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This paper presents a novel approach to epitope prediction based on the clustering of 
known T-cell epitopes for a given MHC class I  allele (HLA-A*0201). A combination of 
association rules (ARs) and sequence-structure patterns (SSPs) was used to do the 
clustering of training set epitopes from the Antijen database. A regression model was then 
built from each cluster and a peptide from the test set was declared to be an epitope only 
if one or more of the models gave a positive prediction. The sensitivity (TP/TP+FN) of 
the AR/SSP regression models approach was higher than that of a single regression 
model built on the entire training set, and was also higher than the sensitivity measures 
for SYFPEITHI, Rankpep, and ProPred1 on the same test set.  
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1. Introduction 

The major histocompatibility complex (MHC) molecules are cell-surface 
glycoproteins that bind peptide fragments derived from intracellular and 
extracellular proteins. MHC proteins are divided into two major subfamilies, 
class I and class II. Each allelic variant of a class I MHC molecule selects 
binding peptides based upon the complementary structure of the peptide and the 
polymorphic pockets within the MHC binding groove. These peptides, usually 
about 8 to 10 residues in length, are derived from cytosolic proteins (which are 
cleaved by proteosomes), and are translocated to the endoplasmic reticulum by 
peptide transporters associated with antigen processing before final association 
with MHC class I molecules. The peptide-MHC complexes are then transported 
to the cell membrane where they can be recognized by CD8+ T cells.  MHC-
bound peptides that are recognized by T-cells are referred to as epitopes. 

Structurally, the N- and C- termini of the bound peptide are buried in the 
binding groove of the MHC class I molecule and the central peptide region 
bulges slightly outward.  Polymorphic side-chains define six pockets (A-F) in 
the MHC molecule which interact with some of the peptide side-chains [1, 2]. 
Typically, most of the epitopes associated with a particular MHC class I allele 
(such as the commonly occurring and widely studied HLA-A*0201 allele) are 
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related by sequence and share characteristic structural motifs [3, 4]. In HLA-
A*0201 MHC /peptide complexes, the binding of hydrophobic residues between 
peptide position 2 (P2) and HLA-A*0201 pocket B and between the peptide C-
terminus (P9 for nonamer peptides) and pocket F are the largest contributors to 
the high-affinity binding. These two positions (the “anchors”) have been found 
to be necessary, but not sufficient, as the predictions based solely on the 
residues at these positions are only about 30% accurate [5].  Due to the 
imprecision of sequence binding motifs [6], a number of profile-based methods 
have been developed for epitope prediction, such as SYFPEITHI [7], Rankpep 
[8], and ProPred1 [9].  The predictive ability of all these single profile methods 
is limited by their critical dependence on the assumption that each amino acid 
acts independently to generate positive or negative effects to binding energy 
[10]. Despite their short length and relatively constrained termini, substitutions 
in the center of a peptide bound to class I MHC proteins have frequently been 
found to affect the positions of all of the residues within the peptide [11, 12]. 
Furthermore, the concept of position is problematic when comparing the binding 
patterns of different length peptides.  As a result, profile methods for epitope 
prediction typically use separate position-specific scoring matrices (PSSMs) for 
epitopes of different lengths.   In this paper, we extend the use of separate 
models by clustering MHC class I epitopes of a given length (nine) based on 
evidence of correlated substitutions within each putative cluster.  

What substitutions in the epitopes are correlated? In order to discover and 
characterize the nature of the interactions between substituted residues in active 
(i.e., immunogenic or functional) MHC/peptide complexes, a study was 
undertaken here of the patterns of association rules (ARs) found by applying the 
Apriori data mining algorithm to all known T-cell epitopes in the Antijen 
(Jenpep) database for epitopes of length nine (nonamers) that are bound by the 
HLA-A*0201 allele. In the more general problem of protein function prediction, 
the use of association rule mining has shown promise in correlating protein 
sequence, structure and function [13]. The Apriori algorithm used here is an 
approach for the discovery of association rules in large sets of items (‘itemsets’) 
and was originally developed for transactional data [14, 15].  The goal of 
Apriori is to find all itemsets, i.e., frequent subsets, that have transaction support 
above a specified threshold. In this context, the itemset is a specific set of 
residues at fixed positions within the peptide sequence, and the support is the 
percentage of peptides in the database that contain the given residues at the 
specific positions. To obtain associations between positions in the peptide, the 
Apriori association rule mining attempts to find associations for all residue 
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itemsets. An association rule is an implication of the form Xi →Yj[s, c], where 
X and Y are residues, i and j are positions in the peptide, s% is the support of 
the rule and c% is the confidence.  For example, the rule Gly5→Gly3[10.1, 
36.4] states that of the 10.1% of the time that Glycine occurs at the fifth position 
of the peptide, a Glycine is also found at the third position 36.4% of the time. 
Through the discovery of association rules in the training set of nonamer 
peptides that are known to bind the HLA-A*0201, we have attempted to find 
sets of residues that frequently occur together, so as to enable the generation of 
sequence patterns from the ARs. Epitopes matching these sequence patterns 
were then grouped into clusters according to their conformance with observed 
patterns of sequence and structure  derived from a structural analysis of all 
known HLA-A*0201/peptide complexes in the Protein Data Bank (PDB). We 
hypothesize that it is only within these structurally related clusters of known T-
cell epitopes that independent substitutions of residues occur.  To test this 
premise, we generated one regression model from each of these clusters and 
used them for epitope prediction against a separate test set.  We then compared 
the results from this ensemble method with the performance of a single 
regression model generated from the unpartitioned training set. 

2.  Procedures 

2.1 Structure Analysis 

In a previous work, we showed how to extract patterns with both sequence and 
structure components (sequence-structure patterns, or SSPs) from a set of 
related PDB structures [16]. In order to characterize and classify the observed 
conformations of nonamer peptides bound to the MHC class I HLA-A*0201 
allele, we applied this method to twenty-five HLA-A*0201 MHC/peptide 
complexes from the PDB.  The RMSD was measured between each pair of 
protein complexes using only the Cα atoms of those MHC residues which came 
into contact with the peptide backbone.  The complex with the smallest average 
RMSD (1eey) to all the other complexes was then used as a structural template 
for the alignment of the other MHC complexes. Pocket B is the binding site for 
relatively small, branched aliphatic residues at the peptide anchor position P2.  
Pocket D is formed by residues Tyr99, His114, Leu156 and Tyr159.  Although 
other HLA alleles select for basic or acidic residues due to the presence of either 
an Asp156 or Arg156, respectively, the uncharged Leu156 of HLA-A*0201 
allows a large variety of side-chain binding configurations.  Examples of the 
variety of peptide backbone and sidechain conformations allowed by the HLA-
A*0201 allele are illustrated in Figure 1.  
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a. 1i7u 

 

b. 1oga 

 
c. 1ilf 

 

d.1i7r

e. 1jf1 

 

f. 1jht  

Figure 1a-f: A variety of observed MHC/peptide conformations at the interface between peptide 
positions P3-P5 and HLA-A*0201 pocket D. Pocket D residues sidechains are shown as space-filled 
molecules.  The MHC binding groove is shown between the two α-helices and running from the 
background (upper left) to the foreground (lower right) in all the figures. 

Among the MHC/peptide complexes in the PDB, the majority of peptide 
residues at position P3 have large neutral side-chains, such as Phe, Trp and Leu, 
which lie flat across the pocket, parallel to the base of the MHC binding groove 
(Figures 1a. and 1b.). Another allowable conformation is to have a Lys at P3 
span pocket D and make a salt bridge with Gln155 (Figure 1c.).  In some cases 
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Pocket D is filled by a peptide residue from positions P4 or P5 (Figures 1d. and 
1e.).  When P3 is a Gly residue, Gln155 is able to make a hydrogen bond with 
the backbone (Figure 1f.). The conformation of 9-mers 1i7u, 1ily, 1i7r and 1b0g 
allows the formation of a hydrogen bond between the backbone at peptide 
position P3 and His70. 

Although the backbone of peptides bound to MHC class I alleles bow 
outward in the middle, the side-chain of the residue at either positions P5 or P6 
is usually oriented downward to interact with the peptide-binding groove. In 
HLA-A*0201, the large residues Arg97 and Phe9 fill pocket C, such that the 
side-chains from P5/6 must bend toward pocket D.  Gln155 is also able to form 
bonds with charged residues at P5/6, thereby allowing a wide variation in the 
allowable residues in this range of the peptide. The structures 1oga and 1hhi 
have a hydrogen bond between the Thr sidechain at P8 and Lys146. At the C-
terminal position of the bound peptide, a network of conserved residues at 
pocket F stabilizes the MHC/peptide complex.  The Tyr116 of HLA-A*0201 
restricts entrance to the hydrophobic pocket and selects strongly for the singly 
branched aliphatic residues Leu or Val. 

By comparing the alignments of the peptide backbones and the patterns of 
hydrogen bond formation, eight binding peptides SSPs were identified (Table 
1). Within these structural clusters, the pairwise RMSD of the Cα atoms was 
less than 0.50 angstroms. These SSPs were used later to guide the clustering of 
association rules (ARs) which were generated as described below. 

Table 1:  HLA-A*0201-bound peptide SSPs 

Sequence-structure pattern (SSP) Structures Addl. H-bonds 

[FLY]L[SK][AE][PL]V[GH][GI][VL] 1eey, 1ily, 1eez Position 6/ 
Thr73 

GILGFVFTL 1oga, 1hhi Position 8/ 
Lys146 

[FIY]LKEPVHGV 1ily, 1akj, 1hhj, 
1ilf 

Position 7/  
Gln155 

[FA][AL][PW]G[FV][FV]P[VY]L 1i7u, 1i7r, 1b0g, 
1i7t 

Position 3/ 
His70 

LLFGY[AP][VR][AY]V 1qrn, 1qsf, 1qse, 
1bd2, 1a07 None 

[LM]L[FL][GS][VY]P[LV][LY][VL] 1duz, 1hhk, 2clr, 
1im3 None 

TLTSCNTSV 1hhg Position 8/ 
Asp77 

ALGIGILTV 1jht None 
IISAVVGIL 1qr1 None 
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2.2 Association Rule (AR) Mining 

In our initial attempts to use association rule mining on the MHCPEP database 
[17] and on a database of known HLA-A*0201-binding peptides published by 
Doytchnova [18], we discovered that virtually all of the highest confidence rules 
resulted from relatively small sets of proteins in which only one or two residues 
were changed by the original researcher and the remainder were held constant as 
a template.  In general, these rules had little or no correspondence to known 
patterns of peptide structure or residue interaction. Subsequent studies with the 
larger Antijen (formerly JenPep) database [19] resulted in a number of rules 
which did correspond to sequence motifs generated by a structure analysis of 
known HLA-A*0201/peptide complexes that had been deposited in the Protein 
Data Bank (PDB).  From these exploratory studies, a complete analysis of 
patterns of association between the residues of known epitopes of length nine of 
the HLA-A*0201 allele was undertaken. 

To avoid the generation of biased ARs of high confidence, a number of data 
preprocessing steps were required.  Although, in theory, there was no problem 
with duplicate transactions, in practice the determination that identical peptides 
were truly discovered independently could not always be completely 
established. Therefore, it was decided that duplicate peptides were only to be 
counted once, even in the case where they had been discovered independently 
from separate genomes. A more serious problem was detecting the presence of  
peptides generated by residue substitution studies.  The only way to resolve this 
issue was to track the reference or references provided by the Antijen database 
for each residue, and read the methodologies of the original experiments.  Since 
this step was required for each of the 400 candidate members of the data set, the 
following procedure was established: 
 

1. Epitopes discovered from scans of either actual or putative genes from 
genomic DNA were retained in the training set.  

2. If the originating research was primarily a study of MHC-binding, in 
which the candidates were synthesized according to an experimental 
procedure, then these peptides which were determined to be 
immunogenically active (epitopes) were moved from the training set to 
the test set.   

 
This procedure left 250 naturally occurring nonamer peptides in the training 

set and 71 artificial known epitope nonamer peptides in the test set.  Ideally, 
training set epitopes would only be those whose discovery resulted from 
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completely unsupervised scans of all possible peptides from the source genome.  
However in practice, almost all workers in this area utilized one or more allele-
specific sequence motifs to narrow their search.  In the case of the HLA-A*0201 
nonamers under study here, these motifs were often some variation of x-[LIM]-
x(6)-[LV], where the second residue was either Leu, Ile or Met, and the last 
residue was either Leu or Val.  As a result of this unavoidable bias built into the 
database, discovered associations between the second and ninth positions had to 
be rejected as artifacts of the candidate generation process, as discussed below.  

The Apriori implementation by Christian Borgelt [20] was used for the 
association rule discovery.  Initially, both the confidence and the support levels 
were set to 10%  in order to generate as many rules as possible.  The low 
support was also necessary to detect faint associations between small groups of 
residences (referred to variously as “substitution groups” or “equivalence 
classes”) that are known to substitute for each other with high frequency [21].  
For example if  either I, L or V (at position 5, say) occurred with a W (say, at 
position 3) with a support of 40% and with high confidence, then the actual 
support of the rules I5→W3, L5→W3 and V5→W3 would occur with a support 
of some fraction of the 40% support for the group as a whole. Rules generated 
using the parameters above were then sorted by confidence level and analyzed.  
The minimum confidence level was subsequently raised to 20%, as the 
combination of (relatively) low support and confidence below 20% resulted in 
matching itemsets that were too small to be used for clustering purposes. Using 
a support parameter of 10% and a confidence parameter of 20%, a total of 80 
candidate two-way association rules were generated. As discussed previously, 
the candidate epitopes contained a known bias between the residues in positions 
two and positions nine.  As a result, all association rules between these positions 
were discarded, irrespective of confidence.  The remaining question was how to 
interpret rules between specific residues at one of the anchor positions and 
specific residues at other positions of the peptide.  It was decided that these 
rules could be retained if the support of this type of rule was significantly higher 
(50%) than the support of the anchor residue alone.  Any other rule containing a 
residue known to occur alone at support level of over 10% (that is, irrespective 
of any associations with other residues) was also subjected to this increased 
support requirement.  As a result of these procedures, 36 of the 80 candidate 
rules were discarded, leaving 44 association rules of interest.  
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2.2.1. Single Regression Model Approach 

Regression models have been used previously for predicting binding affinity 
[10, 18]. In this paper, we built regression models based on assumption of 
independent binding where the response variable is either 1 for the epitopes or 0 
for the non-epitopes (eq. 1). 

  (1)  ε++= ∑
=

9

1i
ipconstY

For control purposes, we built a single regression model that used all 250 
peptides in the training set. A total of 250 non-epitopes (negative training cases) 
were generated randomly since a randomly generated peptide was very unlikely 
to be an epitope. We applied the model to the test data and obtained precision 
and sensitivity measures for the model at a threshold value of 0.5. A test peptide 
was declared to be an epitope by the program, if its predicted value was greater 
than the threshold. 

2.2.2. AR/SSP Regression Models Approach 

A total of 44 ARs of confidence greater than 20% were identified as described 
above.  Each of these ARs were converted to a sequence pattern (AR sequence 
pattern) and used to search both the training set and the PDB sequences.  For 
example, the association rule 7A→4G would give rise to the sequence pattern 
XXXGXXAXX, where the letters X represent an arbitrary residue. The results 
of these searches (the clusters) were merged based on the following criteria: 

1. The AR sequence pattern matched one of the SSPs derived from the 
structural analysis.  

2. The set of peptides matched by the AR sequence pattern overlapped with at 
least 25% of the peptides in an existing cluster. 

3. One or more consensus residues existed at unconstrained positions within 
the cluster, which matched the corresponding positions of an existing 
cluster. 

The first of these rules followed from the hypothesis that a specific peptide 
backbone structure would constrain the allowable residues at one or more 
positions, thereby creating a residue composition bias that should be detectable 
by association rule mining of a sufficiently large database of known epitopes.  
The second rule was formulated to avoid a large number of clusters that might 
be too small to allow the generation of a regression model.  If there was an 
approximately 25% overlap between clusters that did not match PDB sequences 
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that were known to have separate structures, it was determined that these 
peptide clusters were likely to be structurally related, and could therefore be 
clustered together.  The third rule above also arose from the need to consolidate 
the clusters.  If a residue identity consensus emerged at the positions 
unconstrained by the matching sequence patterns, it was determined that these 
clusters were likely to be structurally related and were therefore merged. 

A total of eleven clusters were generated by this method from 119 of the 
250 training set epitopes which matched one or more of the 44 high confidence 
ARs. The largest of these clusters was 38 epitopes and the smallest was 5 
epitopes. Five clusters from this group also corresponded to a previously 
identified SSP. The twelfth cluster consisted of the remaining 131 members of 
the training set which did not match either a SSP or an AR.   

An example cluster is the set of sequences: AIIDPLIYA, AIIRILQQL, 
AIMDKNIIL, GIAGGLALL, GIGILTVIL, GILGFVFTL, GILTVSVAV, 
IISAVVGIL, KIFGSLAFL, LIGNESFAL, QILKGLLFL, RIIYDRKFL, 
RILQQLLFI, TILLGIFFL, VIYQYMDDL, and YIGEVLVSV which matched 
one or more of the association rules: 2I→9L [10.4%,  46.2%], 2I→3L [10.4%, 
 30.8%] and  2I→6L [10.4%, 26.9%] The rule 2I→9L also matched the SSP  
IISAVVGIL (1qr1).  

The peptides from each cluster were then paired with the non-epitope 
training cases, as described above, to use as training data.  Twelve separate 
regression models were then built based on the training data sets. A testing 
peptide was declared to be an epitope only if one or more of the twelve 
regression models gave a positive prediction.  For each model a value greater 
than the threshold of 0.5 was used to categorize the candidate peptide as an 
epitope, as was done for the single regression model above. Precision and 
sensitivity scores using the single regression model approach, the AR/SSP 
regression models approach, as well as for the SYFPEITHI, Rankpep and 
ProPred1 methods can be found below in Table 3. 

3. Results 

The results from the above experiments are summarized in Table 3. The 
performance of the ensemble of models constructed from AR/SSP clusters had a 
marginally higher sensitivity than the regression model constructed the training 
set as a whole.  Although the precision values displayed by the other profile 
methods were all slightly higher than for the AR/SSP method, the more critical 
sensitivity values were significantly lower.  Rankpep, in particularly showed 
poor results on the test set.   
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Table 3:  Sensitivity and precision measures for the AR/SSP and 
Single Model methods compared with three other profile methods. 

 Sensitivity Precision 

Single Model 93.1% 83.8% 

AR/SSP Models 94.4% 81.9% 

SYFPEITHI 77.8% 100% 

Rankpep 13.9% 83.3% 

ProPred1 70.8% 91.1% 

 
In order to verify the independence of the test set, we also performed a 5-

fold cross-validation using the single regression model using all known epitope 
samples (i.e., training set combined with test set). The 5-fold cross-validation 
error rate ((FP+FN)/(TP+TN+FP+FN)) was 5.4%, and the 5-fold cross-
validation precision and sensitivity values were 94.3% and 95.0%, respectively. 
Since the figures for precision and sensitivity were even higher than with the 
test set alone, it supports the claim that the choices of training and test sets used 
in our experiments were relatively unbiased.  

The rejection by SYFPEITHI of all the randomly generated peptides in the 
negative test set is strong evidence that none of these were true epitopes. 

4. Discussion 

In this paper, the term sequence-structure pattern (SSP) is given to refer to a set 
of proteins which contain both a common sequence motif and a structural 
template.  If a model assumes that residues are allowed to substitute for one 
another, independent of substitutions at other positions in the protein, then a 
static backbone configuration is also a corollary assumption. By examining the 
peptide sequences associated with HLA-A*0201/peptide structures, we have 
attempted to identify novel sequence motifs that can be explicitly associated 
with a specific binding conformation.  Since, by definition, independent 
substitution implies that there are no associations between the residue identities 
of distinct positions within the peptide, we have also utilized the technique of 
association rule mining to discover when this positional independence is 
violated.  Although the initial results of this application of association rule 
mining to the epitope prediction problem are promising, a number of problems 
remain to be solved before this technique can be applied more broadly. In 
particular, this method is dependent on a large database of known epitopes for a 
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given allele.  The HLA-A*0201 allele was chosen primarily because it is the 
most widely studied, and had the largest collection of both associated epitopes 
and of determined allele/peptide structures in the PDB.  Clearly this prediction 
method would be more problematic using a smaller database which possibly 
could not be clustered effectively.  A related problem is the supervised nature of 
the association rule clustering used here, which depended heavily on 
associations discovered independently through an analysis of known structures.   

Although the very nature of the immune system and the degree of MHC 
polymorphism has proved to be an obstacle for the generation of sufficient 
MHC binding and T-cell epitope data for data mining approaches to epitope 
prediction to date [6], the growth of databases such as Antijen are sure to 
facilitate this type of data-driven approach in the future. By clustering peptides 
containing known sequence-structure patterns, association rules, or both, we 
have attempted to re-establish the prerequisite conditions under which 
independent substitution can be assumed. 
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