FindMax & FindMode:
Query Versions

Giri Narasimhan

Programming Team
Fall 2024

Problem Solving

* Correct Solutions
e Efficient Solutions

FindMax: Basic Problem

Input: Array A of size n
Output: Find largest value in A
Simple iterative solution
Time Complexity?

= 0(n) n — 1 comparisons
Implications:

" Time to solve the problem grows linearly with size
= Doubling the size should double the time

Is this optimal, i.e., the best we can do?

FindMax: Query Version

FindMax-Basic FindMax-Query @
Input: Array A of sizen * Input: Array A of sizen »
Output: Find largest value * Query:1<i<j<n
in A = # queries, k, may be large
Naive Iterative solution e Output: Find largest value in
Time Complexity? Ali..j]

Time Complexity?
= Naive solution: 0 (kn)

= Naive solution: 0(n)

* Is this optimal, i.e., the best
we can do?

ldea: Preprocess the input

FindMax-Query

Input: Array A of sizen
Query: 1 <i<j<n

= # queries, k, may be large
Output: Find largest value
in Ali..]]
Time Complexity?

= Naive solution: O (kn)
Is this optimal, i.e., the best
we can do?

Preprocessing

Idea: Remember past
gueries

= Bad idea: k may be too large
Idea: Preprocess the input
A before looking at queries

= Makes sense since A is fixed
= But how? What to store?

ldea: Preprocess the input ... 2

FindMax-Query Preprocessing
Input: Array A of sizen * ldea: Remember past
Query: 1 <i<j<n gueries
= #queries, k, may be large = Bad idea: k may be too large
Output: Find largest value * ldea: Preprocess the input
in A[i,] A before looking at queries

= Makes sense since A is fixed

Time Complexity?
= But how? What to store?

= Naive solution: O (kn)
e New ldea: Store answers for

Is this optimal, i.e., the best _
every possible query

we can do?

ldea: Preprocess the input ... 3

FindMax-Query

Input: Array A of sizen
Query: 1 <i<j<n

= # queries, k, may be large
Output: Find largest value
in Ali..]]
Time Complexity?

= Naive solution: O (kn)
Is this optimal, i.e., the best
we can do?

Preprocessing

° New Idea: Store answers for
every possible query

How?

Need a data structure B
Use a 2D array

B|i, j| Stores the answer for
query (i..))

Example

Input array A Preprocessed 2D array B
Iﬂﬂﬂﬂﬂ.ﬂﬂ Iﬂﬂﬂﬂﬂ.ﬂﬂ
14 41 19 23 11 29 14 41 41 41

41 41 41 41 41 41 41 41
19 19 23 23 29 29 31

2 23 23 29 29 31

23 23 29 29 31

11 29 29 31

29 29 31

6 31

31

Preprocessing Algorithm

How to fill in 2D array B Time Complexity
Forp = 1tondo * How many entries in B?
Forg = 1tondo = 0(n?)

How to “Compute B[p, q]|”?
= Naive: 0(q —p) = 0(n)
= Naive: 0(n3)

Time for k queries:
= 0(k +n3)
= Fineifn3 = 0(k)
= Whatif n? = 0(k), but k <n3
= Need better preprocessing

Compute B|p, q]

Preprocessing Algorithm

How to fill in 2D array B Improved Preprocessing
Forp = 1tondo * How to “Compute B|p, q]”
Forq = 1tondo = Use:B[p,q — 1]
= How?

Compute Blp, q]
& *Blp, ql = max{Blp,q — 1], A[q]}
* Time to “Compute B[p,q|” = 0(1)
Incremental * Time for k queries:

= 0(k +n?)

= Fineifn? = 0(k)

= Whatifn = 0(k), butk < n?

= Need better preprocessing

Processing

General Approach for

Preprocess input A
Create data structure B
For each input query:

= Ask an appropriate query from B
= Respond quickly with an answer to input query

Complexity? Preprocessing & Query time/space
Tradeoff

" Preprocessing time and space vs Query time

	Slide 1: FindMax & FindMode: Query Versions
	Slide 2: Problem Solving
	Slide 3: FindMax: Basic Problem
	Slide 4: FindMax: Query Version
	Slide 5: Idea: Preprocess the input
	Slide 6: Idea: Preprocess the input … 2
	Slide 7: Idea: Preprocess the input … 3
	Slide 8: Example
	Slide 9: Preprocessing Algorithm
	Slide 10: Preprocessing Algorithm
	Slide 11: General Approach for

