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Abstract 
 

A new computational method to study within-host 
viral evolution is explored to better understand the 
evolution and pathogenesis of viruses. Traditional 
phylogenetic tree methods are better suited to study 
relationships between contemporaneous species, 
which appear as leaves of a phylogenetic tree. 
However, viral sequences are often sampled serially 
from a single host. Consequently, data may be 
available at the leaves as well as the internal nodes of 
a phylogenetic tree. Recombination may further 
complicate the analysis. Such relationships are not 
easily expressed by traditional phylogenetic methods. 
We propose a new algorithm, called MinPD, based on 
minimum pairwise distances. Our algorithm uses 
multiple distance matrices and correlation rules to 
output a MinPD tree or network. We test our 
algorithm using extensive simulations and apply it to a 
set of HIV sequence data isolated from one patient 
over a period of ten years. The proposed visualization 
of the phylogenetic tree\network further enhances the 
benefits of our methods.  

 
 

1. Introduction 
 

The processes involved in intra-host (within a 
single host or patient) and inter-host evolution are 
strikingly different for retroviruses such as HIV [12]. 
In contrast to inter-host evolution, intra-host evolution 
in HIV is characterized by high rates of evolution, and 
by strong evidence of positive selection that favors 
mutations to help the pathogen evade the host immune 
response. Therefore, intra-host evolution exhibits a 
strong temporal structure and the positive selection 
often leads to the extinction of unfavorable lineages. 
Investigating viral evolution within a single host or 
patient over a period of time provides a direct and 
verifiable way to comprehend mutational changes that 
occur during the replication of a genome over many 
generations. From the viewpoint of clinical and 
biomedical research, investigating the intra-host viral 

evolution through serial sampling of the viral strains 
over a period of time may lead to a better 
understanding of the progression of a disease in that 
patient, or assist in the evaluation of drug therapies or 
vaccines for a disease. A recent study performed a 
comprehensive analysis of serially-sampled HIV 
sequence data from nine patients with data collected 
over a span of over ten years [19]. Adaptive evolution 
and the strength of immune selection were 
investigated in another study with samples from 50 
patients [22]. 

Traditional phylogenetic methods were conceived 
for the purpose of inferring the history of a set of 
contemporaneous taxa. In such trees the taxa being 
analyzed appear at the leaves of the tree. The ancestral 
sequences are usually unknown. A conflicting 
situation arises when some of the sequences at the 
internal nodes are available, such as with serially-
sampled viral sequences, but the tree-constructing 
program interprets all of them as contemporaneous 
taxa [15]. Ren et al. pointed out that traditional 
phylogenetic methods do not account for the fact that 
viral strains can branch, become extinct or revive 
(after a period of dormancy) between the sampling 
time periods [13]. Furthermore, the trees resulting 
from applying the traditional methods are hard to 
interpret and analyze (see discussion in Section 7). 
Prior work on phylogeny of non-contemporaneous, 
serially-sampled sequences includes an algorithm 
called sUPGMA, a modification of the UPGMA [1] 
and the work of Ren et al., who modified the 
neighbor-joining method [13].  

An unusually high rate of genetic recombination 
is yet another factor that sets intra-host evolution of 
HIV (and other retroviruses) apart from the evolution 
of other organisms. In this paper we present a 
distance-based algorithm (called MinPD) to infer 
evolutionary relationships (including recombination) 
in serially-sampled sequence data. An important 
feature of the algorithm is that it does not need the 
assumption of a molecular clock or an explicit 
statistical model of evolution. Unlike methods based 
on maximum likelihood (ML) or maximum parsimony 



(MP), our method is computationally efficient and can 
deal with a large number of input sequences. Our 
method assigns ancestor relationships using minimum 
pairwise distance without the use of multiple 
alignments. Ties are broken by resorting to divergence 
information. Recombinant strains are detected using 
sequence fragment matrices, correlations and distance 
rules. The algorithm MinPD was implemented in C. 
The accuracy of the methods was assessed using 
extensive experimentation on both simulated data and 
on real HIV sequence data from the HIV database. 
The simulated data included sequences at the leaves as 
well as sequences at internal nodes of a phylogenetic 
tree. A critical feature of the simulations is that it 
attempts to mimic the fact that, in reality, only a small 
random sample of all the viral strains that may be 
present in a patient is actually sampled. This is 
achieved by simulating a large number of sequences 
and discarding a large fraction of them. Another 
contribution of this work is to show how to 
incorporate recombination into longitudinal 
phylogenetic trees without losing any of its essential 
features and advantages. The resulting phylogenetic 
networks (see Figure 4 for an example) make it 
convenient for a biologist to draw useful conclusions. 
Our work is similar to the work of Ren et al., with the 
significant added feature that it accounts for 
recombination. 
 
2. Recombination 
 

An unusually high rate of recombination is one of 
the evolutionary traits of RNA viruses. During 
recombination, nucleotide sequences are exchanged 
among different RNA molecules. Recombination in 
HIV occurs between two coencapsidated RNA 
genomes during reverse transcription. During DNA 
synthesis the reverse transcriptase, which is prone to 
errors, may switch from one strand to the other, either 
during the first (-) strand DNA synthesis, or during the 
second (+) strand DNA synthesis, as part of the 
mechanism of strand displacement assimilation [3]. If 
the two ancestral RNA genomes are different, we will 
call them the donor strains or donor sequences, since 
the newly synthesized genome will contain fragments 
of each of them, resulting in the creation of the so-
called mosaic genes. Recombination is an important 
mechanism for producing new genomes with selective 
growth advantages, by moving functional parts of 
RNA molecules among different viral strains. It plays 
a major role in contributing and maintaining genetic 
diversity in viral populations. Phylogenetic methods 
that do not account for recombination can make 
incorrect inferences in the presence of recombination 
[8, 17, 18]. It is therefore critical to detect 

recombination. In recent years the development of 
new tools to model and test for recombination have led 
to several studies that compare the different methods 
and assess their accuracy [9, 23]. Methods such as 
bootscanning detect changes in phylogenetic 
relationships to detect breakpoints and donors. In 
bootscanning, the alignment is broken into sequential, 
overlapping segments (or windows) of 200-500 bases, 
which are then input to a program for phylogenetic 
analysis. Bootstrapped phylogenetic trees are built for 
each segment, and finally the bootstrap value for 
placing the queried sequence with each of the 
reference sequences/sequence groups is tabulated and 
plotted along the genome. High bootstrap values 
indicate that the reference sequence in that window is 
a possible donor sequence. Other approaches simply 
report a recombination rate without identifying 
breakpoints or the donor strains.  

A widely used visual tool for detecting 
recombination is Stuart Ray’s SimPlot, which uses the 
bootscanning method [16] and the Maynard Chi-
Square method [5] to reveal potential breakpoint 
positions. This method requires as input in addition to 
the donor sequences, a reference sequence that is 
assumed beforehand to have been generated by 
recombination. An improvement on this method is 
VisRD, another visual detection method that does not 
require the reference strain to be identified in advance 
[20]. The MinPD method, unlike the bootscanning and 
VisRD methods, identifies recombinant strains, 
donors, and approximate breakpoint positions, and 
does not require the intervention of the user.  MinPD 
was explicitly created to study viral quasispecies 
sampled at different time instances. 
  
3. Evolution of Quasispecies 
 

Viral species have an enormous capacity to adapt 
to a changing environment, which may change 
depending on the host’s changing physical condition, 
immune response, and drug-induced responses. The 
term quasispecies is applied to closely related genetic 
variants that differ by small amounts and are affected 
as a group by natural selection. Virologists use the 
term to describe the mutant viral strains living within a 
host. The concepts of quasipecies theory were first 
introduced by Manfred Eigen with the purpose of 
describing the molecular evolution of fast-replicating 
RNA genomes [2]. The evolutionary relationship of 
these quasispecies over a period of time cannot be 
revealed using traditional phylogenetic methods as 
these assume that all species are contemporaneous. 
Thus new methods are needed to group the genetic 
variants and to describe their relationships over time. 



Drummond and Rodrigo modified the 
conventional UPGMA method for analyzing serially-
sampled sequences [1]. The drawback of their method 
is that because it is based on the UPGMA method it 
presupposes that the data has evolved at a constant 
rate. This work and later improvements of Rambaut et 
al. (TipDate program) were further constrained by the 
traditional tree style of handling contemporaneous 
data where the leaves correspond to the input taxa 
[11], and thus do not pay tribute to the time-sequential 
nature of the data, making ancestor-decendant 
relationships somewhat unclear. Ren et al. proposed a 
sequential linking algorithm [13, 14], which is 
computationally inefficient since it is based on the 
maximum likelihood method. A more efficient method 
based on the NJ method was proposed by Ogishima et 
al. in which they were also able to estimate both 
neutral and selective adaptive evolution patterns [7].  

In one of the most comprehensive studies on the 
evolution of HIV sequences by Shankarappa et al., 
samples from nine patients were isolated over several 
time points and studied in relation to the disease 
progression [19]. The study showed a strong 
correlation between the emergence of the syncytium-
inducing (SI) X4 mutant phenotype and the rapid 
decline of CD4+ T-cells and a more rapid disease 
progression. The work of Shankarappa et al. helped to 
raise a host of questions that are of practical 
significance with regard to understanding HIV 
evolution and its relationship to AIDS symptoms. 

We devised MinPD as a tree/network-
constructing tool to study the evolution of viral 
quasispecies and to respond to a myriad of questions 
that may shed light on the progression of the AIDS 
disease, answering questions such as: (1) Which initial 
viral strains did the X4 phenotype mutants originate 
from? (2) Which of the initial strains became extinct 
and when did this happen? (3) Which strains showed 
positive selection, proliferating with descendants 
surviving over extended periods of time? (4) When did 
most recombinant strains appear? Traditional 
phylogenetic techniques have severe limitations in 
addressing such questions.  

Data from patient number 2 used in the paper by 
Shankarappa et al. [19] is also available in the Los 
Alamos database and has been used as a typical 
example throughout this paper. Henceforth in this 
paper, this patient will be referred to as patient S. 
 
4. The MinPD Tree/Network 
 

The MinPD algorithm is based on the concept of 
minimum pairwise distance. It assumes that an 
ancestor of any given taxa must have been sampled at 

one of the previous time points and that the distance to 
the closest ancestor must be the minimum among all 
distances to taxa sampled during all prior time points. 
It utilizes the same criteria to find minimum distance 
fragments to all other sequences to identify possible 
recombinant strains. It also assumes that pairwise 
alignments give less distorted evolutionary distances 
than do multiple alignments 

 
 

4.1.  The Multiple Alignment Problem 
 

Phylogenetic analysis methods ranging from tree-
building methods to recombination detection 
techniques such as bootscanning, employ (as an initial 
step) a multiple sequence alignment of all input 
sequences. Multiple alignments of sequences of 
different lengths must necessarily add gaps, which 
often lead to loss of information and gap scoring 
artifacts, which in turn distort the distance 
computations. In existing distance-based phylogenetic 
methods, all distances are computed using this 
multiple alignment, including the methods that are 
said to use “pairwise distances.” 

Figure 1 shows a multiple alignment of four 
sequences and also two pairwise alignments. The gap 
columns are ignored and do not count as mismatches. 
However, the pairwise distances in the two alignments 
are different. What is striking in the example is that 
the distances between two pairs of sequences exhibited 
a different order in the multiple alignment as 
compared to the corresponding distances in the 
pairwise alignments. It is for the above reasons, that 
we use pairwise alignments that offer a more accurate 
distance measure. 

 
4.2.  The Algorithm 

 
The inputs to the algorithm are: s, a set of 

sequences with associated time periods, k, the number 
of fragments, and t, the threshold for the Pearson 
Correlation Coefficient. We use the Needleman-
Wunsch algorithm to compute an alignment between 
each pair of sequences. For computing pairwise 
distances we use the Tamura-Nei Model (TN93) of 
nucleotide substitution with Gamma-distances [6]. 
Henceforth, whenever we refer to distance in this text, 
we mean the TN93 distance, and calculate this 
distance from a pair of aligned sequences that did not 
undergo a multiple alignment operation. Finally, we 
also assume that if the distances indicate two possible 
candidates for the closest ancestor, then ties are broken 
using divergence values. 



Muliple Alignment 
x. ATTAAAAAAGTGGCAAACAA 
a. ATT - - - - - - GTTGCAA - CCA 
b. ATTGAAG - - - - - - CAAACCG 
c. ATTGAAC - - - - - - CAG -CCG 
 

Pairwise Alignment of a and b. 
a. ATTGTTGCAA - CCA 
b. ATTGAAGCAAACCG 
 
Pairwise Alignment of b. and c. 
b. ATTGAAGCAAACCG 
c. ATTGAACCAG - CCG 

Multiple Alignment Distances 
ma_dist( b, a) = 1/20 < 2/20 = ma_dist( b, c) 

Pairwise Aligment Distances 
pa_dist(b, a) = 3/14 > 2/14 = pa_dist(b, c) 

Figure 1. The problem with multiple alignment 
 
For recombination detection we will assume that 

there is at most one recombination or crossover point 
for any recombination between 2 sequences, limiting 
the number of donor strains to two. The MinPD 
algorithm is given below. 

 
Algorithm MinPD 
1. For each pair of sequences si and sj do 

a. Pairwise align them and compute the 
distance Dist(si,sj) between them. 

b. Partition si and sj into k fragments and 
compute the distance vector DistVec(si,sj) 
of the k distances between the k pairs of 
aligned fragments. Let its ℓth component be 
denoted by Dist(si,sj,ℓ), the distance 
between the ℓth fragments of si and sj. 

2. For each sequence si do  
a. if (si passes the test described below for 

being a recombinant strain) then identify 
two donor strains and choose them as 
ancestors of si.  

b. else choose as ancestor of si the sequence at 
minimum distance from it among sequences 
sampled at all previous time periods. Break 
ties using divergence values. 

3. For each set of sequences with the same chosen 
ancestor, construct a NJ tree and connect the root 
of the NJ tree to the chosen ancestor. 
 
Note that in Step 2a above, any method can be 

used to test for recombination or to identify the donor 
strains. However, below we propose a uniform 
distance-based method to achieve the same goal. Also, 
the divergence between two sequences used in step 2b 
denoted by Div(x,y) is the same as that used in many 
neighbor joining methods and is given by: 

Div(x,y) = distance(x,y) – [r(x) + r(y)]/(n-2), 
where r(x) = Σj distance(x,sj)  is the net total 
divergence of x to all other sequences, and n is the 
number of sequences being considered. 

MinPD Recombination Test for sequence s 
1. For each of the k fragments of s, select the 

sequence si whose ith fragment has minimum 
distance to the ith fragment of s. Put all selected 
sequences in a list called Candidates. These 
sequences are candidates for being donors if s is a 
recombinant strain. 

2. From the list Candidates, let minSeq be the 
sequence with minimum overall distance to s.  

3. For each pair of sequences si and sj from 
Candidates do 
a. if the Pearson Correlation Coefficient (PCC) 

between their distance vectors is above a 
distance threshold, then discard the 
sequence si or sj with the higher overall 
distance. 

4. For all sequences in Candidates, discard those 
that have a fragment with minimum distance in 
the middle of the sequence, and not at either end. 

5. For each sequence si ≠ minSeq, calculate 
si_dom = Σ (Dist(minSeq,s,i) - Dist(si,s,i)) in 
all fragments i where si has the minimum distance 
to the corresponding fragment in s. If si_dom is 
below a distance threshold, then discard si. 

6. If exactly two sequences are left undiscarded, 
then report s as being recombinant with the two 
sequences as potential donors. 
 

4.3.  Fragment and Fragment Distances 
 
The objective of using minimum fragment 

distances in the MinPD algorithm was to reduce the 
number of possible candidates for being recombinant 
donors for a given sequence. For most existing tools 
that detect recombinant sequences, a good selection of 
possible donors is critical and improves the chances of 
getting clear recombination signals. Consider, for 
example, sequence number 028.415, which was a 
sequence of length 1000 nucleotides, generated using 
Treevolve as part of the data sets for our experiments. 



From the data, we knew beforehand that 028.415 was 
a result of the recombination of the donor strains 
008.384 and 002.97 at breakpoint 469. SimPlot, which 
uses the bootscanning technique, requires a minimum 
of 4 and a maximum of 26 sequences to detect 
recombination. However, as illustrated in the top two 
bootscanning graphs in Figure 2, SimPlot was able to 
correctly identify the recombinants when sequence 
004.440 was the fourth sequence used, but not when 
001.1 was used.  

We tried two sets of experiments, one where each 
sequence was divided into 4 fragments and the other 
where each was divided into 8 fragments. It was 
necessary to fine tune the threshold values used in the 
algorithm before we were able to get comparable 
performance in the two sets of experiments. The 
bottom of Figure 2 shows two graphs, one for the 4 
fragment case, and one for the 8 fragment case. Each 
graph represents the components of the distance vector 
(with respect to reference sequence 028.415) of the 
candidate sequences selected in Step 2 of the 
recombination test for sequence 028.415. Thus only 
the sequences that have at least one fragment at a 

minimum distance from the corresponding fragment of 
028.415 are represented. 

The recombination test described in the MinPD 
algorithm above was able to successfully identify the 
recombination donors and the fragment within which 
the breakpoint may be located. Note that our algorithm 
works under the assumption that there is at most one 
recombination breakpoint. This is perhaps justified 
given that HIV averages about three recombination 
events for an entire genome and that new strains are 
produced only if the recombining strains are 
genotypically distinct on both sides of the breakpoint. 

 
5. Experiments with Simulated Data 

 
To test the MinPD algorithm, two synthetic data 

collections were generated, the first with 
recombination, and the second without. The first 
collection was generated using SeqGen1.2.5., and was 
enhanced by the twister randomization function of 
SeqGen 1.2.7.  

 
  

  

  
 

Figure 2. TOP: SimPlot bootscanning graphs for reference sequence 028.415, but with different 
“donor” sequences. Upon visual inspection, recombination is clear in the left graph with breakpoint 
somewhere in the middle of the sequence; in the right graph the recombination signal is lost due to 
a bad selection of putative donor sequences. BOTTOM: line charts of MinPD distances vectors for 
reference sequence 028.415 with 4 and 8 fragments respectively. 

 



 
Table 1. Experiments with non-recombinant sequences 

 

 Runs Sequence 
Length Match Subtree 

Relative Errors 

 100 600n 90.9% 8.8% 0.37% 
 100 1000n 90.9% 9.1% 0.06% 

Total/Average 200  90.9% 8.95% 0.22% 
 
Each of the 100 data sets in this collection 

contained 1023 sequences from the leaves and internal 
nodes of a template tree, out of which an average of 32 
were randomly chosen (to simulate sampling from a 
population) and was input to the MinPD algorithm. 
The results seen in Table 1 show that more than 90% 
of the time, MinPD chose the correct closest ancestor 
(referred to in the table as a Match). A subtree relative 
(a direct descendant of the correct closest ancestor) 
was chosen about 9% of the time. All other outcomes 
were counted as errors. The errors included cases 
where a grand ancestor (ancestor of actual closest 
ancestor) was picked, although multiple mutations on 
the same location during evolution can lead to 
“backward” substitutions and to a grand ancestor 
being genetically closer to the queried sequence. The 
overall error rate was less than 0.5%. Note that picking 
a subtree relative is not classified as an outright 
“error” because we consider it as a minor deviation 
from the correct relationship. 

The second data collection consisted of 100 data 
sets each containing about 500 sequences (or slightly 
more, depending on how many recombination events 
occur) generated using the software package 
Treevolve version 1.3. Treevolve was modified to 
include the Twister randomization function of SeqGen 
1.2.7., and to output sequences at the internal nodes. 
Treevolve evolves a sequence using Hudson’s 
coalescent method with recombination [4]. As before, 
to mimic the actual sampling from large populations, 
an average of 45 of the 500 or more sequences were 
randomly chosen for input to the MinPD algorithm. 

The sets of data were simulated under the HKY model 
of evolution with the alpha parameter of the gamma 
distribution set to 0.5. A transition/transversion ratio 
of 4 was chosen and the base frequencies were set to 
A=0.22, C=0.18, G=0.40, and T=0.2. The results of 
our experiments on the simulated data are shown in 
the table below. In order to get realistic data, a 
mutation rate of 0.5×10-4 and a population growth rate 
of 0.75×10-4 were selected. The recombination rate of 
0.1×10-7 was selected since for the given mutation 
rate, higher recombination rates gave enormously long 
lineages. This is because although coalescent events 
result in a reduction of the number of lineages by one, 
recombination events cause an increase.  

Table 2 shows the results of these experiments. 
The labels on the columns are explained below. In the 
presence of recombination events, the ability of the 
MinPD algorithm to correctly establish phylogenetic 
relationship among the input sequences is adversely 
affected. Even on non-recombinant sequences, the 
percentage of correct predictions dropped from over 
90% (Table 1) to under 75% (Non Rec Matches) in 
Table 2. In each data set, about 3-5% (Rec 
Count/Total Count) of the strains sampled were 
recombinant strains. Of these, about 65% (Rec 
Detected) were correctly detected as being 
recombinant. The donors were correctly identified in 
over 50% (Rec Matches) of those cases. In about 15% 
(Rec Errors) of the cases, the program identified the 
donors incorrectly. In the remaining 31% (Rec Subtree 
Relative) of the cases, a subtree relative was 
determined to be the donor. Of the over 4500 

Table 2. Experiments w

# 
Frag 

Thres
holds Runs Len Total 

Count 
Non Rec 
Matches 

Non Rec 
Subtree 
Relative 

4 0.75 100 600 4540 74.4% 20.9% 
8 0.67 100 600 4540 73.4% 20.6% 
4 0.9 100 1000 4671 72.8% 21.1% 
8 0.8 100 1000 4674 74.3% 19.9% 

Total 400   73.7% 20.6% 
ith recombinant sequences 
 
Non 
Rec 

Errors 
Rec 

Count 
Rec 

Detected 
Rec 

Matches 
Rec 

Subtree 
Relative 

Rec 
Errors 

False 
Pos 

0.7% 149 67.1% 49% 37% 14% 0.6% 
0.6% 149 63.3% 55.8% 26.3% 17.9% 1.9% 
0.3% 212 67.9% 56.9% 27.1% 16.0% 0.8% 
0.5% 199 61.3% 52.5% 35.3% 12.3% 0.8% 

0.5% 177.3 64.9% 53.6% 31.4% 15.0% 1.0% 



sequences (Total Count) in the 4-fragment (#Frag) 
run, only 39 non-recombinant sequences were reported 
as being recombinant sequences by the MinPD 
program, accounting for a 1% false positive rate (False 
Pos). 

The results were somewhat weaker when the 
sequences were divided into 8 fragments instead of 4, 
which required additional fine-tuning of the thresholds 
chosen for the program. Note that when the sequences 
were divided into 8 fragments, there were more 
potential candidates for the choice of donors, which 
complicates the selection of correct donors. The 
threshold for PCC was set to values between 0.67 to 
0.9 and the threshold for si_dom, was set to the 
average of the distances from si scaled by the quantity 
n/k, where k is the number of fragments, and n the 
number of fragments where si has a minimum 
distance. We conjecture that more fine-tuning can 
further improve the program’s sensitivity, and that 
sliding-window methods could improve the 
specificity. 

It would be reasonable to conjecture that detecting 
recombination signals is harder with shorter 
sequences, although this was not observed in our 
experiments with sequences of length 600. It is 
possible that this is balanced out by the fact that there 
is a corresponding lower probability of recombination 
events in smaller sequences. 

 
6. Experiments 
with Serially-
sampled HIV 
Sequence Data 
 

The final evaluation 
of the MinPD algorithm 
was performed by 
constructing the 
phylogenetic network 
for HIV sequence data 
from patients available 
from the Los Alamos 
HIV database. The viral 
strains were sampled 
and sequenced for a 
single patient (patient S) 
at month numbers 5, 12, 
20, 30, 40, 51, 61, 68, 
73, 80, 85, 91, 103, and 
126. The resulting 
“longitudinal” 
phylogenetic network is 
shown in Figure 4. Each 
sequence is labeled with 
the month number and 

an identification number. There is no reasonable way 
to evaluate the correctness of the resulting network. 
Therefore, we focus our discussions on how well it 
correlates with the emergence of X4 strains (see 
below), and on how the resulting network makes it 
convenient to draw a variety of conclusions. It is 
worthwhile to compare the difficulty of drawing 
similar conclusions from the ML tree generated for the 
same data, as shown in Figure 3 below. The 
longitudinal network shown in Figure 4 is drawn from 
left to right and requires that sequences sampled at the 
same time be vertically aligned. This does not mean 
that all sequences undergo the same amount of 
evolution from the root sequence. On the contrary 
every link between a parent and child node consists of 
straight-line segments. Horizontal thick lines are a 
measure of the amount of evolutionary changes that 
take place between the sequences. Horizontal dashed 
lines are added merely to achieve the vertical 
alignment of the nodes corresponding to 
contemporaneous sequences. The only purpose of 
vertical lines is to ensure the correct connectivity.  

All sequences marked with a red “x” have a 
lysine (K) or arginine (R) at position 320, a mutation 
that is predictive of the X4 phenotype. With the help 
of immunological data, it was shown by Shankarappa 
et al. that patient S’s CD4+ and CD3+ T-cell numbers 
fell rapidly during the emergence of X4 genotypic 
Figure 3. Maximum Likelihood (ML) tree of serially-sampled HIV 

sequence data from patient S. 



strains [19]. The longitudinal network makes it 
convenient to understand how widespread the X4 
genotype is in each sampling period.  

Furthermore, it is interesting to note that patient S 
was prescribed antiretroviral drugs called zidovudine 
(ZDV) and stavudine (d4T) before the 103 months 
sampling period, and a few months later was 
prescribed lamivudine (3TC). The administering of 
this drug therapy coincides with a decrease in the X4 
genotypic strains [19], as is easily observed in the 
MinPD network in Figure 4. 

Before the large-scale emergence of the X4 
genotype (up to 51 months), the MinPD network 
suggests that three groups of genetically similar 
quasispecies sequences were present in the population. 
One group became extinct at 51 months, while the 
other two groups each contributed a sequence, 051.19 
and 051.16, that recombined to create strain 061.30, 
the possible closest ancestor of the large X4 
quasispecies that proliferated in the ensuing years. 

In the second half of the network corresponding to 
time periods 61 to 126 months, only two groups of 
quasispecies, linked by recombinant sequence 073.12, 
were identified by MinPD, one of the groups 
becoming extinct probably at the onset of 
antiretroviral therapy with 091.19 as its last sampled 
sequence, and the other group formed by descendants 
from recombinant sequence 061.30, giving rise to a 
mixed population of X4 and non-X4 genotypic strains. 
It is also interesting to note that the first X4 mutations 
that appear at 30 months have a relatively large 
genetic distance to its ancestor in comparison to the 
contemporaneous strains, suggesting a higher rate of 
mutations for those particular strains. It should be 
noted that the above conclusions are made more 
convenient by the way the MinPD network is 
presented. 

To make the comparisons more clear, we show 
the ML tree generated for the same data. We aligned 
65 sequences from the first 61 months using ClustalX. 
Subsequently we did a heuristic search for the ML tree 
using PAUP (version 4b10) [21]. If the horizontal axis 
is to be thought of as time, then the ML tree shown in 
Figure 3 exhibits several anomalies with strain 051.19 
(sampled at 51 months) appearing after strain 061.31 
(sampled at 61 months), and strain 030.01 appearing 
after strain 051.51.  

Furthermore recombinant data cannot be 
identified in a traditional phylogenetic tree, but for the 
fact that it often has very long branches. In the MinPD 
network, recombinant sequences are linked to their 
donor ancestors by blue lines and the breakpoint 
position is added left and next to the recombinant 
sequence. The recombination results output by MinPD 
were studied in detail using graph analysis, and only 
recombination relationships with the strongest signals 

were added to the network. Sequences with weaker 
recombinant signals were underlined in blue. A 2002 
study of in vitro HIV-1 sequences and recombination 
site analysis suggested that the C2 env domain was a 
particularly “hot” region for recombination [10]. The 
data of patient S does not contain the entire C2 region 
but includes the regions V3, C3, V4, C4, and V5, all 
of which were also found to have several 
recombination sites. Upon inspection of the MinPD 
network it can be observed that most recombinant 
sequences and signals were detected at the 61(2) and 
68(2) months - these seems to correlate with the X4 
emergence. At 85(3) months there is another surge in 
recombination signals. The recombination signals are 
markedly stronger for the sequences with the X4 
genotype than for those without which corresponds 
with the higher genetic diversity of those time periods 
[19]. 

 
7. Conclusions 

 
In this paper we have described a new method to 

study the phylogenetic relationship of serially-sampled 
quasispecies and to visualize the relationships. We 
explained our decision to avoid multiple alignments in 
order to get better distance measures. We presented 
results of extensive computer simulations in which we 
mimic random sampling of sequences. We also 
discussed how to interpret the results of our algorithm 
in the context of viral disease progression and showed 
how to incorporate the information in the visualization 
of the tree. We studied a method to detect 
recombination in serially-sampled data and presented 
the results of simulation experiments. Our method is 
especially helpful in selecting putative recombinant 
sequences among a large set of sequences. At this 
point the selected sequences may be analyzed using 
another tool to find exact breakpoints and detect more 
than one crossover, but in the cases were the sequence 
length is short the presence of more than one 
crossovers is more seldom and our method will return 
good results. Applying our method on simulated 
recombinant data returned a 65% success rate and few 
false positives. 

Several issues about the MinPD tree remain to be 
investigated. Is it possible to improve the 
recombination detection by a better choice of 
threshold values and/or distance rules, or by plugging 
in other recombination methods? The divergence 
tiebreaker was developed for selecting one common 
ancestor between two or more possible ancestors with 
identical distances to the reference sequence. Can a 
tiebreaker be developed to choose from two or more 
potential donor sequences? 

 



 
 

Figure 4. MinPD Tree of Patient S. Solid lines indicate distances, while dotted lines serve to extend the linking relationships. Each sequence is
labeled with the month number and an identification number.  Sequences with a mutation predictive of the X4 phenotype are written in red font and
also marked with a red “x”. Blue dashed lines are used to link recombinant sequences with their predicted donor sequences. The small numbers in
blue next to branch points in the tree are the predicted (approximate) recombination breakpoint positions. Sequences with weaker recombinant
signals are underlined in blue, but are not linked to their putative donor sequences. Note that the sequences were divided into 8 and 4 fragments for
the recombination analysis.  
 
 



What similar trends will emerge when we apply 
the MinPD algorithm to all the nine patient data sets 
used in the analysis by Shankarappa et al.? The 
MinPD tree and underlying data invites a more 
thorough evaluation of the information contained in 
serially-sampled quasispecies data.  
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