Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

Boolean Operators and Expressions

I. Background

· Recall that the syntax of the if statement is

if (boolean expression)

{

 statement(s)

}

where the boolean expression is anything that evaluates to true or false (aka: a "condition")

· We are familiar with one kind of boolean expression called the relational expression.

· The boolean operators operate on boolean expressions to form more complex conditions

II. The and Operator: &&
· The && operator is a binary operator, appearing between two boolean expressions

· When two boolean expressions are "anded" together, the resulting boolean expression is true only if both are true; otherwise it is false (i.e., false when either or both are false)

III. The or Operator: ||
· The || operator is also a binary operator, appearing between two boolean expressions

· When two boolean expressions are "ored" together, the resulting boolean expression is true if either or both are true; otherwise it is false (i.e., false only when both are false)

IV. The not Operator: !
(a unary operator)
When a boolean expression is preceded by !, the resulting boolean expression has the opposite truth value of the original (i.e., not true is false and not false is true)

V. Truth Tables

In the following truth table, A and B stand for any two boolean expressions. The two left-most columns show the 4 possible combinations of truth values for A and B. Read across each row to see the values of expressions formed by using each of the boolean operators for values of A and B. (0 = false, 1 = true)

	A
	B
	!B
	A && B
	A || B

	0
	0
	1
	0
	0

	0
	1
	0
	0
	1

	1
	0
	1
	0
	1

	1
	1
	0
	1
	1

VI. Operator Precedence

!
(highest)

*, /, %, +, -

(arithmetics)

>, >=, <, <=, ==, !=
(relationals)

&&

||
(lowest)
· It is not necessary to enclose relational expressions in parentheses when they are joined by && or ||, because the relationals have higher precedence than these operators

· Since ! has the highest precedence of all, it is necessary to use parentheses when ! appears in expressions with the relationals and/or with the other boolean operators

· It is probably a good idea to always use parentheses with boolean expressions, whether required or not, because that way you don't have to worry about the operator precedence, and it also makes the meaning of the expression more clear.

VII. Examples

1. Is age between 18 and 35, inclusive?

age >= 18 && age <= 35

2. Is x the smallest of x, y, and z?

x < y && x < z

3. Are x, y, and z all equal?

x == y && y == z

4. The character ch is either an 'A' or an 'E'

ch == 'A' || ch =='E'

5. age is not between 18 and 35, inclusive

! (age >= 18 && age <= 35)
// note parentheses

 or,

age < 18 || age > 35

6. X is not the smallest of x, y, and z

! (x < y && x < z)

 or,

x >= y || x >= z

7. The character ch is neither an 'A' nor an 'E'

! (ch == 'A' || ch =='E')

 or,

ch != 'A' && ch != 'E'

VIII. DeMorgan's Laws

· DeMorgan's Laws can be used to simplify boolean expression involving ! and && or ||.

· There are 2 laws but you only need to learn one, because the second is formed by taking the first and changing all &&'s to ||'s and all ||'s to &&'s

1. !(A && B) = !A || !B

2. !(A || B) = !A && !B

· Examples 5, 6, and 7 (in VII, above) show the application of DeMorgan's Laws.

