Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

More on Decision-Making
I. “Shortcut” Evaluation of Boolean Expressions

· In contrast to some other languages, Java uses “shortcut” (aka: “lazy”) evaluation of boolean expressions (always)

· Example using &&
· Consider the boolean expression A && B (where A and B are two boolean expressions)

· If A is false, does it matter what B is? (No, because false && anything is false)
· Therefore, Java will not evaluate B unless A is true
· So, expressions such as the following are safe

x != 0 && y/x < z
· This can not cause a division by zero – even if x happens to be zero - because Java will only evaluate y/x < z when x != 0 is true
· Example using ||
· Consider the boolean expression A || B (where A and B are two boolean expressions)

· If A is true, does it matter what B is? (No, because true || anything is true)
· Therefore, Java will not evaluate B unless A is false
· So, expressions such as the following are safe

x == 0 || y/x < z

· This can not cause a division by zero – even if x happens to be zero - because Java will only evaluate y/x < z if x == 0 is false
II. Testing Programs That make Decisions

· Make sure every possible branch of execution is tested

· Test all “boundary values”

III.
 Impossible Conditions and Unavoidable Conditions
· Beware of two kinds of logic errors known as impossible conditions and unavoidable conditions
· An impossible condition is one that can never be true. Example:

// Check whether age is NOT between 18 and 35, inclusive
if (age < 18 && age > 35)

(there is no possible value for age that will make this true)

· An unavoidable condition is one that is always true. Example:

// Check whether age is between 18 and 35, inclusive

if (age >= 18 || age <= 35)

(there is no possible value for age that will make this false)

IV. The "Dangling Else" Problem - And How to Avoid It
What – if anything - will be printed by the following code segment?
int x = 1 ; int y = 2 ; int z = 1 ;

if (x == y)

 if (x != z)
 System.out.println(“x equals y but does not equal z”) ;

else

 System.out.println(“x is NOT equal to y”) ;

· The answer: nothing will be printed!
Why? Because each else goes with the most recent, unmatched if. So the else above is matched with the nested if, and not the outer if. (Remember that indentation means nothing to Java)

This “dangling else” problem is easily avoided – just remember to always use braces

if (x == y)

{

 if (x != z)

 {

 System.out.println(“x equals y but does not equal z”) ;

 }

}

else

{

 System.out.println(“x is NOT equal to y”) ;

}

