Computer Programming
I

 Instructor: Greg ShawPRIVATE

COP 2210

Types of Programming Errors

("To Err is Human, To Debug is Programming")
All programming errors may be grouped into three categories based upon when (and if) they are detected.

I.
Syntax Errors

· Definition: errors in grammar (violations of the "rules" for forming legal Java statements).

· Detected by the Java compiler as it tries to translate your program into the byte codes. I.e., to translate each .java file into a .class file

· Examples: missing a semi-colon after a statement, mismatched parentheses in an expression, an opening brace ({) without a matching closing brace (}), undeclared/misspelled identifiers

· The Good News: The compiler will notify you of the location and the nature of each syntax error. (However, understanding the compiler's error messages takes some practice.)

· The Good News 2: As you get more practice using a language, you will naturally make fewer syntax errors, and will be able to quickly correct those that do occur!

II.
Fatal Run-Time Errors (Java "Exceptions")

· Definition: "Asking the computer to do the impossible!"

· Examples: division by zero, taking the square root of a negative number, referring to the 11th item on a list of only 10 items, dereferencing a null pointer (later), etc.

· Occur when the compiled program is running ("executing").

· In Java, fatal run-time errors are known as exceptions.

· If an exception occurs and is not handled, the program will terminate abruptly ("crash").

· Exception handling is covered in Programming II. This semester, we will concentrate on avoiding exceptions.

· The Good News: The Java interpreter or run-time environment (aka: the JRE, the Java “virtual machine) will notify you of the location and nature of an exception should one occur.

· The Good News 2: Avoiding exceptions and correcting program behavior that "throws" exceptions is also largely a matter of experience. Also, there are antibugging (i.e., defensive programming) techniques that we can use to prevent run-time errors from occurring.

III. Logic Errors

· Definition: the program compiles (no syntax errors) and runs to a normal completion (no exceptions thrown), but the output ("results") is wrong!

· Also known as semantic errors, these are errors in meaning. A statement may be syntactically correct, but mean something other than what we intended. Therefor it has a different effect, causing the program output to be wrong.

· Examples: using an incorrect formula to compute a value, performing arithmetic operations in the wrong order, improper initialization of variables, etc.

· The Bad News: Only you can determine whether or not a logic error has occurred, by careful examination of the program output.

· Finding and correcting logic errors in a program is known as debugging.

· Debugging tips:

1. Carefully hand-trace each statement of your program, writing down all changes in the values of variables. This technique is known as "playing computer," and can help you find bugs.

2. Insert temporary output statements into your program, so that you can check the values that are actually being stored in your variables. These "diagnostic" output statements can be removed later when the program is working correctly.

WARNING

NEVER ASSUME THAT YOUR PROGRAM WORKS CORRECTLY JUST BECAUSE IT COMPILES AND RUNS TO A NORMAL COMPLETION! ALWAYS CHECK YOUR OUTPUT WITH PENCIL, PAPER, AND A CALCULATOR (I.E., "PLAY COMPUTER") BEFORE HANDING IN YOUR PROGRAM!!!
