
Exact and Approximation Algorithms for
Computing the Dilation Spectrum of Paths,

Trees, and Cycles

Rolf Klein1, Christian Knauer2, Giri Narasimhan3, and Michiel Smid4

1 Institute of Computer Science I, Universität Bonn, Römerstraße 164,
D-53117 Bonn, Germany, rolf.klein@uni-bonn.de; supported by DFG Kl 655/14.

2 Freie Universität Berlin, Institute of Computer Science, Berlin, Germany,
christian.knauer@inf.fu-berlin.de.

3 School of Computer Science, Florida, International University, ECS389,
University Park, Miami, FL 33199, U.S.A., giri@cs.fiu.edu.

4 School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa,
Ontario K1S 5B6, Canada, michiel@scs.carleton.ca; supported by NSERC.

Abstract. Let G be a graph embedded in Euclidean space. For any two
vertices of G their dilation denotes the length of a shortest connecting
path in G, divided by their Euclidean distance. In this paper we study
the spectrum of the dilation, over all pairs of vertices of G. For paths,
trees, and cycles in 2D we present O(n3/2+ε) randomized algorithms that
compute, for a given value κ ≥ 1, the exact number of vertex pairs of
dilation > κ. Then we present deterministic algorithms that approximate
the number of vertex pairs of dilation > κ up to an 1 + η factor. They
run in time O(n log2 n) for chains and cycles, and in time O(n log3 n) for
trees, in any constant dimension.

Keywords Computational geometry, dilation, distribution, geometric
graph, network, spectrum, stretch factor.

1 Introduction

Let S be a set of n points in Rd, where d ≥ 1 is a small constant, and let G be
an undirected connected graph having the points of S as its vertices. The length
of any edge (p, q) of G is defined as the Euclidean distance |pq| between the two
vertices p and q. Such graphs are called Euclidean graphs. Let dG(x, y) denote
the length of a shortest path in G that connects x and y. Then the dilation
between x and y in G is defined as

δG(x, y) =
dG(x, y)
|xy| .

Euclidean graphs are frequently used for modeling traffic or transportation
networks. In order to measure their performance, the dilation of G [13] has been

used, which is defined as the maximum dilation over all pairs of vertices in G,
i.e.,

σ(G) = max
p 6=q∈V

δG(p, q). (1)

This value is also called the stretch factor, the spanning ratio, or the distor-
tion [10] of G. A lot of work has been done on the construction of good span-
ners, i. e., of sparse graphs of low dilation that connect a given vertex set and
enjoy other desirable properties; see the handbook chapter [5] or the forthcoming
monograph [12]. How to compute the dilation of a given Euclidean graph has
first been addressed in [11]. They gave an O(n log n) algorithm for approximat-
ing, up to an 1 − ε factor, the dilation of paths, trees, and cycles in Euclidean
space of constant dimension. In [1] exact randomized algorithms were given that
run in time O(n log n) for paths in the plane, and in time O(n log2 n) for com-
puting the dilation of a plane tree or cycle. In 3D, time O(n4/3+ε) is sufficient for
either type of graph; see also [2, 9]. For general graphs, nothing better seems to
be known than running Dijkstra’s algorithm for each vertex of G, which leads to
an O(mn + n2 log n) algorithm [4]; here n denotes the number of vertices, while
m is the number of edges of G. In the recent paper [6], the interesting question
has been addressed how to decrease the dilation of a graph as much as possible
by inserting another edge.

In this paper we are studying the vertex-to-vertex dilation of graphs from a
different perspective. Computing the dilation, as defined in (1), simply points to
the pair of vertices for which the dilation is maximized. In real networks, one
may wish to tolerate some number of pairs of vertices with high dilations, if the
network provides good connections to the majority of vertex pairs. Therefore, we
are interested in computing (exactly or approximately) the dilation spectrum of
a graph G. That is, for a given threshold κ > 1 we are interested in the number

πG(κ) := |{ (p, q) ∈ S2; δG(p, q) > κ }| (2)

of all vertex pairs whose dilation exceeds κ. This distribution of the dilation
could also be helpful in understanding structural properties of a given geometric
graph.

Clearly, the cost O(mn+n2 log n) of running Dijkstra’s algorithm from each
vertex of G is an upper bound on the time complexity of computing the dilation
spectrum of G. For some classes of graphs, better running times can be obtained.
For example, it has been shown in [7] that the distances in G between all pairs
of vertices of a plane geometric graph can be computed in O(n2) total time. The
same upper bound holds for the dilation spectrum.

This paper is organized as follows. In Section 2 we provide randomized algo-
rithms for polygonal paths, trees, and cycles in the plane, that allow πG(κ) to be
computed in time O(n3/2+ε). To this end, we first use a geometric transformation
scheme introduced in [1], in order to reduce the problem of computing πG(κ) to
a counting problem, and then apply suitable range counting techniques. Then,
in Section 3, faster algorithms will be presented for approximating the dilation
spectrum. More precisely, for given reals κ ≥ 1 and ε > 0 we shall compute a

number M satisfying

πG(κ (1 + ε)2) ≤ M ≤ πG(κ) (3)

that approximates the number of vertex pairs of dilation > κ. The run time
of these deterministic algorithms is in O(n log2 n) for paths and cycles, and in
O(n log3 n) for trees. Our approach is based on the well-separated pair decom-
position [3]; hence, it works in any constant dimension. Finally, in Section 4 we
mention some open problems.

2 Computing the Exact Dilation Spectrum

In this section we derive exact algorithms for computing the dilation distribution
πG(κ) of certain types of plane graphs, given a threshold κ > 1.

2.1 Paths

We start with a randomized algorithm for computing πP (κ) for a simple polyg-
onal path P in the plane. First, we describe a reduction that rephrases the
problem of computing πP (κ) as a counting problem in three-dimensional space.
Then we apply range counting algorithms to solve that problem.

Reduction to range counting We shall consider a slightly more generally
version of our problem. Namely, let A,B be two disjoint vertex sets of G; then
we are going to compute

πG(κ,A, B) = |{ (x, y) ∈ A×B | δG(x, y) > κ }|,
the number of vertex pairs in A×B whose dilation exceeds κ.

Assume that some orientation <P of P is given, and let p0 be the first vertex
of P . For a vertex p ∈ A, we define the weight of p to be ω(p) = dP (p0, p)/κ. Let Č

denote the cone z =
√

x2 + y2 in R3. We map each vertex p = (px, py) ∈ A to the
cone Cp = Č +(px, py, ω(p)). If we regard Cp as the graph of a bivariate function
then for any point x ∈ R2, Cp(x) = |xp| + ω(p). Set C(A) = {Cp | p ∈ A}.
We map a vertex q = (qx, qy) ∈ B to the point q̂ = (qx, qy, ω(q)) ∈ R3. Let
B̂ = {q̂ | q ∈ B}.
Lemma 1. For any vertex pair (p, q) ∈ A × B such that p <P q, we have that
δ(q, p) ≤ κ if and only if q̂ lies below Cp, i.e., ω(q) ≤ Cp(q).

Proof.

δ(p, q) ≤ κ ⇐⇒ dP (p, q)
|qp| ≤ κ ⇐⇒ dP (p0, q)− dP (p0, p)

|qp| ≤ κ

⇐⇒ dP (p0, q)
κ

≤ |qp|+ dP (p0, p)
κ

⇐⇒ ω(q) ≤ |qp|+ ω(p) ⇐⇒ ω(q) ≤ Cp(q).

If there is a vertex pair (p, q) ∈ A×B with δ(p, q) > κ we cannot be sure that
p that lies before q on P . Hence, we must also consider the symmetric situation
with the orientation of P reversed.

Counting points above cones In the previous section we have seen that the
problem of computing π(κ,A, B) amounts to count the number of point-cone
pairs (p, C) ∈ B̂ × C(A) such that p lies above C.

Suppose we are given a set P of n points and a set C of m cones in R3 whose
axes are vertical and whose apices are their bottommost points. We describe
a randomized algorithm to compute µ(P, C), the number of point-cone pairs
(p, C) ∈ P × C such that p lies above C.

We fix a sufficiently large constant r, choose a random sample R of O(r)
cones in C, and compute the vertical decomposition A‖ of the arrangement A of
the cones in R. As is known (c.f. [14], Theorem 8.21), A‖ has O(r3 log4 r) cells.
For each cell ∆ ∈ A‖, let P∆ = {p ∈ P | p ∈ ∆}, let C6∆ ⊆ C be the set of cones
crossing ∆, and let C∆ ⊆ C be the set of cones which lie completely below ∆.
Clearly µ(P, C) =

∑
∆∈A‖ |P∆||C∆|+ µ(P∆, C 6∆).

Set n∆ = |P∆| and m∆ = |C6∆|. Obviously,
∑

∆ n∆ = n and by the theory of
random sampling [8], m∆ ≤ m/r with high probability, for all ∆. If this condition
is not satisfied for the sample R, we pick a new random sample. The expected
number of trials until we get a ’good’ sample is constant. If m∆ or n∆ is less than
a prespecified constant, then we use a naive procedure to determine µ(P∆, C∆).
Otherwise, we recursively compute µ(P∆, C∆). For m, n > 0, let T (n,m) denote
the expected running time of the algorithm on a set of n points and a set of m
cones. We get the following probabilistic recurrence:

T (n, m) =
∑

∆∈A‖
T

(
n∆,

m

r

)
+ O(m + n),

where
∑

∆ n∆ ≤ n. The solution to the above recurrence is, for any ε > 0,

T (n,m) = O(m3+ε + n log m).

To improve the running time of the algorithm we can perform the following
dualization step: Let Ĉ denote the cone z = −

√
x2 + y2 in R3. If we map each

point p = (px, py, pz) ∈ P to the cone δ(p) = Cp = Ĉ +(px, py, pz) and each cone
C = Č + (px, py, pz) to the point δ(Cp) = pC = (px, py, pz) we have that p lies
above C if and only if pC lies below Cp, in other words µ(P, C) = µ̄(δ(C), δ(P)).

We can use this to tune our algorithm as follows. The recursion proceeds
as earlier except that when m∆ > n3

∆, we switch the roles of P∆ and C∆ us-
ing the duality transformation δ, and compute µ(P∆, C∆) = µ̄(δ(C∆), δ(P∆)) in
T (m∆, n∆) = O(n3+ε

∆ + m∆ log n∆) = O(m1+ε
∆) time with the algorithm just

described. With these modifications, the recurrence becomes

T (n,m) =





∑

∆∈A‖
T

(
n∆,

m

r

)
+ O(m + n) if m ≤ n3

O(m1+ε) if m > n3,

where
∑

∆ n∆ ≤ n. It can be shown that, for any ε > 0,

T (n,m) = O((mn)3/4+ε + m1+ε + n1+ε).

Thus, we obtain the following result.

Theorem 1. Let P be a polygonal path on n vertices in R2, and let κ ≥ 1. Then
we can compute πP (κ), i.e., the number of vertex-pairs of P that attain at least
dilation κ, in O(n3/2+ε) randomized expected time for any ε > 0.

Note that we can use the same approach to report all pairs of vertices for
which the dilation is larger than κ, in additional time that is proportional to the
size of the output.

The same result can be obtained for trees, using a decomposition technique
that will be presented in Section 3.4 for computing the approximate dilation
spectrum.

2.2 Cycles

Let us now consider the case in which P is a simple closed polygonal curve. This
case is more difficult because there are two paths between any two points x, y of
P . Let P [x, y] denote the portion of P from x to y in clockwise direction, and let
dP (x, y) denote its length. Moreover, for a vertex p of P , let ν(p) denote the last
vertex on P in clockwise direction such that dP (p, ν(p)) does not exceed half the
perimeter of P .

Suppose we are given four vertices t1, t2, b1 = v(t1), b2 = v(t2) of P in clock-
wise order, and we want to compute

π(t1, t2, b1, b2) := πP (κ, P [t1, t2], P [b1, b2]).

First observe that dP (b1, b2) ≤ |P |/2 holds. Let m,n be the number of
edges in P [b1, b2] and P [t1, t2], respectively. If min{m,n} = 1, then we com-
pute π(t1, t2, b1, b2) in O(m + n) time, by brute force. Otherwise, suppose that
n ≥ m holds. Let t be the median vertex of P [t1, t2], and let b = ν(t). Clearly,
b ∈ P [b1, b2] and

π(t1, t2, b1, b2) = π(t1, t, b, b2) + π(t, t2, b1, b) + π(t1, t, b1, b) + π(t, t2, b, b2).

The quantities π(t1, t, b1, b) and π(t, t2, b, b2) are computed recursively. Since
P [t, t2] and P [b1, b] lie in P [t, ν(t)], we can compute π(t, t2, b1, b) according to
Theorem 1 in O((n + m)3/2+ε) randomized expected time for any ε > 0. Almost
the same argument applies to π(t1, t, b, b2).

Let m1 be the number of edges in P [b1, b]. Then P [b, b2] contains at most
m−m1 +1 edges. Let T (n,m) denote the maximum expected time of computing
π(t1, t2, b1, b2). Then we obtain the following recurrence for any ε > 0:

T (n,m) ≤ T (n/2,m1) + T (n/2,m−m1 + 1) + O((n + m)3/2+ε), if n ≥ m,

with a symmetric inequality for m ≥ n, and T (n, 1) = O(n), T (1,m) = O(m).
The solution to the above recurrence is

T (n,m) = O((n + m)3/2+ε).

To compute πP (κ), we choose a vertex v ∈ P and let P1 = P [v, ν(v)] and
P2 = P [ν(v), ν(ν(v))]. In

πP (κ) = πP1(κ) + πP2(κ) + π(v, ν(v), ν(v), ν(ν(v)))

the values πP1 , πP2 can be computed in O(n3/2+ε) expected time using The-
orem 1, and π(v, ν(v), ν(v), v) can be computed within the same time by the
recursion just described. We obtain

Theorem 2. Let P be a closed polygonal path on n vertices in R2, and let κ ≥ 1.
Then we can compute πP (κ) in O(n3/2+ε) randomized expected time.

3 Computing the Approximate Dilation Spectrum

Now we set out to give faster algorithms for computing an approximation of the
dilation spectrum. Our reduction uses the well-separated pair decomposition,
thus adding to the list of applications of this powerful method.

3.1 Well-separated pairs

We briefly review this decomposition and some of its relevant properties. Let d
be a fixed dimension, and let s denote a fixed constant, called the separation
constant. Two point sets A,B in Rd are well separated with respect to s if they
can be circumscribed by two disjoint d-dimensional balls of some radius r that
are at least s ·r apart. Then the distance between any two points of the same set
is at most 1 + 4/s times the distance between any two points of different sets,
while point pairs of different sets differ in distance by at most a factor 2/s; these
basic WSPD properties will be used in the sequel.

Given a set S of n points, a well-separated pair decomposition (WSPD) con-
sists of a sequence {A1, B1}, {A2, B2}, . . . , {Ak, Bk} of well-separated pairs of
subsets of S such that, for any two points p 6= q of S, there is a unique index i
such that p ∈ Ai and q ∈ Bi holds, or vice versa.

Callahan and Kosaraju [3] showed that a WSPD of size k = O(n) always
exists, and that it can be efficiently computed in time O(n log n) using a split
tree. We are going to use a modified version of their result where each pair
{Ai, Bi} contains a singleton set and size k is allowed to be in O(n log n).

3.2 A general algorithm

Given a real number κ > 1 and a geometric graph G, we show how to compute
the number ρG(κ) of all pairs of vertices in the graph for which the dilation is

at most κ.5 Now consider a WSPD

{A1, B1}, {A2, B2}, . . . , {Ak, Bk}

for the set of vertices of G. We may assume that each Ai is a singleton set,
{ai} and that k = O(n log n). We know that all geometric distances between
ai and a point of Bi are roughly equal. Let the distance between ai and any
representative point in Bi be denoted by Di. Hence, if we compute for each i,
1 ≤ i ≤ k, all points bi ∈ Bi whose distance dG(ai, bi) in G is at most κ(1+ε)·Di,
then we would have effectively computed all pairs of points in the pair {Ai, Bi}
for which their approximate dilation is at most κ. This observation leads to the
general algorithm, A, presented below in Figure 3.2; it could be easily modified

General Algorithm A
Input: A geometric graph G on a set S of points in Rd and a constant ε > 0.
Output: The number of pairs of vertices of G of dilation at most κ(1 + ε).
Step 1: Using separation constant s = 4/ε, compute a WSPD

{A1, B1}, {A2, B2}, . . . , {Ak, Bk}

for the set S, with the added condition that |Ai| = 1, for each i = 1, . . . , k.
Step 2: For each i, 1 ≤ i ≤ k, let Ai = {ai}, and Di denote the length |aib|,
where b is an arbitrary element of Bi. For i = 1, . . . , k. compute ni, the number
of points bi ∈ Bi, such that dG(ai, bi) ≤ κ(1 + ε) ·Di.
Step 3: Report N =

∑k
i=1 ni.

to output the pairs of points of dilation ≤ κ(1 + ε).
The following lemma compares N , the output of Algorithm A, with the true

value of ρG(κ).

Lemma 2. The number of pairs of vertices in G with stretch factor at most κ
is at most equal to N . The number of pairs of vertices in G with stretch factor
at most κ(1 + ε)2 is at least equal to N . In other words,

ρG(κ) ≤ N ≤ ρG(κ(1 + ε)2)

Proof. In step 2 of algorithm A, Di is equal to |aib|, where b is an arbitrary
element of Bi. Step 2 of the algorithm counts all pairs of points bi ∈ Bi for
which |aibi| ≤ κ(1 + ε) ·Di.

If dG(ai, bi) ≤ κ|aibi|, then by the WSPD properties, dG(ai, bi) ≤ κ(1+ε)·Di,
and thus the pair (ai, bi) is counted in step 2 of the algorithm, proving that
ρG(κ) ≤ N .

If dG(ai, bi) ≤ κ(1 + ε)Di, then it is counted in step 2 of the algorithm. But
then, by the WSPD property, dG(ai, bi) ≤ κ(1 + ε)2 · |aibi|, implying that this
pair has a dilation of at most κ(1 + ε)2. Thus, N ≤ ρG(κ(1 + ε)2).

This completes the proof.

5 Clearly, we can obtain the number πG(κ) of vertex pairs whose dilation exceeds κ
by subtracting ρG(κ) from

(
n
2

)
.

3.3 Paths

Let the graph G be a simple path (p0, p1, . . . , pn−1) on the points of the set S,
and let ε > 0 be a constant.

Following our general algorithm A of Section 3.2, we start by computing a
split tree T and a corresponding WSPD

{A1, B1}, {A2, B2}, . . . , {Am, Bm}

for S, with separation constant s = 4/ε, where |Ai| = 1, for 1 ≤ i ≤ m, and
m = O(n log n). This can be done in time O(n log n).

By a simple postorder traversal of T , we store with each node u of T the
sorted list of indices of all points stored at the leaves of the subtree of u. Note
that this involves merging two sorted sublists at each node of the tree. Each set
Bi is represented by a node vi in the split tree T such that their subtrees contain
exactly the points of Bi in their leaves. Let the sorted list of the points for node
vi be denoted by Vi. Also since |Ai| = 1, it is represented by a leaf node ui in
the split tree.

Step 2 of our algorithm is implemented as follows. First, we traverse the path,
and compute for each vertex pj , 0 < j < n, the distance dG(p0, pj). Using this
information, we can compute for any 0 ≤ j < k < n, the distance dG(pj , pk) in
constant time, as the difference between dG(p0, pk) and dG(p0, pj).

Then, for 1 ≤ i ≤ m, use binary search to identify the two sublists of points
in Vi that lie before and after point ai. It is easy to observe that the two sublists
are effectively sorted by their distance from ai. Finally use two binary searches
to search the two sublists separately to identify the number of points bi ∈ Vi

such that dG(ai, bi) ≤ κ(1 + ε)Di.
It is easy to see that this correctly implements Step 2. Since it involves

2m = O(n log n) binary searches, the running time of the entire algorithm is
bounded by O(n log2 n).

Theorem 3. Let S be a set of n points in Rd, let G be a simple path on the
points of S, and let ε be a positive constant. In O(n log2 n) time, we can compute
a number N that lies between ρG(κ) and ρG(κ(1 + ε)2).

Due to space limitations we can only mention that the same result can be
obtained for cycles.

3.4 Trees

It is well known that in any tree G having n vertices, there is a vertex v, whose
removal gives two graphs G′1 and G′2, each having at most 2n/3 vertices. More-
over, such a vertex v can be found in O(n) time. Each of the two graphs G′i
is a forest of trees. We will call v a centroid vertex of G. Each of the graphs
G1 := G′1 ∪ {v} and G2 := G′2 ∪ {v} is connected and, hence, a tree again.

Let S be a set of n points in Rd, and let G be an arbitrary tree having the
points of S as its vertices. We will identify the vertices of G with the points of S.

Let ε > 0 be a constant. The following recursive algorithm, which is inspired by
the general algorithm A, solves the problem when the input graph G is a tree.

Step 1: Compute a centroid vertex v of G, and the corresponding decomposition
into trees G1 and G2. Note that v is a vertex of both these trees. Traverse each
tree in preorder, and store with each vertex p the distance dG(p, v) between p
and the centroid vertex v.

Step 2: Use the same algorithm to recursively solve the problem on graph G1

and on graph G2.

Step 3: Let s := 4/ε. Compute a split tree T and a corresponding WSPD

{A1, B1}, {A2, B2}, . . . , {Am, Bm}
for the points of S, with separation constant s, having size m = O(n log n).

Step 4: For each node u of the split tree, denote by Su the set of points of S
that are stored in the subtree of u. Traverse T in postorder, and compute for
each of its nodes u the sorted sequence of nodes, S1

u, consisting of nodes in G1

sorted according to their distance from the centroid v. Similarly, compute the
sorted sequence of nodes, S2

u, consisting of nodes in G2 sorted according to their
distance from the centroid v.

Step 5: For each i, 1 ≤ i ≤ m, we do the following. Consider the pair {Ai, Bi} in
our WSPD, with Ai = {ai}, and the node vi in the split tree such that Bi = Svi .
Let the two sets computed for vi be S1

vi
and S2

vi
. If ai ∈ G1, then use binary

search to identify the number of points bi ∈ S2
vi

such that dG(ai, bi) ≤ κ(1+ε)Di.
Otherwise the search is performed in S2

vi
.

The correctness of the above algorithm is proved by induction and results from
the fact that Step 2 counts all pairs of nodes that involve ai and another node in
G1 (assuming that ai ∈ G1), while Step 5 counts all pairs of nodes that involve
ai and another node in G2. Note that the distance in G from point ai ∈ G1 to
point bi ∈ G2 is given by adding their distances to the centroid vertex v.

To prove the time complexity, let T (n) denote the running time of our algo-
rithm on an input tree having n vertices. Then, T (n) = O(n log2 n) + T (n′) +
T (n′′), where n′ and n′′ are positive integers such that n′ ≤ 2n/3, n′′ ≤ 2n/3,
and n′ + n′′ = n + 1. The O(n log2 n) term comes about because the binary
search spends O(log n) time on each of the O(n log n) well-separated pairs. The
above recurrence relation solves to T (n) = O(n log3 n).

Theorem 4. Let S be a set of n points in Rd, let G be a tree on the points of S,
and let ε be a positive constant. In O(n log3 n) time, we can compute a number
N such that it lies between ρG(κ) and ρG(κ(1 + ε)2).

4 Open Problems

Besides the obvious questions about possible improvement or generalization of
our algorithms, there seem to be some interesting structural problems one may

want to study. To what extend does the dilation spectrum of a graph, that is,
the function πG(κ), reflect the graph’s structure? And, what types of functions
πG(κ) can occur?

Acknowledgement The authors would like to thank the organizers and all par-
ticipants of the Korean workshop 2004 at Schloß Dagstuhl for establishing the
nice and stimulating atmosphere that gave rise to this work.

References

1. P. Agarwal, R. Klein, Ch. Knauer, S. Langerman, P. Morin, M. Sharir,
and M. Soss, Computing the detour and spanning ratio of paths, trees and cycles
in 2D and 3D, to appear in Discrete and Computational Geometry.

2. P. Agarwal, R. Klein, Ch. Knauer, and M. Sharir, Computing the detour of
polygonal curves, Technical Report B 02-03, Freie Universität Berlin, Fachbereich
Mathematik und Informatik, 2002.

3. P. B. Callahan and S. R. Kosaraju, A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields, J. ACM,
42 (1995), pp. 67–90.

4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,
MIT Press, Cambridge, MA, 1990.

5. D. Eppstein, Spanning trees and spanners, in Handbook of Computational Ge-
ometry, J.-R. Sack and J. Urrutia, eds., Elsevier Science, Amsterdam, 1999, pp.
425–461.

6. M. Farshi, P. Giannopoulos, and J. Gudmundsson, Finding the best shortcut
in a geometric network, 21st Ann. ACM Symp. Comput. Geom. (2005), pp. 327–
335.

7. G. N. Frederickson, Fast algorithms for shortest paths in planar graphs, with
applications, SIAM J. Comput., 16 (1987), pp. 1004–1022.

8. D. Haussler and E. Welzl, Epsilon-nets and simplex range queries, Discrete
Comput. Geom. 2 (1987), pp. 127–151.

9. S. Langerman, P. Morin, and M. Soss, Computing the maximum detour and
spanning ratio of planar chains, trees and cycles, In Proceedings of the 19th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2002),
volume 2285 of LNCS, pages 250–261. Springer-Verlag, 2002.

10. N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some
of its algorithmic applications, Combinatorica, 15 (1995), pp. 215–245.

11. G. Narasimhan and M. Smid, Approximating the stretch factor of Euclidean
Graphs, SIAM J. Comput., 30(3) (2000), pp. 978–989.

12. G. Narasimhan and M. Smid, Geometric Spanner Networks, Cambridge Univer-
sity Press, to appear.

13. D. Peleg and A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989), pp.
99–116.

14. M. Sharir and P. Agarwal, Davenport-Schinzel sequences and their geometric
applications, Cambridge University Press, New York, 1995.

15. M. Smid, Closest-point problems in computational geometry, in Handbook of Com-
putational Geometry, J.-R. Sack and J. Urrutia, eds., Elsevier Science, Amsterdam,
1999, pp. 877–935.

