
FindMax & FindMode: 
Query Versions

Giri Narasimhan
Programming Team

Fall 2024



Problem Solving

• Correct Solutions

• Efficient Solutions



FindMax: Basic Problem

• Input: Array 𝐴 of size 𝑛

• Output: Find largest value in 𝐴

• Simple iterative solution

• Time Complexity?

▪ 𝑂(𝑛)

• Implications: 
▪ Time to solve the problem grows linearly with size

▪ Doubling the size should double the time

• Is this optimal, i.e., the best we can do?

𝒏 − 𝟏 comparisons



FindMax: Query Version

FindMax-Basic

• Input: Array 𝐴 of size 𝑛

• Output: Find largest value 
in 𝐴

• Naïve Iterative solution

• Time Complexity?
▪ Naïve solution: 𝑂(𝑛)

FindMax-Query

• Input: Array 𝐴 of size 𝑛

• Query: 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛
▪ # queries, 𝑘, may be large

• Output: Find largest value in 
𝐴[𝑖. . 𝑗]

• Time Complexity?

▪ Naïve solution: 𝑂(𝑘𝑛)

• Is this optimal, i.e., the best 
we can do?

Fixed



Idea: Preprocess the input

FindMax-Query

• Input: Array 𝐴 of size 𝑛

• Query: 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛
▪ # queries, 𝑘, may be large

• Output: Find largest value 
in 𝐴[𝑖. . 𝑗]

• Time Complexity?

▪ Naïve solution: 𝑂(𝑘𝑛)

• Is this optimal, i.e., the best 
we can do?

Preprocessing

• Idea: Remember past 
queries
▪ Bad idea: 𝑘 may be too large

• Idea: Preprocess the input 
𝐴 before looking at queries
▪ Makes sense since 𝐴 is fixed

▪ But how? What to store?



Idea: Preprocess the input … 2

FindMax-Query

• Input: Array 𝐴 of size 𝑛

• Query: 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛
▪ # queries, 𝑘, may be large

• Output: Find largest value 
in 𝐴[𝑖, 𝑗]

• Time Complexity?

▪ Naïve solution: 𝑂(𝑘𝑛)

• Is this optimal, i.e., the best 
we can do?

Preprocessing

• Idea: Remember past 
queries
▪ Bad idea: 𝑘 may be too large

• Idea: Preprocess the input 
𝐴 before looking at queries
▪ Makes sense since 𝐴 is fixed

▪ But how? What to store?

• New Idea: Store answers for 
every possible query



Idea: Preprocess the input … 3

FindMax-Query

• Input: Array 𝐴 of size 𝑛

• Query: 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛
▪ # queries, 𝑘, may be large

• Output: Find largest value 
in 𝐴[𝑖. . 𝑗]

• Time Complexity?

▪ Naïve solution: 𝑂(𝑘𝑛)

• Is this optimal, i.e., the best 
we can do?

Preprocessing

• New Idea: Store answers for 
every possible query
▪ How?

▪ Need a data structure 𝐵

▪ Use a 2D array

▪ 𝐵[𝑖, 𝑗] Stores the answer for 
query (𝑖. . 𝑗)



Example

Input array A

1 2 3 4 5 6 7 8 9

14 41 19 2 23 11 29 6 31

Preprocessed 2D array B

1 2 3 4 5 6 7 8 9

14 41 41 41 41 41 41 41 41

41 41 41 41 41 41 41 41

19 19 23 23 29 29 31

2 23 23 29 29 31

23 23 29 29 31

11 29 29 31

29 29 31

6 31

31



Preprocessing Algorithm

How to fill in 2D array B

For 𝑝 =  1 to 𝑛 do

 For 𝑞 =  1 to 𝑛 do

  Compute 𝐵[𝑝, 𝑞]

Time Complexity

• How many entries in 𝐵?

▪ 𝑂(𝑛2)

• How to “Compute 𝐵[𝑝, 𝑞]”?
▪ Naïve: 𝑂 𝑞 − 𝑝 = 𝑂(𝑛)

▪ Naïve: 𝑂 𝑛3

• Time for 𝑘 queries:
▪ 𝑂 𝑘 + 𝑛3

▪ Fine if 𝑛3 = 𝑂(𝑘)

▪ What if 𝑛2 = 𝑂(𝑘), but 𝑘 < 𝑛3

▪ Need better preprocessing



Preprocessing Algorithm

How to fill in 2D array B

For 𝑝 =  1 to 𝑛 do

 For 𝑞 =  1 to 𝑛 do

  Compute 𝐵[𝑝, 𝑞]

Improved Preprocessing

• How to “Compute 𝐵[𝑝, 𝑞]”

▪ Use: 𝐵[𝑝, 𝑞 − 1]

▪ How?

• 𝐵 𝑝, 𝑞 = max{𝐵 𝑝, 𝑞 − 1 , 𝐴[𝑞]}

• Time to “Compute 𝐵[𝑝, 𝑞]” = 𝑂(1)

• Time for 𝑘 queries:

▪ 𝑂 𝑘 + 𝑛2

▪ Fine if 𝑛2 = 𝑂(𝑘)

▪ What if 𝑛 = 𝑂(𝑘), but 𝑘 < 𝑛2

▪ Need better preprocessing

Incremental 
Processing



General Approach for

• Preprocess input 𝐴

• Create data structure 𝐵

• For each input query:

▪ Ask an appropriate query from 𝐵

▪ Respond quickly with an answer to input query

• Complexity? Preprocessing & Query time/space

• Tradeoff

▪ Preprocessing time and space vs Query time


	Slide 1: FindMax & FindMode:  Query Versions
	Slide 2: Problem Solving
	Slide 3: FindMax: Basic Problem
	Slide 4: FindMax: Query Version
	Slide 5: Idea: Preprocess the input
	Slide 6: Idea: Preprocess the input … 2
	Slide 7: Idea: Preprocess the input … 3
	Slide 8: Example
	Slide 9: Preprocessing Algorithm
	Slide 10: Preprocessing Algorithm
	Slide 11: General Approach for

