Computer Programming
 I

 Instructor: Greg Shaw

COP 2210

 PRIVATE

Using printf to Format Output
I. Unformatted (“Default”) Output vs. Formatted Output
We are all familiar with the default or unformatted appearance of Java output, as produced by the print and println methods
1. The field width is the minimum necessary to display all the characters – there are no blanks printed before or after
2. The number of decimal places shown is however many are stored in the variable or the result of the calculation – the output is not “rounded” to a convenient number of digits
When we format the output, we can right- or left-justify a value in a field of a specified width, and round floating-point numbers to a specified number of digits
This document explains how to format output by calling the printf method of the PrintStream class (recall that System.out is an object of the PrintStream class)
II. printf Syntax
System.out.printf(format-string, expr1, expr2, ... , exprn) ;
· The format-string is a string expression containing format specifiers which determine how each of the following expressions will be printed
· expri is a variable or expression to be formatted and printed
· Any number of expressions may follow the format-string, which must contain one format specifier for each expression

· In addition to the format specifiers, the format string may contain string literals, which will be printed exactly as they appear

III. Format Specifiers

%wd – for integer types

%ws – for strings

%wf – for floating-point types

%n - newline

where w is an integer literal that specifies the width of the output field
· The corresponding expression will be printed right-justified in a field of w spaces (i.e., any extra spaces will appear to the left of the expression)

· If the specified field width is too small to display the expression, it will be ignored and the expression will be printed using the minimum field width needed
· To specify the minimum field width, just omit the width specifier w (see examples below)
IV. String and int Formatting Examples
Given the variable values below, note the output from each of the following statements (extra spaces printed are shown as ^).

int number = 37 ;

int number2 = 73 ;

String name = "Dave" ;

System.out.printf("Your lucky number is %d", number) ;

Your lucky number is 37

(note minimum field width)

System.out.printf("Your lucky number is %6d", number) ;

Your lucky number is ^^^^37
(right-justified in field of 6)
System.out.printf("I’m sorry %s,%nI’m afraid I can’t do that.", name) ;

I’m sorry Dave,

I’m afraid I can’t do that.
(note newline specifier, %n)

System.out.printf("Answers are %5d and %7d.", number, number2) ;

Answers are ^^^37 and ^^^^^73.
V. Floating-Point Formatting Examples
When formatting a floating-point expression, you have the additional option of specifying the number of decimal places to be displayed

· The format specifier used has this syntax:

%w.df

where w is the width of the output field and d is the number of digits to the right of the decimal point
· The expression will be rounded to the specified number of decimal places

· If the expression has fewer than the specified number of digits to the right of the decimal point, it will be right-extended (i.e. “padded”) with zeroes

double x = -12.345 ;
System.out.printf("%10.2f",x) ; // ^^^^-12.35 (rounds up)

System.out.printf("%10.1f",x) ; // ^^^^^-12.3 (rounds down)

System.out.printf("%12.5f",x) , // ^^^-12.34500 (padded with 0’s)

VI. Format Flags
· For most applications the format specifiers alone will suffice
· For more formatting options, format flags may be added
· Format flags are single characters which go immediately after the “%” in the format specifier

The format flags are summarized in this table:

	Flag
	Effect

	 - (minus sign)
	 left-alignment

	 , (comma)
	 use comma separators in numeric expressions

	 ((left parenthesis)
	 enclose negative numbers in parentheses

	 + (plus sign)
	 show a plus sign for positive numbers

	 0 (zero)
	 print leading zeroes instead of spaces

String name = "Bubba" ;

int num = 1000000 ;

double trouble = -123.4567 ;

System.out.printf("Name: %-12s",name) ; // Name: Bubba^^^^^^^
System.out.printf("That's the $%,d question!", num) ;

That’s the $1,000,000 question!

System.out.printf("%(10.2f", trouble) ; // ^^(123.46)

VII. String Class Method format
The String class has a static method named format that works exactly like printf except that it returns a formatted string instead of printing one. So you can use String.format in the argument to print or println.
For examples, see the main method of the PayMaster1 class in Unit 5 and the getdata method of the PayCheck2 class (in Paymaster2.java, also in Unit 5)
VIII. Using Variables in Format Strings

We might want to use a variable in a format string so that the width of the output field can be changed by changing the value of the variable.

To do this, simply use concatenation to create the format string.

E.g. to right-justify the string name in a field of exactly width spaces, use

System.out.printf("%" + width + "s", name) ;

or

System.out.println(String.format("%" + width + "s", name)) ;

So, if name is “Bubba” and int variable width is set to 10, the output of each of these statements would be

^^^^^Bubba

(where each ^ represents a space)

