Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

OOP Terminology and Concepts

(OOP = Object-Oriented Programming)

I.
Terminology

Object

A software model of something that exists in the real world or in the imagination. Objects have attributes or characteristics (things they "know") and behaviors (things they can do).

Example:
A “spotlight” object has a specific color and intensity and is either on or off (attributes). And a spotlight object can change color, change intensity, turn on, turn off, and tell you its current color, intensity, and whether it is on or off.
Class

A class is a programmer-defined abstract data type (ADT). An ADT is a domain of objects and a set of operations on those objects.

In Java, the operations are methods, which model the behaviors of the object.

From the point of view of a programmer using the class, the methods are abstract operations because the programmer needs to know only what the methods do and does not need to know and (often does not know) how they do it.

Think of a class as a factory that can produce many similar, yet different, objects.

Every Java program defines at least one new class, and typically uses several existing ones
OOP consists largely of
1. Creating objects

2. Manipulating the objects via the methods of the class

Anthropomorphism

"Attributing human characteristics to inanimate objects." We do this with objects when we say they know things (their attributes) and can do things (their behaviors).

E.g., we say that a spotlight object “knows” its color, intensity, and whether it is on or off, and can change its color, intensity, etc.

Instance Variables (aka: “Instance Fields”)

Variables in the class definition that store the attributes of an object. Each object created has its own copy of each instance variable, since each object knows its own attributes.
Methods

Functions in the class definition that model the behaviors of an object. There is only one set of methods shared by all the objects created.

Method Call

We make an object do something by “calling” one of the methods for that object.

The syntax of a method call is:

object-name.method-name(arguments)

e.g.,
System.out.println(“Hello, World!”) ;

The arguments are actual data values "passed to" the method when it is called. The method then uses these values in carrying out its task, whatever that may be. See the “Objects, Classes, and Methods” doc and programs MethodCalls.java and FunWithRectangles.java).

Some methods take no parameters. We call those methods using an empty set of parentheses, as in:

object-name.method-name()

e.g.,
System.out.println() ;

(This calls the no-argument version of the println method - it just starts a new line of output)
Interface

The set of methods of the class are known as the class interface, because the programmer uses them to interact with the objects.

Implementation

The set of variables in the class definition that determines how the objects are represented in memory.
A programmer using a class is forbidden to access the instance variables directly, and may not even know what they are! The only way to interact with objects is through their well-defined interface -- the methods of the class.

In the real world, we use objects every day through their interfaces, without knowing the details of their implementation. Your home entertainment center, for example.

II. Some Basic OOP Concepts and Advantages

Reusability

Just as hardware is composed of standardized, interchangeable components that can be reused in different devices, so too is OOP software. The basic unit of programming in Java is the class, and classes are easily reused.

Information Hiding

Although programmers must know how to communicate with objects (through the interface), they do not need to know (and often do not know) how objects are implemented. The implementation details are hidden within the objects themselves.

Therefor, should the creator of a class decide to change the implementation of the objects, existing software that used the older version is guaranteed to work with the newer.

Encapsulation

“Keeping things together that belong together.” I.e., keeping the attributes and behaviors of objects together as the instance variables and methods of a class.

A class is a sealed unit, like a capsule. A programmer who uses a class cannot create new methods for that class (or modify existing ones) and cannot change the class implementation (add new instance variables).

An object may be manipulated only through the well-defined interface described by the methods of the class.

Encapsulation assures the integrity of the class. Since we can’t access the instance variables directly, we can’t accidentally - or maliciously - store erroneous or illegal data in them.

