Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

Shadowing

(The Shadow knows...how to use this to avoid shadowing!)

A common programming error is to use the same name for a method parameter or local variable as for an instance variable.

In that case, the parameter or local variable "shadows" or "hides" the instance variable and the instance variable is not accessed.

For example, suppose we have a class to represent a cylinder (a 3-D object shaped like a tin can) with instance variables that store the radius and the height of a cylinder object.

public class Cylinder

{

// instance var's

private double radius ;

private double height ;

Here is an example of a constructor that does not access the instance variables due to shadowing:

public Cylinder(double radius, double height)

{

radius = radius ;

height = height ;

}

Instead, this constructor merely sets the parameters to the values they already have! In the constructor body, radius and height are the parameters and not the instance variables, due to shadowing.

One way to prevent accidental shadowing is to use the object reference this with instance variables:

public Cylinder(double radius, double height)

{

this.radius = radius ;

this.height = height ;

}

Since this.radius means "the radius instance variable of the object being constructed" it is not shadowed by the parameter of the same name.

Now suppose that our Cylinder class has two additional instance variables that store the volume and surface area of a cylinder:

private double volume ;

// volume of cylinder

private double area ;

// surface area

Also suppose that the constructor computes and stores the volume and area when a Cylinder object is created. Can you spot the errors in the following constructor? (The errors are not in the formulas).

public Cylinder(double radius, double height)

{

this.radius = radius ;

this.height = height ;

double volume = Math.PI * Math.pow(radius,2) * height ;

double area = (2 * Math.PI * Math.pow(radius,2)) +

 (2 * Math.PI * radius * height) ;

}

The problem is that the constructor declares local variables called volume and area, and initializes them instead of the instance variables of the same names.

Using this eliminates this potential problem because if you try to use it in a declaration:

double this.volume = Math.PI * Math.pow(radius,2) * height ;

you will get a syntax error!

· Although the above example used the class constructor, shadowing may occur in any method
· Another benefit of using this with instance variables is that then there is no problem in using the same names for method parameters, so you do not have to think up so many different variable names!

