as a sequence of straight-
forward queries of our database. Our belief is that with the help of 
a domain-specific expert we can easily generate more biologically 
meaningful conjectures using such a database.  

4. DISCUSSION AND CONCLUSIONS 
Using the ISA approach, modules were generated, which consists 
of a set of potentially co-regulated genes along with a set of time 
points at which the regulation is potentially occurring. Correlation 
and dependencies between the conditions can be used to elucidate 
system-level transcriptional relationships. Compared to other 
existing clustering approaches [5, 13], the ISA algorithm does not 
require the genes in a cluster be correlated under all the 
conditions. It also allows genes to be part of multiple modules, 
since some genes may be involved in different pathways at 
different time points. 

We applied two existing motif detection tools on the CAMDA 
data sets. Both methods found a large number of potential 
transcription factor binding motifs. Although the MotifRegreesor 
approach could not effectively discover some motifs such as the 
TG-box, it may be ascribed to the fact that the genome of P. 
falciparum is AT-rich. Our results on the TG-box and the G-box 
motifs support the conclusion that this organism may have unique 
regulatory mechanisms different from other known eukaryotic 
organisms [10].  

The novel database of information relating to P. falciparum 
regulatory elements in IDC cycle can be a useful tool that can 
facilitate further biological research on the organism. Some 
sample questions that can be answered with relative ease with the 
use of our database include: (a) Find the set of genes X on 
chromosome A between loci L1 and L2. (b) Find motifs that are 
significant for set X during the schizont stage. (c) Locate a 
transcription factor Y co-regulated with X during the early 
merozoite stage or late schizont stage. (d) Does transcription 
factor Y share any motifs that are significant during hpi 18-21? 
Thus, it is possible to “bootstrap” any information available from 
the biological experiments to generate new and useful (and 
plausible) conjectures that can then drive future directed 
laboratory experiments. 

We will provide a website [http://biorg.cs.fiu.edu/CAMDA2004], 
which will contain all the motifs and modules discovered by our 
analyses. It will also contain supplementary data, with a list of 
possible conjectures resulting from our analyses.  
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Figure 5. Motif clusters from cell cycle expression time series experiments.  The 637 significant motifs reported by Motif Regressor 
over one cell cycle are clustered by motif coefficients over 46 time points.  This figure was produced using Genesis software 
package by applying hierarchical clustering with Euclidean distance metric on the motif coefficient data [12]. This figure is best 
seen in color. Red shades correspond to positive motif coefficients (and, therefore positive correlations with the expression of the 
downstream genes), while green shades correspond to negative coefficients. The figures indicate the stages of the parasite (R-Ring, 
T-Trophozoite, S-Schizont, M-Merozoite) and the 12 clusters of motifs obtained.   
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