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Supervised pattern discovery techniques have been successfully used for motif detection. 
However, this requires the use of an efficient training set. Even in cases where a lot of 
examples are known, using all the available examples can introduce bias during the 
training process. In practice, this is done with the help of domain experts. Whenever such 
expertise is not available, training sets are usually picked at random. We present a new 
strategy for designing good training sets that uses phylogenetic trees to automatically 
reduce the bias in training sets. When applied to helix-turn-helix motif detection, we 
show that the technique improved the error rates over a random choice of training set. 
More specifically, false positive rates show a marked improvement. 

1.  Introduction 

Motifs are small conserved regions in related proteins that exhibit similar three-
dimensional folds and share functional properties. Motif detection is an 
important facet of protein classification and functional annotation. Motif 
detection methods have been reviewed extensively and can be classified broadly 
as consensus-based methods, profile-based methods, and methods based on 
pattern discovery [1, 10, 19].   

Pattern discovery techniques have been successfully used to tackle motif 
detection problems in protein sequences [2, 3, 7, 12, 14, 16-18]. Both 
supervised and unsupervised techniques have been developed for this problem 
[12, 16]. The supervised pattern discovery approach, as used in motif detection, 
strives to find statistically significant patterns that are present in known 
examples of the motif and that are known to be absent in sequences that are not 
examples of the same motif. The compilation of such significant patterns is then 
used to design a detector for that motif.  

One of the main problems related to supervised pattern discovery (and 
machine learning, in general) is the need for identifying a good training set [11]. 
Pattern discovery is a learning process and the training set is the very source of 
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knowledge for the learning program. Thus, the selection of the training set is 
critical to the success of the learning phase, and consequently, to the success of 
the detection or classification algorithm.  

There are several problems associated with the selection of appropriate 
training set [11]: 
1. Incorrect labeling: This problem can be overcome in motif detection 

problems by only using those motifs that have been verified by biological 
experimentation.  

2. Under-representation: When certain subtypes are under-represented, it 
can lead to bias in the training set and in the learning process, and can 
adversely affect the performance of the detection process. Consequently, 
the resulting detector may have many false negatives for that motif 
subtype.  

3. Over-representation: If certain subtypes are over-represented, then the 
training set is likely to get biased or over-trained, resulting in many false 
positives for those subtypes. An extreme example of bias can occur when 
all the members of a training set are identical. In this case, the learning 
process cannot learn anything barring that one example. The resulting 
classification is likely to be severely limited in its ability to perform 
detection or classification.  

Many possible approaches have been proposed for designing training sets 
for learning programs. All these approaches strive to achieve a balanced 
representation of the subtypes in the training set. In general, there are no clear-
cut ways to deal with under-representation, because often the subtypes of a class 
may not be known in advance. Thus there is no way of knowing whether a 
particular subtype has been excluded from the training set and therefore not 
“learnt” by the program. In contrast, over-representation can be addressed.  

In this paper we show how to design good training sets for motif detection 
based on pattern discovery. Our approach addresses both under-representation 
as well as over-representation, and exploits the fact that we are dealing with 
protein sequences. In simple terms, a good training set must have examples of 
different subtypes of the motif, and must not have too many examples of motifs 
that are too similar. The central idea behind our approach is to build a 
phylogenetic tree based on all known examples of the motif (without worrying 
about the bias being introduced), and then to carefully pick individuals from the 
tree to form a good training set.  

We compare the outcome of a motif detection program that uses an 
automatic, phylogeny-based, training set selection algorithm against a motif 



 3

detection algorithm that uses a randomly chosen training set. Experimental 
results show that it is possible to achieve acceptable performance for the motif 
detection by using a phylogeny-based training set selection algorithm, and that it 
surpasses the performance of a random choice of training set. In particular, we 
show that the false positive rate is improved significantly over a method that 
picks the training set uniformly at random from the training set. While it was not 
possible to match the performance obtained by using carefully handcrafted 
training sets, the main advantage of our method is that it obviates the need for 
an expert biologist to help design the training set. 

2. Motif Detection 

A motif is a portion of a protein sequence that has a specific structure and is 
functionally significant. The presence of motifs in a protein is very useful for 
characterizing and classifying that protein. The helix-turn-helix (HTH) motif 
was the first protein motif to be discovered for site-specific DNA recognition. 
The interaction of regulatory proteins with promoter elements in DNA requires 
the protein to have a HTH motif in order to bind to DNA. The HTH motif is a 
highly specialized super-secondary structure containing two alpha helices 
separated by a small turn [4, 8, 13, 15]. The motif is about 22 residues in length. 
The turn contains about 4 residues and the angle between the two helices is 
approximately 120° [13]. Although much is known about some of the conserved 
residues in the HTH motif, what makes HTH motif detection non-trivial is that 
the motif shows considerable variability in its amino acid composition. In 
addition, the second helix binds to the DNA molecule in a sequence-specific 
manner, which means that different HTH motifs bind to different DNA 
fragments. This in turn implies that the HTH motifs must necessarily show 
sufficient variation in the second helix so that HTH motifs from different 
regulatory proteins do not bind to the same DNA fragment, since otherwise they 
would interact with the same promoter region and regulate the same gene. All 
these issues make HTH motif an excellent model system to experiment with 
motif detection methods. 

GYM is a HTH motif detection algorithm based on a supervised pattern 
discovery approach and developed by Narasimhan et al. [12]. GYM was 
successfully trained to detect HTH motifs. Experiments with over 1000 proteins 
have estimated its false negative rate (i.e., sensitivity) to be about 2% and its 
false positive rate (i.e., accuracy) to be about 7% [10, 12]. As with any 
supervised pattern discovery method, GYM works in two phases: a pattern 
discovery (or pattern mining) phase and a motif detection phase. In the pattern 
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mining phase, GYM is provided with a training set, which it mines for 
significant patterns and stores in a pattern dictionary. In the detection phase, 
GYM examines how well a given protein sequence matches the patterns in the 
dictionary so as to predict the presence and location of the motif in that protein. 
GYM was subsequently trained and extended to detect another DNA-binding 
motif called homeodomain motifs [12]. 

It is clear is that the performance of a program such as GYM is intimately 
tied to the quality of the training set used in its pattern discovery phase. In the 
case of GYM, the training set consisting of 88 HTH motifs was handcrafted by 
expert biologists for an earlier (profile-based) HTH motif detection algorithm 
[5, 6]. Another critical component in the pattern discovery phase of GYM was 
the choice of a “support threshold”, which was used to determine the 
significance of a pattern based on its occurrence in the training set [12]. This 
threshold represents the trade-off between the detection sensitivity and the 
detection accuracy. A pattern is said to be significant only if the number of its 
occurrences exceeds the threshold. The threshold was determined using 
straightforward permutation experiments, which can easily be extended to 
detection of a new motif. However, the luxury of an expertly hand-crafted 
choice of a training set is not possible for a new motif. 

Redundancy and bias in the training set are the result of identical or 
significantly “similar” elements in the motif training set. Two protein motifs 
may share a common sequence pattern if (a) the pattern contains elements that 
are critical for constituting the motif, or (b) they share high homology. In other 
words, even though some things may be evolutionarily conserved, it does not 
mean that they are critical for constituting the motif. In the former case, it would 
lead to “good” elements in patterns, while in the latter case, it would result in 
“corrupt” elements in patterns. If there are many corrupt elements in a pattern, 
then it can lead to false (spurious) patterns that cause false positives in motif 
detection. If the corrupt elements extend many good elements in a pattern, then 
it can lead to false negatives in motif detection since these corrupt elements may 
prevent a good match from occurring.  

This paper explores a training set selection (or refinement) algorithm by 
reducing the bias in the training set, with the goal of improving the overall 
performance of a motif detection algorithm such as GYM. In this selection 
algorithm, phylogenetic trees are used as an effective tool to identify similarity 
among sequences. With the help of phylogenetic trees, one can try to ensure that 
diverse groups are represented in the training set, while also guaranteeing that 
not too many representatives from a single subtree are selected. Therefore, by 
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carefully controlling the similarity present among training sequences, it is 
possible to effectively reduce the probability of spurious patterns in GYM's data 
mining and improve its overall performance.  

With every new training set GYM’s pattern discovery phase will produce a 
different pattern dictionary. Consequently, this will change the ability of the 
motif detection phase of GYM to predict a motif. The proposed algorithm for 
training set selection is evaluated by measuring the performance of the 
prediction phase of GYM when it uses different training sets output by the 
training set selection program. 

3. Algorithm 

Similarity between protein sequences or fragments can be computed as a score 
after using either a multiple alignment or a set of pairwise alignments. Although 
alignment scores are sufficient to indicate how well the sequences match one 
another, they are unable to give further information among those sequences, 
such as evolutionary information. Phylogenetic trees are useful to identify 
groups of similar protein sequences. They classify the given sequences into a 
hierarchy of subtrees. Some of the currently available phylogenetic methods 
(such as CLUSTAL) also provide a length for each branch that roughly 
measures the evolutionary distance between the sequences represented by the 
parent and child nodes [9].  

Briefly, our method involves assigning a real valued score to each node in 
the tree. The scores assigned to the nodes attempt to impose a linear metric on 
the leaves of the tree. Once the scores have been assigned to each leaf node, the 
algorithm selects a set of leaves that have representatives from all the major 
subtrees and are sufficiently “spread out”. For the following discussion assume 
that each branch of the phylogenetic tree has a length (evolutionary distance) 
associated with it. 

In order to achieve this, the score assigned to each node is as follows. The 
score for the root node is 0. For all other nodes with parent node p, the score is 
given by: 
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where ∆ = maximum number of children for any node in the tree, h = total 
height of the tree, i.e., the total evolutionary distance or length from the root to 
the farthest leaf, ℓ = total evolutionary distance from root to the parent node, ai 
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= index of the node among its siblings, and k = small integer constant. The 
scores are designed such that they increase exponentially as we move 
(evolutionarily) farther away from the root. Also, for every node the children 
and their corresponding subtrees are ordered in an arbitrary manner (say, left to 
right ordering). The scores are such that they “tend to” increase with the left-to-
right ordering of the children. Intuitively, what the numbering scheme 
guarantees is that if two leaf nodes share a common ancestor that is 
evolutionarily close enough, then their scores are also close enough. But, as is 
shown later, if their scores are nearly the same, then the chance of both of them 
being picked for inclusion in the training set is small.  

We now describe our algorithm, referred to as SIEVE. First, the input 
sequences are used to compute a phylogenetic tree. Algorithm SIEVE then 
computes the scores for each sequence using the recursive scoring function 
described above in formula (1). The sequences are then sorted on the basis of 
their scores. SIEVE then invokes the algorithm PICKLEAVES shown below 
(Figure 1) to select a subset (of desired size) of the input sequences to be used as 
a training set for our experiments. 

4. Implementation 

A “vanilla” implementation of GYM was described in an earlier paper [12]. It 
used a handcrafted training set in its pattern discovery phase. It was modified to 
obtain two versions as described below.  

• GYM-A uses an automatically generated training set (of varying sizes) 
generated by the above algorithm SIEVE. All known examples of the 
motif were used as input for SIEVE.  

• GYM-R uses a training set (of varying sizes) chosen uniformly at random 
from the set of all known examples of the motif.  

Both the modifications were only to the input to the pattern discovery phase of 
GYM. The pattern discovery and the motif detection phases of GYM were left 
unchanged in GYM-A and GYM-R. See the schematic shown in Figure 2.
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Algorithm SELECTLEAVES 
Input: Set of candidate sequences, S 
            integer DesiredSize 
Output: Candidates for training set, Selec ed t
Begin 

Selected := S 
Num := sizeOf(Selec ed) t
while (Num > DesiredSize) do 

Find pair (ni,ni+1) of minimum distance 
if (i = 1) then remove ni from Selec ed t
else if (i = N) then remove ni+1  
else 

Middle := (score[ni-1] + score[ni+2]) / 2 
if (score[ni] is closer to Middle than score[ni+1]) 
then remove ni from Selec ed  t
else remove ni+1 from Selec ed t

return Selec edt  
end SELECTLEAVES 
 
Figure 1: Algorithm to select nodes after they have been assigned scores. 

 

Figure 2: Schematic of the experiments performed 
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All programs were implemented in C++. The phylogenetic trees used by the 
SIEVE algorithm were generated using CLUSTALW [9, 20]. The training set 
output by SIEVE was input to the pattern discovery phase of the GYM-A 
program. The resulting pattern dictionary was then used by the motif detection 
phase of GYM, and the performance was evaluated for the number of correct 
predictions.  GYM-R was repeated five times with five different selections of 
training sets. The performance of GYM-R was thus an average over five runs. 

In the scoring function given by formula (1), we used k = 7. This number is 
a measure of the precision to which one wants to compute the scores. The larger 
the value of the constant k the greater the precision with which that formula 
would be computed.  

One would expect the vanilla version of GYM to have the best 
performance, since the training set was handcrafted with the help of biologists 
with expert knowledge. Our experiments were designed to evaluate how GYM-
A and GYM-R measure up against the performance of GYM. The subset of 
results of GYM that could be independently verified by another program was 
used as a “gold standard” in order to evaluate the correctness of the results of 
GYM-A and GYM-R. 

Feeding the input sequences into CLUSTALW [9, 20] generated the 
phylogenetic trees, which were then input to the algorithm, SELECT. The 
training set output by SELECT was input to the pattern discovery phase of the 
GYM program. The resulting pattern dictionary was then used by the motif 
detection phase of GYM, and the performance was evaluated for the number of 
correct predictions.  

The results of our experiments are summarized in a graph shown in Figures 
2 and 3. Figure 2 shows the false negative rates for our experiments as the 
number of selected sequences is varied. Figure 3 shows a similar graph with the 
false positive rates.  

It is clear that the SELECT algorithm outperforms the algorithm that picks 
the training set uniformly at random. With the false negative rates, the 
difference is marginal. The difference is striking and significant with the false 
positive rates.  

5. Results 

Our experiments were designed to evaluate how GYM-A and GYM-R measured 
up against the performance of GYM. The prior work on GYM, which is based 
on pattern discovery, and a second method, which was based on the profile 
method, was useful in generating a list of correct results to evaluate the error 
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rates of GYM-A and GYM-R. A total of 809 sequences were used in the testing 
phase, out of which 93 were known to be negative sequences (i.e., do not 
contain a motif) and 716 were known to have a HTH motif. The false negative 
and false positive error rates of GYM-A and GYM-R are shown in a graph in 
Figures 3 and 4 respectively. In both graphs, the performance of the original 
GYM algorithm is shown as a thick black horizontal line; it clearly outperforms 
both GYM-A and GYM-R. It is clear that as the number of training sequences 
increased, the false negative rates tended to decrease, while the false positive 
rates tended to increase.  

A given motif sequence generates a false negative if the system has not 
been trained using any sequence similar to the one being considered. The 
probability of this happening decreases as the number of sequences used for 
training is increased. Figure 3 shows that as the number of sequences used for 
training was increased from 40 to 100, the false negative error rate for GYM-A 
dropped from 41% to 17%. GYM-R also showed a similar reduction. GYM-A 
outperform GYM-R for training set sizes exceeding 50. In fact, for training set 
sizes above 60, the difference was more than one standard deviation of the 
GYM-R error rates.  

A “negative” sequence i.e., one that does not have a motif, can generate a 
false positive if it has patterns that it shares with some training sequences, but 
that are not specific to the motif. The probability of false positive hits increases 
as the number of sequences used for training is increased. Figure 4 shows that as 
the number of sequences used for training was increased from 40 to 100, the 
false positive rate for GYM-A increased from 4% to 56%. At the same time, the 
false positive rate for GYM-R increased from 9% to 70%. With regard to the 
false, positive rates, GYM-A clearly outperforms GYM-R, proving that the 
SIEVE algorithm does reduce the bias in the training set. 

6. Discussion and Conclusions 

This paper presents a promising approach for training set selection in 
pattern discovery algorithm with specific applications to motif detection. The 
proposed method uses information provided by phylogenetic trees to control the 
amount of similarity among the selected training sequences, thus controlling the 
amount of duplication of information in the training set. When designing 
training sets, there is a trade-off between the number of false negative hits and 
the number of false positive hits. Theoretically, there is no algorithm that can 
automatically figure out the optimal similarity threshold without further 
biological knowledge. 
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This research leads to many interesting questions, especially about the 
relationships between training sets and phylogenetic trees: Where in the 
phylogenetic tree are the false negatives and false positives located? If they 
appear to clump together in the tree, then can increasing or decreasing the 
representation from that part of the tree decrease the number of false negatives 
and/or false positives? Is the performance sensitive to the tree construction 
method used? Is it possible to design algorithms that iteratively add or delete 
items from the phylogenetic tree with the goal of decreasing the error rate? Are 
there lessons to be learnt by analyzing the relative positions of the sequences 
from efficient handcrafted training sets? Is there a correlation between the 
amount of overlap of the training sets employed by GYM-A or GYM-R and the 
handcrafted training set employed by GYM? 
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Figure 3:  False negative rates for the experiments as the number of selected sequences is varied. 
 

 
Figure 4:  False positive rates for the experiments as the number of selected sequences is varied. 
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