
APPROXIMATING THE STRETCH FACTOR OF EUCLIDEAN
GRAPHS∗

GIRI NARASIMHAN† AND MICHIEL SMID‡

Abstract. There are several results available in the literature dealing with efficient construction
of t-spanners for a given set S of n points in Rd. t-spanners are Euclidean graphs in which distances
between vertices in G are at most t times the Euclidean distances between them; in other words,
distances in G are “stretched” by a factor of at most t. We consider the interesting dual problem:
given a Euclidean graph G whose vertex set corresponds to the set S, compute the stretch factor of
G, i.e., the maximum ratio between distances in G and the corresponding Euclidean distances. It
can trivially be solved by solving the All-Pairs-Shortest-Path problem. However, if an approximation
to the stretch factor is sufficient, then we show it can be efficiently computed by making only O(n)
approximate shortest path queries in the graph G. We apply this surprising result to obtain efficient
algorithms for approximating the stretch factor of Euclidean graphs such as paths, cycles, trees,
planar graphs, and general graphs. The main idea behind the algorithm is to use Callahan and
Kosaraju’s well-separated pair decomposition.

Key words. computational geometry, spanners, approximate shortest paths, well-separated
pairs

AMS subject classifications. 68U05

1. Introduction. Let S be a set of n points in Rd, where d ≥ 1 is a small
constant, and let G be an undirected connected graph having the points of S as its
vertices. The length of any edge (p, q) of G is defined as the Euclidean distance |pq|
between the two vertices p and q. Such graphs are called Euclidean graphs. The length
of a path in G is defined as the sum of the lengths of all edges on this path. For any
two vertices p and q of G, we denote by |pq|G the distance in G between them, i.e.,
the length of a shortest path connecting p and q.

Let t > 1 be a real number. We say that G is a t-spanner for S, if for each pair
of points p, q ∈ S, we have |pq|G ≤ t · |pq|, i.e., there exists a path in G between p and
q of length at most t times the Euclidean distance between these two points.

The smallest t such that G is a t-spanner for S is called the stretch factor of G
(also referred to as dilation [21] or distortion [19] in the literature). We will denote
the stretch factor by t∗. Note that

t∗ = max
{
|pq|G
|pq|

: p, q ∈ S, p 6= q

}
.

Most of the earlier research considered the problem of constructing or analyzing
geometric t-spanners for a given set of points. In this paper, we consider the interesting
dual problem:

Problem: Given a set S of n points in Rd, and a connected Euclidean graph with
vertices from S, design an efficient algorithm to compute (exactly or approximately)
its stretch factor.

∗The work of GN was supported by NSF Grant CCR-940-9752, and a grant by Cadence Design
Systems.
†Department of Mathematical Sciences, The University of Memphis, Memphis TN 38152

(giri@msci.memphis.edu).
‡Department of Computer Science, University of Magdeburg, D-39106 Magdeburg, Germany

(michiel@isg.cs.uni-magdeburg.de).

1

2 G. NARASIMHAN AND M. SMID

C
M

Fig. 1.1. A section of the Scandinavian rail network; C denotes Copenhagen, and M denotes
Malmö.

Spanners have applications in network design, robotics, distributed algorithms,
and many other areas, and have been the subject of considerable research [1, 4, 8, 11,
14, 18, 24]. More recently, spanners have received a lot of attention by researchers with
the discovery of new applications for them in the design of approximation algorithms
for geometric optimization problems such as the Euclidean traveling salesperson prob-
lem [3, 23].

If the graph represents, say, a network of highways, then the stretch factor is a
measure of the maximum percentage increase in driving distance for using the network
of highways over the direct “as-the-crow-flies” distance. Thus the stretch factor of a
network is an important parameter to be considered when evaluating and analyzing
networks. Furthermore, determining the two vertices in the network for which this
increase is maximized helps to identify the “weakest” part of the network in terms of
distances.

Figure 1.1 shows a section of the Scandinavian rail network. It is clear that the
stretch factor in this network is determined by Copenhagen (marked by a C) and
Malmö (marked by a M). A link between these two cities would drastically reduce the
stretch factor1.

Let G = (S,E) be a Euclidean graph, and let n := |S| and m := |E|. Clearly,
the time complexity of solving the All-Pairs-Shortest-Path problem for G is an upper
bound on the time complexity of computing the stretch factor of G. Hence, running
Dijkstra’s algorithm—implemented with Fibonacci heaps—from each vertex of G,
gives the stretch factor of G, in O(n2 log n + nm) time (c.f., [10]). For some classes
of graphs, better running times can be obtained. For example, if G is a planar
Euclidean graph, Frederickson [15] has shown that the distances in G between all
pairs of vertices can be computed in O(n2) total time. Therefore, the stretch factor
of a planar Euclidean graph can be computed in O(n2) time.

1A 16-kilometer bridge across the Øresund connecting the two cities is currently being built.

APPROXIMATING THE STRETCH FACTOR OF EUCLIDEAN GRAPHS 3

We are not aware of any algorithms that compute the stretch factor in sub-
quadratic time, for any class of connected Euclidean graphs. (Exceptions are trivial
classes of graphs, such as complete graphs, which have stretch factor one.) For exam-
ple, we do not even know if the stretch factor of a Euclidean path can be computed
in o(n2) time. This leads to the question whether there are faster algorithms that
approximate stretch factors.

Let G be a connected Euclidean graph with stretch factor t∗, and let c1 ≥ 1,
c2 ≥ 1, and t ≥ 1 be real numbers. We say that t is a (c1, c2)-approximate stretch
factor of G, if

1
c1
t ≤ t∗ ≤ c2t.

1.1. Our results. The results of this paper are as follows.
1. Using the well-separated pair decomposition of Callahan and Kosaraju [7],

we reduce the problem of approximating the stretch factor of any Euclidean
graph G to a sequence of O(n) approximate shortest path queries in G.

2. We prove that, in the algebraic computation tree model, any algorithm that
takes as input any connected Euclidean graph G with n vertices, and com-
putes an approximation to the stretch factor of G, takes Ω(n log n) time in
the worst case.

3. For any real constant ε > 0, we can compute in O(n log n) time, a (1, 1 +
ε)-approximate stretch factor of any Euclidean path, cycle, or tree with n
vertices. By the previous result, this is optimal in the algebraic computation
tree model.

4. For any real constant ε > 0, we can compute in O(n
√
n) time, a (1, 1 + ε)-

approximate stretch factor of any planar Euclidean graph with n vertices.
5. For any integer constant β ≥ 1, and real constant ε > 0, we can compute in
O(mn1/β log2 n) expected time, a (2β(1+ε), 1+ε)-approximate stretch factor
of any Euclidean graph with n vertices and m edges.

In our first algorithm (AlgorithmA), the stretch factor is approximated by making
farthest pair queries on O(n) pairs of sets of points. Except for graphs such as paths,
cycles, trees and planar graphs, it is not clear how such queries can be solved efficiently.
Our second algorithm (Algorithm B) is much simpler; it makes shortest path queries
for O(n) specific pairs of points. The time complexity of algorithm B is consequently
improved over the corresponding one for algorithm A.

It is interesting that O(n) approximate shortest path queries are sufficient to
approximate the stretch factor. It is also interesting to note the pairs of points on
which these O(n) shortest path queries are made. In Algorithm B, these linear number
of queries depend only on the positions of the vertices; they do not depend on the
edges of the graph G. Finally, our algorithms also determine two vertices for which
the stretch factor is approximately maximized.

1.2. Related work. As mentioned already, our reduction uses the well-separated
pair decomposition of [7], thus adding to the list of applications of this powerful
method. For other applications of this decomposition, see [4, 6, 7].

Some related research in the general direction of approximating stretch factors
include papers by Dobkin et al. [12], and Keil and Gutwin [17], which showed that the
Delaunay triangulation has a stretch factor bounded by a small constant, and a paper
by Eppstein [13], which showed that a certain class of Euclidean graphs (called beta-
skeletons) can have arbitrarily large stretch factors. Note that these papers analyze

4 G. NARASIMHAN AND M. SMID

•

•

•

•

•
•
••

A

•

•

•

•• •

B

*

�

≥ sρ

Fig. 2.1. Two planar point sets A and B that are well-separated w.r.t. s. Both circles have
radius ρ; their distance is at least sρ.

the largest possible stretch factor of any Delaunay triangulation or beta-skeleton.
For example, Keil and Gutwin showed that for any finite set of points in the plane,
the stretch factor of its Delaunay triangulation is bounded from above by 2π

3 cosπ/6 .
Clearly, for some sets of points, the stretch factor can be much smaller. The current
paper represents the first attempt at devising algorithms to efficiently approximate
the stretch factor of a given Euclidean graph.

2. Well-separated pairs. Our algorithms use the well-separated pair decompo-
sition devised by Callahan and Kosaraju [7]. We briefly review this decomposition
and some of its relevant properties.

Definition 2.1. Let s > 0 be a real number, and let A and B be two finite
sets of points in Rd. We say that A and B are well-separated w.r.t. s, if there are
two disjoint d-dimensional balls CA and CB, having the same radius, such that (i)
CA contains all points of A, (ii) CB contains all points of B, and (iii) the distance
between CA and CB is at least equal to s times the radius of CA.

See Figure 2.1 for an illustration. In this paper, s will always be a constant, called
the separation constant. The following lemma follows easily from Definition 2.1.

Lemma 2.2. Let A and B be two finite sets of points that are well-separated w.r.t.
s, let a and p be points of A, and let b and q be points of B. Then

1. |ab| ≤ (1 + 4/s)|pq|,
2. |pa| ≤ (2/s)|pq|.

Definition 2.3 ([7]). Let S be a set of n points in Rd, and s > 0 a real number.
A well-separated pair decomposition (WSPD) for S (w.r.t. s) is a sequence of pairs
of non-empty subsets of S,

{A1, B1}, {A2, B2}, . . . , {Ak, Bk},

APPROXIMATING THE STRETCH FACTOR OF EUCLIDEAN GRAPHS 5

General Algorithm A
The algorithm takes as input a Euclidean graph G on a set S of
points in Rd, and a real constant ε > 0.
Step 1: Using separation constant s = 4/ε, compute a WSPD

{A1, B1}, {A2, B2}, . . . , {Ak, Bk}

for the set S.
Step 2: For each i, 1 ≤ i ≤ k, compute two points ai and bi, where
ai ∈ Ai and bi ∈ Bi, such that

|aibi|G = max{|pq|G : p ∈ Ai, q ∈ Bi},

and compute ti := |aibi|G/|aibi|.
Step 3: Report the value of t, defined as t := max(t1, t2, . . . , tk).
Also report points ai and bi for which t = ti.

Fig. 3.1. The first general algorithm for approximating the stretch factor of a Euclidean graph.

such that
1. Ai ∩Bi = ∅, for all i = 1, 2, . . . , k,
2. for any two distinct points p and q of S, there is exactly one pair {Ai, Bi} in

the sequence, such that
(a) p ∈ Ai and q ∈ Bi, or
(b) p ∈ Bi and q ∈ Ai,

3. Ai and Bi are well-separated w.r.t. s, for all i = 1, 2, . . . , k.
The integer k is called the size of the WSPD.

Callahan and Kosaraju showed how such a WSPD of size k = O(n) can be
computed using a binary tree, called the fair split tree.

Theorem 2.4 ([7]). Let S be a set of n points in Rd, and s > 0 a separation
constant. In O(n log n+ αdsn) time, we can compute a WSPD for S of size at most
αdsn. The constant in the Big-Oh bound does not depend on s. Moreover, for a large
separation constant s, the value of αds is proportional to 2ddd/2sd.

3. The first general algorithm. Let S be a set of n points in Rd, and let G
be a connected Euclidean graph having the points of S as its vertices. Recall that the
stretch factor t∗ of G is equal to

t∗ = max
{
|pq|G
|pq|

: p, q ∈ S, p 6= q

}
.

Consider a WSPD

{A1, B1}, {A2, B2}, . . . , {Ak, Bk}

for S. It follows from Lemma 2.2 that all Euclidean distances between a point of Ai
and a point of Bi are roughly equal. Hence, if we compute for each i, 1 ≤ i ≤ k, a
point ai ∈ Ai and a point bi ∈ Bi whose distance |aibi|G in G is maximum, then the
largest value of |aibi|G/|aibi| should be a good approximation to the stretch factor t∗

of G. This observation leads to our first general algorithm, which we denote by A.
See Figure 3.1. The following lemma proves the correctness of algorithm A.

6 G. NARASIMHAN AND M. SMID

Lemma 3.1. The value of t reported by algorithm A is a (1, 1 + ε)-approximate
stretch factor of G.

Proof. Let t∗ be the stretch factor of the graph G. We have to show that t ≤
t∗ ≤ (1 + ε)t. Since t can be written as |pq|G/|pq| for some points p and q in S, p 6= q,
it is clear that t ≤ t∗.

To prove the second inequality, let x and y be two points of S such that t∗ =
|xy|G/|xy|. Let i be the (unique) index such that (i) x ∈ Ai and y ∈ Bi, or (ii) x ∈ Bi
and y ∈ Ai. Assume w.l.o.g. that (i) holds.

Consider the points ai ∈ Ai and bi ∈ Bi that were chosen in Step 2 of the
algorithm. Clearly, |xy|G ≤ |aibi|G. By Lemma 2.2, we have |aibi| ≤ (1 + 4/s)|xy| =
(1 + ε)|xy|. This gives

t∗ =
|xy|G
|xy|

≤ |aibi|G
|xy|

≤ (1 + ε)
|aibi|G
|aibi|

= (1 + ε)ti ≤ (1 + ε)t.

This completes the proof.

4. An improved algorithm. The main problem with the general algorithm A
presented in the previous section is that Step 2 is hard to implement efficiently. In a
preliminary version of this paper ([20]), we showed that algorithm A can be used to
compute a (1, 1 + ε)-approximation to the stretch factor of Euclidean paths, cycles,
and trees, in O(n log n), O(n log n), and O(n log2 n) time, respectively. Using results
from Arikati et al. [2], we were able to design an O(n5/3polylog(n))-time algorithm for
computing a (2, 1+ε)-approximation to the stretch factor of planar Euclidean graphs.

In this section, we give a much simpler approximation algorithm. Recall that in
algorithm A, we compute for each pair {Ai, Bi} in a WSPD for S, a point ai ∈ Ai and
a point bi ∈ Bi for which |aibi|G is maximum, and use |aibi|G/|aibi| as a candidate
for the approximate stretch factor. Below, we prove that we can take arbitrary points
ai ∈ Ai and bi ∈ Bi, and use |aibi|G/|aibi|, or an approximation to this quantity, as a
candidate. Note that this is counter-intuitive, because the distances in the graph G
between points of Ai and points of Bi can vary greatly.

Hence, the problem of approximating the stretch factor of a Euclidean graph
can be reduced to the problem of making O(n) (approximate) shortest path query
computations. Shortest path query computations can, in general, be implemented
more efficiently than the farthest pair (between sets of vertices) computations that
were required when implementing algorithm A.

This improved algorithm, which we denote by B, will be given in Section 4.1 below.
In Section 5, we show that algorithm B achieves, in subquadratic time, comparable
approximation ratios for various classes of Euclidean graphs, as compared to algorithm
A.

4.1. The reduction. Let p and q be two distinct vertices of a connected Eu-
clidean graph G, and let c ≥ 1 be a real number. We say that the real number L(p, q)
is a c-approximation to the length of a shortest path in G between p and q, if

|pq|G ≤ L(p, q) ≤ c · |pq|G.

Let G be a class of connected Euclidean graphs. We assume that we are given
an algorithm ASPc that takes as input (i) any graph G from the class G, and (ii) any
sequence of pairs of vertices of G; the algorithm ASPc computes for each pair (a, b) in
this sequence, a c-approximation to |ab|G.

APPROXIMATING THE STRETCH FACTOR OF EUCLIDEAN GRAPHS 7

Improved Algorithm B
The algorithm takes as input a Euclidean graph G from the class G,
on a set S of points in Rd, and a real constant ε > 0.
Step 1: Using separation constant s = 4(1+ ε)/ε, compute a WSPD

{A1, B1}, {A2, B2}, . . . , {Ak, Bk}

for S. For each i, 1 ≤ i ≤ k, take an arbitrary point ai ∈ Ai, and an
arbitrary point bi ∈ Bi.
Step 2: Use algorithm ASPc to compute, for each i, 1 ≤ i ≤ k, a
c-approximation L(ai, bi) to the length |aibi|G of a shortest path in
G between ai and bi. For each i, 1 ≤ i ≤ k, let

ti :=
L(ai, bi)
|aibi|

.

Step 3: Report the value of t, defined as t := max(t1, t2, . . . , tk).
Also report points ai and bi for which t = ti.

Fig. 4.1. The improved algorithm for approximating the stretch factor of a Euclidean graph.

Algorithm B is given in Figure 4.1. The following theorem bounds the perfor-
mance ratio of the output of algorithm B.

Theorem 4.1. Let G be a Euclidean graph from the class G on a set S of points
in R

d, let t∗ be the stretch factor of G, and let t be the value that is reported by
algorithm B. Then

1
c
t ≤ t∗ ≤ (1 + ε)2t,

i.e., t is a (c, (1 + ε)2)-approximate stretch factor of G.
Proof. Let i be the index such that t = ti = L(ai, bi)/|aibi|. Then,

t ≤ c |aibi|G
|aibi|

≤ ct∗.

In the rest of the proof, we will prove the second inequality. To be more precise, we
will show that for all points p, q ∈ S, p 6= q,

|pq|G
|pq|

≤ (1 + ε)2t.

This will prove that t∗ ≤ (1 + ε)2t.
The proof is by induction on the rank of the distance |pq| in the sorted sequence of(

n
2

)
distances in S. To start the induction, assume that p, q is a closest pair in S. Let i

be the index such that (i) p ∈ Ai and q ∈ Bi, or (ii) p ∈ Bi and q ∈ Ai. Assume w.l.o.g.
that (i) holds. Since s > 2, it follows from Lemma 2.2 that Ai = {p} and Bi = {q}.
Hence, in Step 2 of the algorithm, we have computed the value ti = L(p, q)/|pq|. It
follows that

|pq|G
|pq|

≤ L(p, q)
|pq|

= ti ≤ t < (1 + ε)2t.

8 G. NARASIMHAN AND M. SMID

Now assume that p, q is not a closest pair in S and, moreover, assume that
|xy|G/|xy| ≤ (1 + ε)2t for all pairs x, y of points of S such that x 6= y and |xy| < |pq|.
Let i be the index such that (i) p ∈ Ai and q ∈ Bi, or (ii) p ∈ Bi and q ∈ Ai. Again,
assume w.l.o.g. that (i) holds. Consider the point ai ∈ Ai, and the point bi ∈ Bi that
were chosen in Step 2 of the algorithm. By the triangle inequality, we have

|pq|G ≤ |pai|G + |aibi|G + |biq|G.(4.1)

We distinguish three cases, depending on whether |pai|G and |biq|G are smaller or
larger than (ε/2)|aibi|G, respectively.

Case 1: |pai|G > (ε/2)|aibi|G and |biq|G > (ε/2)|aibi|G.
First note that p 6= ai, because |pai|G > 0. We may assume w.l.o.g. that |biq|G ≤

|pai|G. It follows from (4.1) that

|pq|G <
2(1 + ε)

ε
|pai|G.

Since s = 4(1 + ε)/ε, Lemma 2.2 implies that |pai| ≤ ε
2(1+ε) |pq|. Therefore,

|pq|G
|pq|

<
2(1 + ε)

ε

|pai|G
|pq|

≤ |pai|G
|pai|

.

Since |pai| < |pq|, the induction hypothesis implies that

|pq|G
|pq|

<
|pai|G
|pai|

≤ (1 + ε)2t.

Case 2: |pai|G ≤ (ε/2)|aibi|G.
In this case, (4.1) implies that

|pq|G ≤ (1 + ε/2)|aibi|G + |biq|G.

Moreover, Lemma 2.2 implies that |biq| ≤ ε
2(1+ε) |pq|, and |aibi| < (1 + ε)|pq|.

First assume that bi 6= q. Then,

|pq|G
|pq|

≤ (1 + ε/2)
|aibi|G
|pq|

+
|biq|G
|pq|

< (1 + ε/2)(1 + ε)
|aibi|G
|aibi|

+
ε

2(1 + ε)
|biq|G
|biq|

≤ (1 + ε/2)(1 + ε)
L(ai, bi)
|aibi|

+
ε

2(1 + ε)
|biq|G
|biq|

.

Since |biq| < |pq|, the induction hypothesis implies that |biq|G/|biq| ≤ (1+ε)2t. Hence,

|pq|G
|pq|

< (1 + ε/2)(1 + ε) ti +
ε(1 + ε)

2
t ≤ (1 + ε)2t,

where the last inequality follows from the fact that ti ≤ t.
If bi = q, then basically the same calculation shows that

|pq|G
|pq|

< (1 + ε/2)(1 + ε) ti < (1 + ε)2t,

APPROXIMATING THE STRETCH FACTOR OF EUCLIDEAN GRAPHS 9

Case 3: |biq|G ≤ (ε/2)|aibi|G.
This case is symmetric to Case 2.

In the following theorem, we summarize the result of this section. We denote by
T (n,m, k), the worst running time of algorithm ASPc, when given (i) a graph G ∈ G
having n vertices and m edges, and (ii) a sequence of c-approximate shortest path
queries, consisting of k pairs of vertices of G.

Theorem 4.2. Let S be a set of n points in Rd, let G be a Euclidean graph from
the class G, having the points of S as its vertices, and let ε be a real constant such
that 0 < ε ≤ 3. We can compute a (c, 1 + ε)-approximate stretch factor of G, in time

O(n log n) + T (n,m, βdεn).

Here, βdε is a constant which is proportional to 24ddd/2(1/ε)d if ε ↓ 0.
Proof. Run algorithm B, with ε replaced by ε/3. Let t be the value that is

computed by this algorithm. By Theorem 4.1, we have t ≤ ct∗, and

t∗ ≤ (1 + ε/3)2t ≤ (1 + ε)t.

The bound on the running time follows immediately from the algorithm and Theo-
rem 2.4.

5. Applications of Algorithm B.

5.1. A lower bound. Before we start with the applications, we prove a lower
bound for approximating the stretch factor in the algebraic computation tree model.
(See Ben-Or [5] or Preparata and Shamos [22] for a description of this model.)

Theorem 5.1. Any algebraic computation tree algorithm that takes as input (i)
a Euclidean path or cycle on a set of n points in Rd, and (ii) real numbers c1 ≥ 1
and c2 ≥ 1, and that computes a (c1, c2)-approximate stretch factor of this graph, has
worst-case running time Ω(n log n).

Proof. We give the lower bound proof for the case when the graph is a path. The
lower bound proof for the cycle is similar.

Let C be any algorithm that satisfies the hypothesis. We will show that C can be
used to solve the Element-Uniqueness-Problem, which is known to have an Ω(n log n)
lower bound in the algebraic computation tree model. (See [5, 22].)

Let x1, x2, . . . , xn be a sequence of n real numbers. We consider these numbers
as points on the x1-axis in Rd. Let M be the maximal element in the input sequence.
Define the path P by

P := (x1,M + 1, x2,M + 2, x3,M + 3, . . . , xn−1,M + n− 1, xn).

Note that each edge of P has a non-zero length. We choose arbitrary real numbers
c1 ≥ 1 and c2 ≥ 1, and run algorithm C on the path P . Let t be the (c1, c2)-
approximate stretch factor of P that is computed. Then it is easy to see that t is
finite if and only if the input numbers x1, x2, . . . , xn are pairwise distinct.

Since the reduction takes O(n) time, it follows that algorithm C has a worst-case
running time of Ω(n log n).

5.2. Paths, cycles and trees. Let G be the class of Euclidean paths, cycles,
or trees. For any graph G in this class, we can, after an O(n)-time preprocessing,
answer exact shortest path queries in O(1) time, if G is a path or cycle, and in
O(log n) time, if G is a tree. (If we allow non-algebraic operations, then we can even

10 G. NARASIMHAN AND M. SMID

answer shortest path queries in a tree in O(1) time. See [16].) Hence, we can apply
Theorem 4.2, with c = 1 and T (n,m, k) = O(n + k), if G is a path or cycle, and
T (n,m, k) = O(n+ k log n), if G is a tree, and get the following result.

Theorem 5.2. Let S be a set of n points in Rd, let G be a Euclidean path, cycle,
or tree, having the points of S as its vertices, and let ε be a real constant, such that
0 < ε ≤ 3. In O(n log n) time, we can compute a (1, 1 + ε)-approximate stretch factor
of G.

It follows from Theorem 5.1 that the above result is optimal in the algebraic
computation tree model.

5.3. Planar graphs. For the next application, let G be the class of planar
connected Euclidean graphs. Let G be a graph in this class, on a set of n points in
R
d. Arikati et al. [2] have shown that we can build a data structure, in O(n

√
n) time,

that allows us to solve exact shortest path queries, in O(
√
n) time per query. Hence,

we can apply Theorem 4.2 with c = 1 and T (n,m, k) = O(n
√
n + k

√
n). This gives

the following theorem.
Theorem 5.3. Let S be a set of n points in Rd, let G be a planar connected

Euclidean graph having the points of S as its vertices, and let ε be a real constant,
such that 0 < ε ≤ 3. In O(n

√
n) time, we can compute a (1, 1+ε)-approximate stretch

factor of G.

5.4. General graphs. In our final application, we let G be the general class of
connected Euclidean graphs. Let G ∈ G be any graph with n vertices and m edges.
Note that m ≥ n − 1. Cohen [9] has shown that for any integer β ≥ 1, and any
constant ε such that 0 < ε ≤ 1/2, any sequence of (2β(1 + ε))-approximate shortest
path queries can be answered in expected time

O((m+ k)n1/ββ log2 n).

where k is the number of queries. Applying Theorem 4.2 gives the following result.
Theorem 5.4. Let S be a set of n points in Rd, let G be a connected Euclidean

graph having the points of S as its vertices, and having m edges, let β ≥ 1 be an
integer constant, and let ε be a real constant, such that 0 < ε ≤ 1/2. In

O(mn1/β log2 n)

expected time, we can compute a (2β(1 + ε), 1 + ε)-approximate stretch factor of G.
By choosing different values for the integer constant β, Theorem 5.4 gives an

interesting trade-off between the running time and the approximation factor. For
example, by choosing β large enough, the running time in Theorem 5.4 is almost
linear in m, but then the approximation of the stretch factor is very weak (although
it is still bounded by a constant).

Theorem 5.4 implies the following result for sparse graphs, i.e., graphs having
O(n) edges.

Corollary 5.5. Let S be a set of n points in Rd, let G be a sparse connected
Euclidean graph having the points of S as its vertices, let β ≥ 1 be an integer constant,
and let ε be a real constant, such that 0 < ε ≤ 1/2. In

O(n1+1/β log2 n)

expected time, we can compute a (2β(1 + ε), 1 + ε)-approximate stretch factor of G.

APPROXIMATING THE STRETCH FACTOR OF EUCLIDEAN GRAPHS 11

6. Conclusions. In this paper we showed how to efficiently compute a close
approximation to the stretch factors of Euclidean graphs. We showed that the problem
can be reduced either to a sequence of farthest pair queries on O(n) pairs of sets of
points, or to a sequence of (approximate) shortest path queries for O(n) specific pairs
of points. It would be interesting to know whether o(n) shortest path queries are
sufficient for determining stretch factors approximately.

Except for trivial classes such as complete graphs, it is not known how to compute
the exact stretch factor of any class of Euclidean graphs in time less than that required
to solve the All-Pairs-Shortest-Path problem. Hence, it is not even known if the
exact stretch factor of simple Euclidean graphs, such as paths, can be computed in
subquadratic time.

Stretch factors can be thought of as a quantitative measure to compare distances
in two different metrics. In this paper, we demonstrated techniques to compute stretch
factors in order to compare a “graph metric” with the Euclidean metric. It would
be interesting to study stretch factors as a measure to compare two non-Euclidean
metrics. Our techniques cannot be used then, since no equivalent of the well-separated
pair decomposition is known for non-Euclidean metrics.

REFERENCES

[1] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete Comput. Geom., 9:81–100, 1993.

[2] S. R. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. D. Zaroliagis. Planar spanners
and approximate shortest path queries among obstacles in the plane. In Algorithms—
ESA ’96, Fourth Annual European Symposium, volume 1136 of Lecture Notes Comput.
Sci., pages 514–528. Springer-Verlag, 1996.

[3] S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn. A polynomial-time approxima-
tion scheme for weighted planar graph TSP. In Proc. 9th ACM-SIAM Sympos. Discrete
Algorithms, pages 33–41, 1998.

[4] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners: short, thin,
and lanky. In Proc. 27th Annu. ACM Sympos. Theory Comput., pages 489–498, 1995.

[5] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th Annu. ACM Sympos.
Theory Comput., pages 80–86, 1983.

[6] P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph problems in
higher dimensions. In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pages 291–300,
1993.

[7] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42:67–90, 1995.

[8] B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on graph spanners.
Internat. J. Comput. Geom. Appl., 5:125–144, 1995.

[9] E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM J.
Comput., 28:210–236, 1998.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, MA, 1990.

[11] G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean spanners.
Internat. J. Comput. Geom. Appl., 7:297–315, 1997.

[12] D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost as good as
complete graphs. Discrete Comput. Geom., 5:399–407, 1990.

[13] D. Eppstein. Beta-skeletons have unbounded dilation. Technical Report 96-15, Univ. of Cal-
ifornia, Irvine, Dept. of Information & Computer Science, Irvine, CA, 92697-3425, USA,
1996.

[14] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors, Handbook of
Computational Geometry, pages 425–461. Elsevier Science, Amsterdam, 1999.

[15] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM J. Comput., 16:1004–1022, 1987.

[16] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J.
Comput., 13:338–355, 1984.

12 G. NARASIMHAN AND M. SMID

[17] J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete Euclidean
graph. Discrete Comput. Geom., 7:13–28, 1992.

[18] C. Levcopoulos, G. Narasimhan, and M. Smid. Efficient algorithms for constructing fault-
tolerant geometric spanners. In Proc. 30th Annu. ACM Sympos. Theory Comput., pages
186–195, 1998.

[19] Linial, London, and Rabinovich. The geometry of graphs and some of its algorithmic applica-
tions. Combinatorica, 15, 1995.

[20] G. Narasimhan and M. Smid. Approximating the stretch factor of Euclidean paths, cycles and
trees. Report 9, Department of Computer Science, University of Magdeburg, Magdeburg,
Germany, 1999.

[21] D. Peleg and A. Schäffer. Graph spanners. J. Graph Theory, 13:99–116, 1989.
[22] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,

Berlin, 1988.
[23] S. Rao and W. D. Smith. Approximating geometrical graphs via “spanners” and “banyans”.

In Proc. 30th Annu. ACM Sympos. Theory Comput., pages 540–550, 1998.
[24] M. Smid. Closest-point problems in computational geometry. In J.-R. Sack and J. Urrutia, edi-

tors, Handbook of Computational Geometry, pages 877–935. Elsevier Science, Amsterdam,
1999.

